SIEMENS

Function Manual

SINAMICS

SINAMICS G115D, G120, G120P, G120C, G120D

Fieldbuses

www.siemens.com/drives

SIEMENS

SINAMICS

SINAMICS G115D, G120, G120P, G120C, G120D Fieldbuses

Function Manual

Preface

Fundamental safety instructions	1
General information	2
Communication via PROFIBUS and PROFINET	3
Communication via EtherNet/IP	4
Communication via RS485	5
Communication over CANopen	6
Communication over CANopen Communication via AS-i – only for G115D	6 7

Edition 02/2023, Firmware V4.7 SP14

Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.

\land DANGER

indicates that death or severe personal injury will result if proper precautions are not taken.

\land warning

indicates that death or severe personal injury may result if proper precautions are not taken.

\bigwedge CAUTION

indicates that minor personal injury can result if proper precautions are not taken.

NOTICE

indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified Personnel

The product/system described in this documentation may be operated only by **personnel qualified** for the specific task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

Proper use of Siemens products

Note the following:

M WARNING

Siemens products may only be used for the applications described in the catalog and in the relevant technical documentation. If products and components from other manufacturers are used, these must be recommended or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and maintenance are required to ensure that the products operate safely and without any problems. The permissible ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks

All names identified by [®] are registered trademarks of Siemens AG. The remaining trademarks in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.

Preface

About this manual

This manual describes the settings and preconditions that are required to communicate with a higher-level control system with the subsequently listed fieldbus systems.

Fieldbuses for SINAMICS G120

- PROFIBUS DP
- PROFINET
- EtherNet/IP
- USS
- Modbus RTU
- CANopen

Additional fieldbuses for SINAMICS G120P

- BACnet MS/TP
- P1

Fieldbuses for SINAMICS G115D

- PROFINET
- EtherNet/IP
- AS-Interface

What is the meaning of the symbols in the manual?

Reference to further information in the manual

- Download from the Internet
- DVD that can be ordered
- End of a handling instruction.

Table of contents

	Preface		3
1	Fundamer	ntal safety instructions	9
	1.1	General safety instructions	9
	1.2	Warranty and liability for application examples	9
	1.3	Security information	9
2	General in	formation	11
	2.1	Ethernet and PROFINET protocols that are used	11
3	Communio	cation via PROFIBUS and PROFINET	13
	3.1 3.1.1 3.1.1.2 3.1.1.3 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.6.1 3.1.7	PROFIDRIVE profile - Cyclic communication Assigning control and status words Control and status word 1 Control and status word 2 Control and status word 3 NAMUR message word Control and status word, encoder Position actual value of the encoder Extend telegrams and change signal interconnection Data structure of the parameter channel Application examples Device-to-device communication	
	3.2	PROFIDRIVE profile - Acyclic communication	42
	3.3 3.3.1 3.3.2	PROFIdrive profile - Diagnostic channels Diagnostics with PROFINET Diagnostics with PROFIBUS	47 48 50
	3.4	Identification & maintenance data (I&M)	54
	3.5 3.5.1	S7 communication Directly accessing a SINAMICS G120 converter from a SIMATIC panel	55 55
	3.6 3.6.1 3.6.2 3.6.3 3.6.3.1 3.6.3.2 3.6.3.3 3.6.3.4 3.6.4 3.6.4.1 3.6.4.2	Communication via PROFINET Converter with PROFINET interface Integrating converters into PROFINET PROFINET IO operation What do you have to set for communication via PROFINET? Configuring communication to the control Installing GSDML Activating diagnostics via the control PROFIenergy Energy-saving mode Control commands	
	3.6.4.3 3.6.4.4	Status queries Error values and measured values	

	3.6.5	The converter with PROFINET interface as Ethernet node	69
	3.7	Communication via PROFIBUS	70
	3.7.1	Converters with PROFIBUS interface	72
	3.7.2	What do you have to set for communication via PROFIBUS?	74
	3.7.3	Integrating converters into PROFIBUS	75
	3.7.4	Configuring communication to the control system	75
	3.7.4.1	Configuring the communication using SIMATIC S7 control	75
	3.7.4.2	Configuring the communication with a third-party control system	75
	3.7.4.3	Installing the GSD	76
	3.7.5	Set the PROFIBUS address	//
	3.8	Select telegram	77
4	Communio	cation via EtherNet/IP	79
	4.1	Converters with Ethernet/IP interface	79
	4.2	Connect converter to EtherNet/IP	81
	4.3	What do you need for communication via EtherNet/IP?	81
	4.4	Configuring communication	82
	4.5	Supported objects	84
	4.5.1	Supported ODVA AC/DC assemblies	96
	4.6	Create generic I/O module	97
	4.7	The converter as an Ethernet station	98
5	Communio	cation via RS485	. 101
	5.1	Converter with RS485 interface	. 101
	5.2	Integrating converters into a bus system via the RS485 interface	. 103
	5.3	Communication via USS	. 103
	5.3.1	Basic settings for communication	. 104
	5.3.1.1	Setting the address	. 104
	5.3.1.2	Parameters to set communication via USS	. 105
	5.3.2	Telegram structure	. 106
	5.3.3	Specify user data of telegram	. 107
	5.3.4	USS parameter channel	. 108
	5.3.4.1	Telegram examples, length of the parameter channel = 4	. 113
	5.3.5	USS process data channel (PZD)	. 114
	5.3.6	Telegram monitoring	. 117
	5.4	Communication using Modbus RTU	. 118
	5.4.1	Basic settings for communication	. 119
	5.4.1.1	Setting the address	. 121
	5.4.1.2	Parameters for setting communication via Modbus RTU	. 121
	5.4.2	Modbus RTU telegram	. 124
	5.4.3	Baud rates and mapping tables	. 125
	5.4.4	Mapping tables - converter data	. 127
	5.4.5	Acyclic communication via Modbus RTU	. 130
	5.4.6	Write and read access using function codes	. 131
	5.4.7	Acyclically read and write parameter via FC 16	. 133
	5.4.7.1	Kead parameter	.134
	5.4./.2	write parameter	. 136

	5.4.8 5.4.9	Communication procedure Application example	137 138
	5.5 5.5.1 5.5.1.1 5.5.1.2 5.5.2 5.5.3	Communication via BACnet MS/TP - only CU230P-2 HVAC / BT Basic settings for communication Setting the address Parameters for setting communication via BACnet Supported services and objects Acyclic communication (general parameter access) via BACnet	
	5.6 5.6.1 5.6.2 5.6.3	Communication via P1 - only CU230P-2 HVAC, CU230P-2 BT Basic settings for communication via P1 Setting the address Point numbers	153 154 155 156
6	Communi	cation over CANopen	159
	6.1	Network management (NMT service)	
	6.2 6.2.1 6.2.2	SDO services Access to SINAMICS parameters via SDO Access PZD objects via SDO	164 164 166
	6.3 6.3.1 6.3.2 6.3.3 6.3.4	PDO services Predefined connection set Free PDO mapping Interconnect objects from the receive and transmit buffers Free PDO mapping for example of the actual current value and torque limit	
	6.4	CANopen operating modes	
	6.5	RAM to ROM via the CANopen object 1010	
	6.6 6.6.1 6.6.2 6.6.3	Object directories General objects from the CiA 301 communication profile Free objects Objects from the CiA 402 drive profile	183 183 192 193
	6.7 6.7.1 6.7.2 6.7.3 6.8	Integrating the converter into CANopen Connecting converter to CAN bus Setting the node ID and baud rate Setting the monitoring of the communication Error diagnostics	
	6.9	CAN bus sampling time	201
7	Communi	ication via AS-i – only for G115D	203
	7.1	Setting the address	204
	7.2	Single Device mode	206
	7.3	Dual Device mode	207
	7.4	Assignment tables	210
	7.5 7.5.1 7.5.2 7.5.3	Cyclic and acyclic communication via CTT2 Cyclic communication Acyclic communication - standard Acyclic communication - manufacturer-specific	212 213 214 214

Х	
Application examples for communication with STEP7	
Manuals and technical support	
Overview of the manuals	
Configuring support	
Product Support	220
i	 Application examples for communication with STEP7 Manuals and technical support. Overview of the manuals Configuring support Product Support

Fundamental safety instructions

1.1 General safety instructions

MARNING WARNING

Danger to life if the safety instructions and residual risks are not observed

If the safety instructions and residual risks in the associated hardware documentation are not observed, accidents involving severe injuries or death can occur.

- Observe the safety instructions given in the hardware documentation.
- Consider the residual risks for the risk evaluation.

Malfunctions of the machine as a result of incorrect or changed parameter settings

As a result of incorrect or changed parameterization, machines can malfunction, which in turn can lead to injuries or death.

- Protect the parameterization against unauthorized access.
- Handle possible malfunctions by taking suitable measures, e.g. emergency stop or emergency off.

1.2 Warranty and liability for application examples

Application examples are not binding and do not claim to be complete regarding configuration, equipment or any eventuality which may arise. Application examples do not represent specific customer solutions, but are only intended to provide support for typical tasks.

As the user you yourself are responsible for ensuring that the products described are operated correctly. Application examples do not relieve you of your responsibility for safe handling when using, installing, operating and maintaining the equipment.

1.3 Security information

Siemens provides products and solutions with industrial security functions that support the secure operation of plants, systems, machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial security concept. Siemens' products and solutions constitute one element of such a concept.

Customers are responsible for preventing unauthorized access to their plants, systems, machines and networks. Such systems, machines and components should only be connected

1.3 Security information

to an enterprise network or the internet if and to the extent such a connection is necessary and only when appropriate security measures (e.g. firewalls and/or network segmentation) are in place.

For additional information on industrial security measures that may be implemented, please visit

https://www.siemens.com/industrialsecurity.

Siemens' products and solutions undergo continuous development to make them more secure. Siemens strongly recommends that product updates are applied as soon as they are available and that the latest product versions are used. Use of product versions that are no longer supported, and failure to apply the latest updates may increase customer's exposure to cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed under

https://www.siemens.com/cert.

Further information is provided on the Internet:

Industrial Security Configuration Manual (<u>https://support.industry.siemens.com/cs/ww/en/</u>view/108862708)

M WARNING

Unsafe operating states resulting from software manipulation

Software manipulations, e.g. viruses, Trojans, or worms, can cause unsafe operating states in your system that may lead to death, serious injury, and property damage.

- Keep the software up to date.
- Incorporate the automation and drive components into a holistic, state-of-the-art industrial security concept for the installation or machine.
- Make sure that you include all installed products into the holistic industrial security concept.
- Protect files stored on exchangeable storage media from malicious software by with suitable protection measures, e.g. virus scanners.
- On completion of commissioning, check all security-related settings.

General information

Communication with the control, even when the line voltage is switched off

So that communication with the control system in your plant or system continues to function even when the line voltage is switched off, you must externally supply the converter/Control Unit with 24 V DC. To do this, use terminals 31 and 32 or connector X01 (X01/X02 with G115D). You can find additional details in the operating instructions for the converter or the Control Unit.

2.1 Ethernet and PROFINET protocols that are used

The converter supports the protocols listed in the following tables. The address parameters, the relevant communication layer as well as the communication role and the communication direction are specified for each protocol.

You require this information to set the appropriate safety measures to protect the automation system, e.g. in the firewall.

As the security measures are limited to Ethernet and PROFINET networks, no PROFIBUS protocols are listed in the table.

Protocol	Port	Layer	Function/description		
	number	(2) Link layer			
		(4) Transport layer			
DCP:	Not rele-	(2) Ethernet II and	Accessible stations, PROFINET Discovery and configuration		
Discovery and configuration	vant	IEEE 802.1Q and Ethertype 0x8892 (PRO-	DCP is used by PROFINET to determine PROFINET devices and to make basic settings.		
protocol		FINET)	DCP uses the special multicast MAC address: xx-xx-xx-01-0E-CF,		
			xx-xx-xx = Organizationally Unique Identifier		
LLDP: Not rele- (2) Ethernet II and		(2) Ethernet II and	PROFINET Link Layer Discovery protocol		
Link Layer Dis- covery Protocol	vant	IEEE 802.1Q and Ethertype 0x88CC (PRO- FINET)	LLDP is used by PROFINET to determine and manage neighborhood relationships between PROFINET devices.		
			LLDP uses the special multicast MAC address: 01-80-C2-00-00-0E		
MRP:	Not rele-	(2) Ethernet II and	PROFINET medium redundancy		
Media Redun-	vant	IEEE 802.1Q and Ethertype 0x88E3 (PRO- FINET)	MRP enables the control of redundant routes through a ring topology.		
dancy Protocol			MRP uses the special multicast MAC address: xx-xx-xx-01-15-4E,		
			xx-xx-xx = Organizationally Unique Identifier		

Table 2-1 PROFINET protocols

2.1 Ethernet and PROFINET protocols that are used

Protocol	Port number	Layer (2) Link layer (4) Transport layer	Function/description
РТСР	Not rele-	(2) Ethernet II and	PROFINET send clock and time synchronization, based on IEEE 1588
Precision Trans- vant parent Clock Protocol	vant	IEEE 802.1Q and Ethertype 0x8892 (PRO- FINET)	PTC is used to implement send clock synchronization and time syn- chronization between RJ45 ports, which are required for IRT operation.
			PTCP uses the special multicast MAC address:
			xx-xx-xx-0 - 0
PROFINET IO da-	Not rele-	- (2) Ethernet II and	PROFINET Cyclic IO data transfer
ta	vant	IEEE 802.1Q and Ethertype 0x8892 (PRO- FINET)	The PROFINET IO telegrams are used to transfer IO data cyclically be- tween the PROFINET IO controller and IO devices via Ethernet.
PROFINET Con-	34964	(4) UDP	PROFINET connection less RPC
text Manager			The PROFINET context manager provides an endpoint mapper in order to establish an application relationship (PROFINET AR).

Table 2-2 EtherNet/IP protocols

Protocol	Port number	Layer (2) Link layer (4) Transport layer	Function/description
Implicit mes- saging	2222	(4) UDP	Used for exchanging I/O data. This is inactive when delivered. Is activated when selecting EtherNet/IP.
Explicit messag- ing	44818	(4) TCP (4) UDP	Used for parameter access (writing, reading). This is inactive when delivered. Is activated when selecting EtherNet/IP.

Table 2-3	Connection-oriented	communication	protocols
			1

Protocol	Port number	Layer (2) Link layer (4) Transport layer	Function/description	
ISO on TCP (ac- cording to RFC 1006)	102	(4) TCP	ISO-on-TCP protocol ISO on TCP (according to RFC 1006) is used for the message-oriented data exchange to a remote CPU, WinAC or devices of other suppliers.	
			Communication with ES, HMI, etc. is activated in the factory setting, and is always required.	
SNMP	161	(4) UDP	Simple network management protocol	
Simple Net- work Manage-			SNMP enables network management data to be read out and set (SNMP managed objects) by the SNMP manager.	
ment Protocol			It is activated in the factory setting, and is always required	
Reserved	49152 65535	(4) TCP (4) UDP	Dynamic port area that is used for the active connection endpoint if the application does not specify the local port.	

Communication via PROFIBUS and PROFINET

3.1 PROFIDRIVE profile - Cyclic communication

Depending on the Control Unit or converter, there are different telegrams for communication via PROFIBUS DP or PROFINET IO. The structure of the individual telegrams are listed below.

The Startdrive commissioning tool or an operator panel only list the telegrams for selection that are possible with your particular converter.

Commissioning the converter and selecting a telegram are described in the operating instructions.

Communication telegrams if "basic positioner" has been configured

The converter has the following telegrams if you have configured the "Basic positioner" function:

- Standard telegram 7, PZD-2/2
- Standard telegram 9, PZD-10/5
- SIEMENS telegram 110, PZD-12/7
- SIEMENS telegram 111, PZD-12/12
- Telegram 999, free interconnection

Telegrams 7, 9, 110 and 111 are described in the "Basic positioner" Function Manual

Overview of the manuals (Page 217)

Communication telegrams for speed control

The send and receive telegrams of the converter for closed-loop speed control are structured as follows:

Figure 3-1 16-bit speed setpoint

Telegram 2

PZD01	PZD02	PZD04
STW1	NSO	STW2
ZSW1	NIS	ZSW2

Figure 3-2 32-bit speed setpoint

Communication via PROFIBUS and PROFINET

3.1 PROFIDRIVE profile - Cyclic communication

Telegram 3

PZD01	PZD02	PZD03	PZD04	PZD05	PZD06	PZD07	PZD08	PZD09
STW1	NSOLL_B		STW2	G1_ STW				
ZSW1	NIS	T_B	ZSW2	G1_ ZSW	G1_>	KIST1 G1_XIST2		(IST2

Figure 3-3 32-bit speed setpoint with 1 position encoder

Telegram 4

PZD01	PZD02	PZD03	PZD04	PZD05	PZD06	PZD07	PZD08	PZD09	PZD10	PZD11	PZD12	PZD13	PZD14
STW1	NSO	LL_B	STW2	G1_ STW	G2_ST W								
ZSW1	NIS	T_B	ZSW2	G1_ ZSW	G1_>	(IST1	G1_>	(IST2	G2_ ZSW	G2_X	(IST1	G2_X	(IST2

Figure 3-4 32-bit speed setpoint with 2 position encoders

Telegram 20

PZD01	PZD02	PZD03	PZD04	PZD05	PZD06
STW1	NSOLL_ A				
ZSW1	NIST_A GLATT	IAIST_ GLATT	MIST_ GLATT	PIST_ GLATT	MELD_ NAMUR

Figure 3-5 16-bit speed setpoint for VIK-Namur

Telegram 350

PZD01	PZD02	PZD03	PZD04
STW1	NSOLL _A	M_LIM	STW3
ZSW1	NIST_A GLATT	IAIST_ GLATT	ZSW3

Figure 3-6 16-bit speed setpoint with torque limiting

Telegram 352

PZD01	PZD02	PZD03	PZD04	PZD05	PZD06	
STW1	NSOLL _A	Freely assignable				
ZSW1	NIST_A GLATT	IAIST_ GLATT	MIST_ GLATT	WARN_ CODE	FAULT_ CODE	

Figure 3-7 16-bit speed setpoint for PCS7

Telegram 353

			PZD01	PZD02
_		ļ	STW1	NSOLL _A
			ZSW1	NIST_A GLATT

Figure 3-8 16-bit speed setpoint with PKW range to read and write parameters

Telegram 354

				PZD01	PZD02	PZD03	PZD04	PZD05	PZD06	
ļ	PKW		STW1 NSOLL _A Freely assignable							
Γí		í	79\/1	NIST_A	IAIST_	MIST_	WARN_	FAULT_		
				23001	GLATT	GLATT	GLATT	CODE	CODE	

Figure 3-9 16-bit speed setpoint for PCS7 with PKW range to read and write parameters

Telegram 999

PZD01	PZD02	PZD03	PZD04	PZD05	PZD06	PZD07	PZD08	PZD09	PZD10	PZD11	PZD12	PZD1	3	PZD)17
STW1 Telegram length for the receive data															
ZSW1 Telegram length for the transmit data															

Figure 3-10 Telegram with free interconnection and length

Abbreviation	Explanation	Abbreviation	Explanation
PZD	Process data	PKW	Parameter channel
STW	Control word	PIST_GLATT	Actual active power value, smoothed
ZSW	Status word	M_LIM	Torque limit
NSOLL_A	Speed setpoint 16-bit	FAULT_CODE	Fault code
NSOLL_B	Speed setpoint 32-bit	WARN_CODE	Alarm code
NIST_A	Actual speed value 16-bit	MELD_NAMUR	Message according to the VIK-NAMUR defini- tion
NIST_B	Actual speed value 32-bit	G1_STW / G2_STW	Control word for encoder 1 or encoder 2
IAIST	Current actual value	G1_ZSW / G2_ZSW	Status word for encoder 1 or encoder 2
IAIST_GLATT	Current actual value, smoothed	G1_XIST1 / G2_XIST1	Position actual value 1 from encoder 1 or en- coder 2
MIST_GLATT	Torque actual value, smoothed	G1_XIST2 / G2_XIST2	Position actual value 2 from encoder 1 or en- coder 2

Interconnection of the process data

		p2051[0]	r2053[0] ⁴⁾	
p2061[0]	r2063[0] ²⁾	> P No. 3)		PZD send word 1
> P No. " -	•	p2051[1]	r2053[1] ⁴⁾	
p2061[1]	r2063[1] ²⁾	> P No. ³⁾	\rightarrow	PZD send word 2
<u>> P No. "</u> -	•	p2051[2]	r2053[2] ⁴⁾	
p2061[2]	r2063[2] ²⁾	> P No. 3)	\rightarrow	PZD send word 3
<u>> P No. "</u> -	•	p2051[3]	r2053[3] 4)	
p2061[3]	r2063[3] ²⁾	> P No. 3)	\rightarrow	PZD send word 4
<u>> P No. "</u> -	•		≺	
p2061[15]	r2063[15] ²⁾			
> P No. ¹⁾	•		<	
		p2051[16]	r2 <u>053[16]</u> ^₄)	
		> P No. 3)	` •	PZD send word 17
¹⁾ Send word	parameter number, o	doubleword	3) Send wo	rd parameter number, word
2) Send word	value, doubleword		⁴⁾ Send wo	rd value, word

Figure 3-11 Interconnection of the send words

Figure 3-12 Interconnection of the receive words

The telegrams use - with the exception of telegram 999 (free interconnection) - the word-byword transfer of send and receive data (r2050/p2051).

If you require an individual telegram for your application (e.g. for transferring double words), you can adapt one of the predefined telegrams using parameters p0922 and p2079. For details, please refer to the List Manual, function diagrams 2420 and 2472.

3.1.1 Assigning control and status words

Assigning control and status of words is specified in part by the definitions in the PROFIdrive profile, Version 4.2 for the "Closed-loop speed control" operating mode; the other part is assigned depending on the particular manufacturer.

A more detailed description of the individual control and status words is provided in the following sections.

If you require an individual assignment for your application, you can adapt one of the existing control and status words using p0922 and p2079.

Extend telegrams and change signal interconnection (Page 28)

3.1.1.1 Control and status word 1

Control word 1 is preassigned as follows:

- Telegrams 1, 2, 3 and 4:
 - Bits 0 ... 10 corresponding to the PROFIdrive profile,
 - Bits 11... 15 manufacturer-specific
- Telegrams 7 and 9:
 - Bits 0 ... 11 corresponding to the PROFIdrive profile,
 - Bits 12 ... 15 manufacturer-specific
- Telegram 20 (VIK/NAMUR):
 - Bits 0 ... 11 corresponding to the PROFIdrive profile
 - Bits 12 ... 14 reserved
 - Bit 15 corresponding to the PROFIdrive profile

Status word 1 is preassigned as follows:

- Telegrams 1, 2, 3 and 4:
 - Bits 0 ... 10 corresponding to the PROFIdrive profile,
 - Bits 11... 15 manufacturer-specific
- Telegrams 7 and 9:
 - Bits 0 ... 13 corresponding to the PROFIdrive profile,
 - Bits 14 ... 15 manufacturer-specific
- Telegram 20 (VIK/NAMUR):
 - Bits 0 ... 11 corresponding to the PROFIdrive profile
 - Bit 12 reserved
 - Bits 13 ... 15 corresponding to the PROFIdrive profile

Control word 1 (STW1)

Bit	Meaning		Explanation	Signal inter-	
	Telegram 20	All other tele- grams		connection in the con- verter	
0	0 = OFF1		The motor brakes with the ramp-down time p1121 of the ramp-function generator. The con- verter switches off the motor at standstill.	p0840[0] = r2090.0	
	$0 \rightarrow 1 = ON$		The converter goes into the "ready" state. If, in addition, bit $3 = 1$, the converter switches on the motor.		
1	0 = OFF2		Switch off the motor immediately, the motor then coasts down to a standstill.	p0844[0] = r2090.1	
	1 = No OFF2	= No OFF2 The motor can be switched on (ON command).			

Communication via PROFIBUS and PROFINET

3.1 PROFIDRIVE profile - Cyclic communication

Bit	Meaning		Explanation	Signal inter-		
	Telegram 20	All other tele- grams		connection in the con- verter		
2	0 = Quick stop (OFF3)	Fast stopping The motor brakes with the OFF3 ramp-down time p1135 down to standstill.	p0848[0] = r2090.2		
	1 = No quick sto	p (OFF3)	The motor can be switched on (ON command).			
3	0 = Inhibit opera	ation	Immediately switch-off motor (cancel pulses).	p0852[0] =		
	1 = Enable opera	ation	Switch-on motor (pulses can be enabled).	r2090.3		
4	0 = Disable RFG		The converter immediately sets its ramp-func- tion generator output to 0.	p1140[0] = r2090.4		
	1 = Do not disab	le RFG	The ramp-function generator can be enabled.			
5	0 = Stop RFG		The output of the ramp-function generator stops at the actual value.	p1141[0] = r2090.5		
	1 = Enable RFG		The output of the ramp-function generator fol- lows the setpoint.			
6	0 = Inhibit setpo	int	The converter brakes the motor with the ramp- down time p1121 of the ramp-function gener- ator.	p1142[0] = r2090.6		
	1 = Enable setpo	bint	Motor accelerates with the ramp-up time p1120 to the setpoint.			
7	$0 \rightarrow 1 = Acknow$	ledge faults	Acknowledge fault. If the ON command is still active, the converter switches to the "switching on inhibited" state.	p2103[0] = r2090.7		
8, 9	Reserved					
10	0 = No control v	ia PLC	Converter ignores the process data from the fieldbus.	p0854[0] = r2090.10		
	1 = Control via F	PLC	Control via fieldbus, converter accepts the proc- ess data from the fieldbus.			
11	1 = Direction reversal		Invert setpoint in the converter.	p1113[0] = r2090.11		
12	Not used			1		
13	1)	1 = MOP up	Increase the setpoint saved in the motorized po- tentiometer.	p1035[0] = r2090.13		
14	1)	1 = MOP down	Reduce the setpoint saved in the motorized po- tentiometer.	p1036[0] = r2090.14		
15	CDS bit 0 Reserved		Changes over between settings for different operation interfaces (command data sets).	p0810 = r2090.15		

¹⁾ If you change over from another telegram to telegram 20, then the assignment of the previous telegram is kept.

Status word 1 (ZSW1)

Bit	Meaning		Remarks	Signal inter-	
	Telegram 20	All other tele- grams		connection in the con- verter	
0	1 = Ready for swi	tching on	Power supply switched on; electronics initial- ized; pulses locked.	p2080[0] = r0899.0	
1	1 = Ready		Motor is switched on (ON/OFF1 = 1), no fault is active. With the command "Enable operation" (STW1.3), the converter switches on the motor.	p2080[1] = r0899.1	
2	1 = Operation ena	abled	Motor follows setpoint. See control word 1, bit 3.	p2080[2] = r0899.2	
3	1 = Fault active		The converter has a fault. Acknowledge fault using STW1.7.	p2080[3] = r2139.3	
4	1 = OFF2 inactive		Coast down to standstill is not active.	p2080[4] = r0899.4	
5	1 = OFF3 inactive		Quick stop is not active.	p2080[5] = r0899.5	
6	1 = Switching on	inhibited active	It is only possible to switch on the motor after an OFF1 followed by ON.	p2080[6] = r0899.6	
7	1 = Alarm active		Motor remains switched on; no acknowledge- ment is necessary.	p2080[7] = r2139.7	
8	1 = Speed deviati erance range	on within the tol-	Setpoint / actual value deviation within the tol- erance range.	p2080[8] = r2197.7	
9	1 = Master contro	ol requested	The automation system is requested to accept the converter control.	p2080[9] = r0899.9	
10	1 = Comparison s exceeded	peed reached or	Speed is greater than or equal to the corre- sponding maximum speed.	p2080[10] = r2199.1	
11	1 = current or torque limit reached	1 = torque limit reached	Comparison value for current or torque has been reached or exceeded.	p2080[11] = r0056.13 / r1407.7	
12	1)	1 = Holding brake open	Signal to open and close a motor holding brake.	p2080[12] = r0899.12	
13	0 = Alarm, motor	overtemperature		p2080[13] = r2135.14	
14	1 = Motor rotates	Motor rotates clockwise Internal converter actual value > 0			
	0 = Motor rotates wise	= Motor rotates counter-clock- Internal converter actual value < 0 ise			
15	1 = CDS display	0 = Alarm, con- verter thermal overload		p2080[15] = r0836.0 / r2135.15	

¹⁾ If you change over from another telegram to telegram 20, then the assignment of the previous telegram is kept.

3.1.1.2 Control and status word 2

Control word 2 is preassigned as follows:

- Bits 0 ... 11 manufacturer-specific
- Bits 12 ... 15 corresponding to the PROFIdrive profile

Status word 2 is preassigned as follows:

- Bits 0 ... 11 manufacturer-specific
- Bits 12 ... 15 corresponding to the PROFIdrive profile

Control word 2 (STW2)

Bit	Meaning	Signal interconnection in the	
	Telegrams 2, 3 and 4	Telegrams 9, 110 and 111	converter
0	1 = drive data set selection DI	DS bit 0	p0820[0] = r2093.0
1	1 = drive data set selection DI	DS bit 1	p0821[0] = r2093.1
26	Reserved		
7	1 = parking axis is selected		p0897 = r2093.7
8	1 = travel to fixed stop active Reserved		p1545[0] = r2093.8
911	Reserved		
12	1 = master sign-of-life bit 0		p2045 = r2050[3]
13	1 = master sign-of-life bit 1		
14	1 = master sign-of-life bit 3]
15	1 = master sign-of-life bit 4		

Status word 2 (ZSW2)

Bit	Meaning	Signal interconnection in the converter
0	1 = Drive data set DDS effective, bit 0	p2081[0] = r0051.0
1	1 = Drive data set DDS effective, bit 1	p2081[1] = r0051.1
24	Reserved	
5	1 = Alarm class bit 0	p2081[5] = r2139.11
6	1 = alarm class bit 1	p2081[6] = r2139.12
7	Reserved	
8	1 = travel to fixed stop active	p2081[8] = r1406.8
9	Reserved	
10	1 = pulses enabled	p2081[10] = r0899.11
11	Reserved	
12	Device sign-of-life bit 0	Internally interconnected
13	Device sign of life bit 1	
14	Device sign of life bit 2	
15	Device sign of life bit 3	

3.1.1.3 Control and status word 3

Control word 3 is preassigned as follows:

- Bits 0 ... 15 manufacturer-specific
- Status word 3 is preassigned as follows:
- Bits 0 ... 15 manufacturer-specific

Control word 3 (STW3)

Bit	Meaning	Explanation	Signal interconnec-
	Telegram 350		tion in the converter ¹⁾
0	1 = fixed setpoint bit 0	Selects up to 16 different fixed	p1020[0] = r2093.0
1	1 = fixed setpoint bit 1	setpoints.	p1021[0] = r2093.1
2	1 = fixed setpoint bit 2		p1022[0] = r2093.2
3	1 = fixed setpoint bit 3		p1023[0] = r2093.3
4	1 = DDS selection bit 0	Changes over between settings	p0820 = r2093.4
5	1 = DDS selection bit 1	for different motors (drive data sets).	p0821 = r2093.5
6	Not used		
7	Not used		
8	1 = technology controller enable		p2200[0] = r2093.8
9	1 = enable DC braking		p1230[0] = r2093.9
10	Not used		
11	1 = Enable droop	Enable or inhibit speed control- ler droop.	p1492[0] = r2093.11
12	1 = torque control active	Changes over the control mode	p1501[0] = r2093.12
	0 = speed control active	for vector control.	
13	1 = no external fault		p2106[0] = r2093.13
	0 = external fault is active (F07860)		
14	Not used		
15	1 = CDS bit 1	Changes over between settings for different operation interfaces (command data sets).	p0811[0] = r2093.15

¹⁾ If you switch from telegram 350 to a different one, then the converter sets all interconnections p1020, ... to "0". Exception: p2106 = 1.

Status word 3 (ZSW3)

Bit	Meaning	Description	Signal intercon- nection in the converter
0	1 = DC braking active		p2051[3] = r0053
1	1 = n_act > p1226	Absolute current speed > stationary state detection	
2	1 = n_act > p1080	Absolute actual speed > minimum speed	
3	1 = i_act ≧ p2170	Actual current ≥ current threshold value	
4	1 = n_act > p2155	Absolute actual speed > speed threshold value 2	
5	1 = n_act ≦ p2155	Absolute actual speed < speed threshold value 2	
6	1 = n_act ≧ r1119	Speed setpoint reached	
7	1 = DC link voltage ≦ p2172	Actual DC link voltage ≦ threshold value	
8	1 = DC link voltage > p2172	Actual DC link voltage > threshold value	
9	1 = ramp-up or ramp-down completed	Ramp-function generator is not ac- tive.	
10	1 = technology controller output at the lower limit	Technology controller output ≦ p2292	
11	1 = technology controller output at the upper limit	Technology controller out- put > p2291	
12	Not used		
13	Not used		
14	Not used		
15	Not used		

3.1.2 NAMUR message word

Function description

Fault word according to the VIK-NAMUR definition (MELD_NAMUR)

Bit	Significance	P No.
0	1 = Control Unit signals a fault	p2051[5] = r3113
1	1 = line fault: Phase failure or inadmissible voltage	
2	1 = DC link overvoltage	
3	1 = Power Module fault, e.g. overcurrent or overtemperature	
4	1 = converter overtemperature	
5	1 = ground fault/phase fault in the motor cable or in the motor	
6	1 = motor overload	
7	1 = communication error to the higher-level control system	
8	1 = fault in a safety-relevant monitoring channel	
10	1 = fault in the internal converter communication	
11	1 = line fault	
15	1 = other fault	

3.1.3 Control and status word, encoder

Telegrams 3 and 4 allow the higher-level control system to directly access the encoder.

Direct access is necessary, if the higher-level control is responsible for the closed-loop position control for the drive.

If you enable the "Basic positioner" position control in the converter, then telegrams 3 and 4 cannot be selected, and the converter handles the encoder control.

Bit Meaning Explanation Signal interconnection in the converter Bit 7 = 0Bit 7 = 1 0 Function 1 1 =search for reference 1 = request flying referencing Telegram 3: cam 1 with a positive to the rising edge of refer-Encoder 1: ence cam 1 start direction p0480[0] = r2050[4]Function 2 1 = search for reference 1 = request flying referencing 1 cam 1 with a negative to the falling edge of refer-Telegram 4: start direction ence cam 1 Encoder 1: 2 Function 3 1 = search for reference 1 = request flying referencing p0480[0] = r2050[4]cam 2 with a positive to the rising edge of referencoder 2: start direction ence cam 2 p0480[1] = p2050[9]3 Function 4 1 = search for reference 1 = request flying referencing to the falling edge of refercam 2 with a negative Telegram 102: start direction ence cam 2 Encoder 1: 4 Command bit 0 1 =activate the function requested using bit $0 \dots 3$ p0480[0] = r2050[5] 5 Command bit 1 1 = read the value requested using bit $0 \dots 3$ 6 Command bit 2 Reserved Telegram 103: 7 Mode 1 =flying referencing Encoder 1: 0 =search for reference cams p0480[0] = r2050[5]---8 Reserved encoder 2: ... p0480[1] = 12 p2050[10] 13 Cyclic absolute 1 = request for the cyclic transfer of the position actual value value in G1 XIST2 or G2 XIST2 14 Parking 1 = request to park the encoder 15 Acknowledge $0 \rightarrow 1 = acknowledge encoder fault$

Control word encoder (G1_STW and G2_STW)

Status word encoder (G1_ZSW and G2_ZSW)

Bit	Meaning	Explanation		Signal interconnec- tion in the converter	
		Bit 7 = 0	Bit 7 = 1		
0	Function 1	1 = search for refer- ence cam 1 is active	1 = flying referencing to the rising edge of reference cam 1 is active	Telegram 3: Encoder 1:	
1	Function 2	1 = search for refer- ence cam 1 is active	1 = flying referencing to the falling edge of reference cam 1 is active	p2051[4] = r0481[0]	
2	Function 3	1 = search for refer- ence cam 2 is active	1 = flying referencing to the rising edge of reference cam 2 is active	Telegram 4:	
3	Function 4	1 = search for refer- ence cam 2 is active	1 = flying referencing to the falling edge of reference cam 2 is active	p2051[4] = r0481[0] encoder 2:	
4	Status value 1	1 = position actual value is at reference cam 1	1 = flying referencing to the rising edge of reference cam 1 has been completed	p2051[9] = r0481[1]	
5	Status value 2	1 = position actual value is at reference cam 1	1 = flying referencing to the falling edge of reference cam 1 has been completed	Encoder 1: p2051[5] = r0481[0]	
6	Status value 3	1 = position actual value is at reference cam 2	1 = flying referencing to the rising edge of reference cam 2 has been completed	Telegram 103: Encoder 1:	
7	Status value 4	1 = position actual value is at reference cam 2	1 = flying referencing to the falling edge of reference cam 2 has been completed	p2051[5] = r0481[0] encoder 2: p2051[10] =	
8	Reference cam 1	1 = reference cam 1 s 0 = reference cam 1 s	supplies a high signal supplies a low signal		
9	Reference cam 2	1 = reference cam 2 = 0 0 = reference cam 2 = 0	1 = reference cam 2 supplies a high signal 0 = reference cam 2 supplies a low signal		
10	Reserved				
11	Acknowledge	1 = acknowledge end	_		
12	Reserved				
13	Cyclic absolute value	1 = the position actua	al value is in G1_XIST2 or G2_XIST2.		
14	Parking	1 = the encoder is pa	rked		
15	Fault	1 = the encoder indic	1 = the encoder indicates its actual fault in r0483		

3.1.4 Position actual value of the encoder

G1_XIST1 and G2_XIST1

In the factory setting, the converter transfers the encoder position actual value with a fine resolution of 11 bits to the higher-level control system.

Figure 3-13 G1_XIST1 and G2_XIST1

The transferred encoder signal has the following properties:

- After the converter power supply has been switched on, the encoder signal = 0.
- The higher-level control must be able to handle a counter overflow of the encoder signal.

G1_XIST2 and G2_XIST2

In G1_XIST2 or G2_XIST2, the converter transfers different values to the higher-level control system:

The converter transfers the position values in the same format (encoder pulse number and fine resolution) the same as G1_XIST1 and G2_XIST1.

Table 3-1 Fault code

No.	Explanation	Possible cause
1	Encoder fault	One or more encoder faults.
		Observe the converter message.
2	Zero-mark monitoring	

No.	Explanation	Possible cause
3	Encoder parking canceled	Parking was already requested.
4	Search for reference canceled	• Encoder has no zero mark (reference mark).
		• Reference mark 2, 3 or 4 was requested.
		• Switchover to "Flying measurement" was reques- ted during search for reference.
		• Command "Read value x" requested during search for reference mark.
		 Inconsistent position measured value with dis- tance-coded reference marks.
5	Retrieve reference value canceled	More than four values were requested.
		No value requested.
		Requested value is not available.
6	Flying referencing canceled	Reference cam has not been configured
		 During "Flying referencing" a changeover was made to search for reference.
		 During "Flying referencing" a request was issued "Read value x".
7	Retrieve measured value canceled	More than one value was requested.
		No value requested.
		Requested value is not available.
		• Encoder is parked.
8	Position actual value transfer canceled	No absolute encoder available.
		• Alarm bit in the absolute value protocol set.
3841	Encoder does not support the function	

3.1.5 Extend telegrams and change signal interconnection

Overview

When you have selected a telegram, the converter interconnects the corresponding signals with the fieldbus interface. Generally, these interconnections are locked so that they cannot be changed. However, with the appropriate setting in the converter, the telegram can be extended or even freely interconnected.

Function description

Interconnection of send data and receive data

p2061[0]	r2063[0] ²⁾	p2051[0] > P No. ³⁾	r2053[0] ⁴⁾	PZD send word 1
<u>p2061[1]</u>	r <u>2063[1]²⁾</u>	p2051[1] > P No. ³⁾	r2053[1] ⁴⁾	PZD send word 2
p2061[2]	r2063[2] ²⁾	p2051[2] > P No. ³⁾	r2053[2] ⁴⁾	PZD send word 3
<u>p2061[3]</u>	r2063[3] ²⁾	p2051[3] > P No. ³⁾	r2053[3] ⁴⁾	PZD send word 4
<u> </u>	•••	•••	• …	
P No. ¹⁾	r2 <u>063[15]</u> ²⁾		<	
<u></u>		p2051[16] > P No. ³⁾	r2053[16] ⁴)	PZD send word 17
¹⁾ Send word	l parameter number, d	oubleword	3) Send wo	rd parameter number, word

²⁾ Send word value, doubleword

⁴⁾ Send word value, word

Figure 3-15 Interconnection of the send data

In the converter, the send data are available in the "Word" format (p2051) - and in the "Double word" format (p2061). If you set a specific telegram, or you change the telegram, the converter automatically interconnects parameters p2051 and p2061 with the appropriate signals.

Figure 3-16 Interconnection of the receive data

The converter saves the receive data as follows:

- "Word" format in r2050
- "Double word" format in r2060
- Bit-by-bit in r2090 ... r2093

Extending a telegram: Procedure

- 1. Set p0922 = 999.
- 2. Set parameter p2079 to the value of the corresponding telegram.
- 3. Interconnect additional send words and receive words with signals of your choice via parameters r2050 and p2051.

You have extended a telegram.

Freely interconnecting signals in the telegram: Procedure

- 1. Set p0922 = 999.
- 2. Set p2079 = 999.
- 3. Interconnect additional send words and receive words with signals of your choice via parameters r2050 and p2051.

You have freely interconnected a telegram.

Example

You wish to extend telegram 1 to 6 send words and 6 receive words. You want to test the extension by initiating that the converter returns each receive word back to the higher-level control system.

Procedure

- 1. p0922 = 999
- 2. p2079 = 1
- 3. p2051[2] = r2050[2]
- 4. ...
- 5. p2051[5] = r2050[5]
- 6. Test the telegram length for received and sent words:
 - r2067[0] = 6
 - r2067[1] = 6

You wish to extend telegram 1 to 6 send words and 6 receive words.

Parameter

Number	Name	Factory setting
p0922	PROFIdrive PZD telegram selection	1
r2050[011]	CO: PROFIdrive PZD receive word	-
p2051[016]	CI: PROFIdrive PZD send word	0 or dependent on the converter
r2053[016]	PROFIdrive diagnostics send PZD word	-
r2060[010]	CO: PROFIdrive PZD receive double word	-
p2061[015]	CI: PROFIdrive PZD send double word	0
r2063[015]	PROFIdrive diagnostics PZD send double word	-
r2067	PZD maximum interconnected	-
	[0] Receive (r2050, r2060)	
	[1] Send (p2051, p2061)	
p2079	PROFIdrive PZD telegram selection extended	1
p2080[015]	BI: Binector-connector converter, status word 1	[0] 899
		[1] 899.1
		[2] 899.2
		[3] 2139.3
		[4] 899.4
		[5] 899.5
		[6] 899.6
		[7] 2139.7
		[8] 2197.7
		[9] 899.9
		[10] 2199.1
		[11] 1407.7
		[12] 0
		[13] 2135.14
		[14] 2197.3
		[15] 2135.15
r2090.015	BO: PROFIdrive receive PZD1 bit by bit	-
r2091.015	BO: PROFIdrive PZD2 receive bit-serial	-
r2092.015	BO: PROFIdrive PZD3 receive bit-serial	-
r2093.015	BO: PROFIdrive PZD4 receive bit-serial	-

Parameter

Parameter	Description		
p0922	PROF	ROFIdrive telegram selection	
	999:	Free telegram (message frame) configuration	

Parameter	escription		
p2079	PROFIdrive PZD telegram selection extended		
	The following values apply if you have still not enabled the "Basic positioner" function in the converter:		
	 Standard telegram 1, PZD-2/2 Standard telegram 2, PZD-4/4 Standard telegram 3, PZD-5/9 Standard telegram 4, PZD-6/14 Standard telegram 20, PZD-2/6 SIEMENS telegram 350, PZD-4/4 SIEMENS telegram 352, PZD-6/6 SIEMENS telegram 353, PZD-2/2, PKW-4/4 SIEMENS telegram 354, PZD-6/6, PKW-4/4 Free telegram configuration 		
	e following values apply if you have enabled the "Basic positioner" function in the inverter:		
	Standard telegram 7, PZD-2/2Standard telegram 9, PZD-10/5IO:SIEMENS telegram 110, PZD-12/7I1:SIEMENS telegram 111, PZD-12/12I29:Free telegram configuration		
r2050[011]	COFIdrive PZD receive word eceived PZD (setpoints) in the word format		
p2051[0 16]	ROFIdrive PZD send word ent PZD (actual values) in the word format		

For further information about receive and send words, refer to the function block diagrams 2468 and 2470 in the List Manual.

Overview of the manuals (Page 217)

Data structure of the parameter channel 3.1.6

Overview

The parameter channel allows parameter values to be cyclically read and written to.

Parameter channel					
PKE (1st word)		IND (2nd word)		PWE (3rd and 4th words)	
1512 11	10 0	15 8	70	15 0	15 0
AK S	PNU	Subindex	Page index	PWE 1	PWE 2
Р					
М					

Structure of the parameter channel:

- PKE (1st word)
 - Type of task (read or write).
 - Bit 11 is reserved and is always assigned 0.
 - Parameter number
- IND (2nd word)
 - Parameter index
- PWE (3rd and 4th word)
 - Parameter value

Function description

AK: Request and response ID

AK	Description		Response identifier	
		positive	nega- tive	
0	No request	0	7/8	
1	Request parameter value	1/2	7/8	
2	Change parameter value (word)	1	7/8	
3	Change parameter value (double word)	2	7/8	
4	Request descriptive element 1)	3	7/8	
6 ²⁾	Request parameter value (field) 1)	4/5	7/8	
7 ²⁾	Change parameter value (field, word) 1)	4	7/8	
8 2)	Change parameter value (field, double word) 1)	5	7/8	
9	Request number of field elements	6	7/8	

Table 3-2 Request identifiers, control \rightarrow converter

¹⁾ The required element of the parameter is specified in IND (2nd word).

²⁾ The following request IDs are identical: $1 \equiv 6$, $2 \equiv 7$ and $3 \equiv 8$. We recommend that you use identifiers 6, 7 and 8.

AK	Description
0	No response
1	Transfer parameter value (word)
2	Transfer parameter value (double word)
3	Transfer descriptive element ¹⁾
4	Transfer parameter value (field, word) ²⁾
5	Transfer parameter value (field, double word) ²⁾
6	Transfer number of field elements

AK	Description
7	Converter cannot process the request. In the most significant word of the parameter channel, the converter sends an error number to the control, refer to the following table.
8	No master controller status / no authorization to change parameters of the parameter channel interface

¹⁾ The required element of the parameter is specified in IND (2nd word).

²⁾ The required element of the indexed parameter is specified in IND (2nd word).

Table 3-4Error numbers for response identifier 7

No.	Description		
00 hex	Illegal parameter number (access to a parameter that does not exist)		
01 hex	Parameter value cannot be changed (change request for a parameter value that cannot be changed)		
02 hex	Lower or upper value limit exceeded (change request with a value outside the value limits)		
03 hex	Incorrect subindex (access to a subindex that does not exist)		
04 hex	No array (access with a subindex to non-indexed parameters)		
05 hex	Incorrect data type (change request with a value that does not match the data type of the parameter)		
06 hex	Setting not permitted, only resetting (change request with a value not equal to 0 without permission)		
07 hex	Descriptive element cannot be changed (change request to a descriptive element error value that cannot be changed)		
0B hex	No master control (change request but with no master control, see also p0927)		
0C hex	Keyword missing		
11 hex	Request cannot be executed due to the operating state (access is not possible for tempo rary reasons that are not specified)		
14 hex	Inadmissible value (change request with a value that is within the limits but which is illegal for other permanent reasons, i.e. a parameter with defined individual values)		
65 hex	Parameter number is currently deactivated (depending on the mode of the converter)		
66 hex	Channel width is insufficient (communication channel is too small for response)		
68 hex	Illegal parameter value (parameter can only assume certain values)		
6A hex	Request not included / task is not supported (the valid request identifications can be found in table "Request identifications controller \rightarrow converter")		
6B hex	No change access for a controller that is enabled . (The operating state of the converter prevents a parameter change)		
86 hex	Write access only for commissioning (p0010 = 15) (operating state of the converter prevents a parameter change)		
87 hex	Know-how protection active, access locked		
C8 hex	Change request below the currently valid limit (change request to a value that lies within the "absolute" limits, but is however below the currently valid lower limit)		
C9 hex	Change request above the currently valid limit (example: a parameter value is too large for the converter power)		
CC hex	Change request not permitted (change is not permitted as the access code is not available)		

PNU (parameter number) and page index

Parameter number	PNU	Page index
0000 1999	0000 1999	0 hex
2000 3999	0000 1999	80 hex
6000 7999	0000 1999	90 hex
8000 9999	0000 1999	20 hex
10000 11999	0000 1999	A0 hex
20000 21999	0000 1999	50 hex
30000 31999	0000 1999	F0 hex
60000 61999	0000 1999	74 hex

Subindex

For indexed parameters, the parameter index is located in subindex as hexadecimal value.

PWE: Parameter value or connector

Parameter values or connectors can be located in the PWE.

Table 5 5 Talallet				
	PWE 1		PWE 2	
Parameter value	Bit 15 0	Bit 15 8	Bit 7 0	
	0	0	8-bit value	
	0	16-	-bit value	
	32-bit value			
Connector	Bit 15 0	Bit 15 10	Bit 9 0	
	Number of the connector	3F hex	The index or bit field number of the connec- tor	

Table 3-5	Parameter value or connector

Examples

Read request: Read out serial number of the Power Module (r7841[2])

To obtain the value of indexed parameter r7841, you must fill the parameter channel with the following data:

- PKE, Bit 12 ... 15 (AK): = 6 (request parameter value (field))
- PKE, Bit 0 ... 10 (PNU): = 1841 (parameter number without offset) ٠ Parameter number = PNU + offset (page index)(7841 = 1841 + 6000)
- IND, bit 8 ... 15 (subindex): = 2 (index of parameter) ٠
- IND, bit 0 ... 7 (page index): = 90 hex (offset 6000 corresponds to 90 hex)
- Because you want to read the parameter value, words 3 and 4 in the parameter channel for requesting the parameter value are irrelevant. They should be assigned a value of 0, for example.

	Parameter channel						
PKE, 1st word IND, 2nd word PWE1 - high, 3rd word PWE				PWE2 - lov	w, 4th word		
151211	1 10 0	15 8	7 0	15 0	15 8	7 0	
AK	Parameter number	Subindex	Page index	Parameter value	Parameter value	Parameter value	
0 1 1 0 0	11100110001	0000010	1001000	000000000000000000	00000000	00000000	

Figure 3-17 Parameter channel for read request from r7841[2]

Write request: Change restart mode (p1210)

The restart mode is inhibited in the factory setting (p1210 = 0). In order to activate the automatic restart with "acknowledge all faults and restart for an ON command", p1210 must be set to 26:

- PKE, bit 12 ... 15 (AK): = 7 (change parameter value (field, word))
- PKE, bit 0 ... 10 (PNU): = 4BA hex (1210 = 4BA hex, no offset, as 1210 < 1999)
- IND, bit 8 ... 15 (subindex): = 0 hex (parameter is not indexed)
- IND, bit 0 ... 7 (page index): = 0 hex (offset 0 corresponds to 0 hex)
- PWE1, bit 0 ... 15: = 0 hex
- PWE2, Bit 0 ... 15: = 1A hex (26 = 1A hex)

	Parameter channel					
PKE, 1st word IND, 2nd word PWE1 - high, 3rd word PWE2 - low, 4th word					PWE2 - low, 4th word	
1512	11	10 0	15 8	7 0	15 0	15 0
AK		Parameter number	Subindex	Page index	Parameter value (bit 16 31)	Parameter value (bit 0 15)
0 1 1 1	0	10010111010	00000000	00000000	000000000000000000	0000000000011010

Figure 3-18 A parameter channel to activate the automatic restart with p1210 = 26

Write request: Assign digital input 2 with the function ON/OFF1 (p0840[1] = 722.2)

In order to link digital input 2 with ON/OFF1, you must assign parameter p0840[1] (source, ON/OFF1) the value 722.2 (DI 2). To do this, you must fill the parameter channel as follows:

- PKE, bit 12 ... 15 (AK): = 7 hex (change parameter value (field, word))
- PKE, bit 0 ... 10 (PNU): = 348 hex (840 = 348 hex, no offset, as 840 < 1999)
- IND, bit 8 ... 15 (subindex): = 1 hex (CDS1 = Index 1)
- IND, bit 0 ... 7 (page index): = 0 hex (offset 0 corresponds to 0 hex)
- PWE1, Bit 0 ... 15: = 2D2 hex (722 = 2D2 hex)

• PWE2, Bit 10 ... 15: = 3F hex (drive object - for SINAMICS G120, always 63 = 3f hex)

	Parameter channel						
PKE, 1st word IND, 2nd word PWE1 - high, 3rd word				PWE2	- low, 4th word		
1512 11	10 0	15 8	7 0	15 0	15 10	9 0	
AK	Parameter number	Subindex	Page index	Parameter value	Drive Object	Index	
01110	0 1 1 0 1 0 0 1 0 0 0	0000001	00000000	0000001011010010	1 1 1 1 1 1	00000000	

PWE2, Bit 0 ... 9: = 2 hex (Index of Parameter (DI 2 = 2))

Figure 3-19 Parameter channel to assign digital input 2 with ON/OFF1

Function description

AK: Request and response ID

AK	Description		Response identifier	
		positive	nega- tive	
0	No request	0	7/8	
1	Request parameter value	1/2	7/8	
2	Change parameter value (word)	1	7/8	
3	Change parameter value (double word)	2	7/8	
4	Request descriptive element ¹⁾	3	7/8	
6 ²⁾	Request parameter value (field) 1)	4/5	7/8	
7 ²⁾	Change parameter value (field, word) ¹⁾	4	7/8	
8 ²⁾	Change parameter value (field, double word) ¹⁾	5	7/8	
9	Request number of field elements	6	7/8	

Table 3-6 Request identifiers, control \rightarrow converter

The required element of the parameter is specified in IND (2nd word). 1)

2) The following request IDs are identical: $1 \equiv 6$, $2 \equiv 7$ and $3 \equiv 8$. We recommend that you use identifiers 6, 7 and 8.

Table 3-7 Response identifiers, converter \rightarrow control

AK	Description
0	No response
1	Transfer parameter value (word)
2	Transfer parameter value (double word)
3	Transfer descriptive element ¹⁾
4	Transfer parameter value (field, word) ²⁾
5	Transfer parameter value (field, double word) ²⁾
6	Transfer number of field elements

AK	Description
7	Converter cannot process the request. In the most significant word of the parameter channel, the converter sends an error number to the control, refer to the following table.
8	No master controller status / no authorization to change parameters of the parameter channel interface

¹⁾ The required element of the parameter is specified in IND (2nd word).

²⁾ The required element of the indexed parameter is specified in IND (2nd word).

Table 3-8Error numbers for response identifier 7

No.	Description
00 hex	Illegal parameter number (access to a parameter that does not exist)
01 hex	Parameter value cannot be changed (change request for a parameter value that cannot be changed)
02 hex	Lower or upper value limit exceeded (change request with a value outside the value limits)
03 hex	Incorrect subindex (access to a subindex that does not exist)
04 hex	No array (access with a subindex to non-indexed parameters)
05 hex	Incorrect data type (change request with a value that does not match the data type of the parameter)
06 hex	Setting not permitted, only resetting (change request with a value not equal to 0 without permission)
07 hex	Descriptive element cannot be changed (change request to a descriptive element error value that cannot be changed)
0B hex	No master control (change request but with no master control, see also p0927.)
0C hex	Keyword missing
11 hex	Request cannot be executed due to the operating state (access is not possible for temporary reasons that are not specified)
14 hex	Inadmissible value (change request with a value that is within the limits but which is illegal for other permanent reasons, i.e. a parameter with defined individual values)
65 hex	Parameter number is currently deactivated (depending on the mode of the converter)
66 hex	Channel width is insufficient (communication channel is too small for response)
68 hex	Illegal parameter value (parameter can only assume certain values)
6A hex	Request not included / task is not supported (the valid request identifications can be found in table "Request identifications controller → converter")
6B hex	No change access for a controller that is enabled . (The operating state of the conerter prevents a parameter change)
86 hex	Write access only for commissioning (p0010 = 15) (operating state of the converter prevents a parameter change)
87 hex	Know-how protection active, access locked
C8 hex	Change request below the currently valid limit (change request to a value that lies within the "absolute" limits, but is however below the currently valid lower limit)
C9 hex	Change request above the currently valid limit (example: a parameter value is too large for the converter power)
CC hex	Change request not permitted (change is not permitted as the access code is not available)

PNU (parameter number) and page index

Parameter number	PNU	Page index
0000 1999	0000 1999	0 hex
2000 3999	0000 1999	80 hex
6000 7999	0000 1999	90 hex
8000 9999	0000 1999	20 hex
10000 11999	0000 1999	A0 hex
20000 21999	0000 1999	50 hex
29000 29999	0000 1999	70 hex
30000 31999	0000 1999	F0 hex
60000 61999	0000 1999	74 hex

Subindex

For indexed parameters, the parameter index is located in subindex as hexadecimal value.

PWE: Parameter value or connector

Parameter values or connectors can be located in the PWE.

	PWE 1		PWE 2	
Parameter value	Bit 15 0	Bit 15 8	Bit 7 0	
	0	0	8-bit value	
	0	16-bit value		
	32-bit	t value		
Connector	or Bit 15 0		Bit 9 0	
	Number of the connector	3F hex	The index or bit field number of the connec- tor	

Table 3-9Parameter value or connector

Examples

Read request: Read out serial number of the Power Module (r7841[2])

To obtain the value of the indexed parameter r7841, you must fill the telegram of the parameter channel with the following data:

- PKE, Bit 12 ... 15 (AK): = 6 (request parameter value (field))
- PKE, Bit 0 ... 10 (PNU): = 1841 (parameter number without offset) Parameter number = PNU + offset (page index) (7841 = 1841 + 6000)
- IND, bit 8 ... 15 (page index): = 2 (index of parameter)

- IND, bit 0 ... 7 (subindex): = 90 hex (offset 6000 corresponds to 90 hex)
- Because you want to read the parameter value, words 3 and 4 in the parameter channel for requesting the parameter value are irrelevant. They should be assigned a value of 0, for example.

Parameter channel						
PKE, 1st word IND, 2nd word PWE1 - high, 3rd word PWE2 - low, 4th wor				w, 4th word		
15121 ⁻	1 10 0	15 8	7 0	15 0	15 8	7 0
AK	Parameter number	Page index	Subindex	Parameter value	Parameter value	Parameter value
0 1 1 0 0	0 1 1 1 0 0 1 1 0 0 0 1	0000010	1001000	000000000000000000	00000000	00000000

Figure 3-20 Telegram for a read request from r7841[2]

PNU (parameter number) and page index

Parameter number	PNU	Page index
0000 1999	0000 1999	0 hex
2000 3999	0000 1999	80 hex
6000 7999	0000 1999	90 hex
8000 9999	0000 1999	20 hex
10000 11999	0000 1999	A0 hex
20000 21999	0000 1999	50 hex
30000 31999	0000 1999	F0 hex
60000 61999	0000 1999	74 hex

Subindex

For indexed parameters, the parameter index is located in subindex as hexadecimal value.

PWE: Parameter value or connector

Parameter values or connectors can be located in the PWE.

Table 3-10Parameter value or connector

	PWE 1		PWE 2
Parameter value	Bit 15 0	Bit 15 8	Bit 7 0
	0	0	8-bit value
	0	16-bit value	
	32-bit	value	
Connector	Bit 15 0	Bit 15 10	Bit 9 0
	Number of the connector	3F hex	The index or bit field number of the connec- tor

3.1.6.1 Application examples

Read request: Read out serial number of the Power Module (p7841[2])

To obtain the value of the indexed parameter p7841, you must fill the telegram of the parameter channel with the following data:

- PKE, Bit 12 ... 15 (AK): = 6 (request parameter value (field))
- PKE, Bit 0 ... 10 (PNU): = 1841 (parameter number without offset) Parameter number = PNU + offset (page index) (7841 = 1841 + 6000)
- IND, bit 8 ... 15 (subindex): = 2 (index of parameter)
- IND, bit 0 ... 7 (page index): = 90 hex (offset 6000 corresponds to 90 hex)
- Because you want to read the parameter value, words 3 and 4 in the parameter channel for requesting the parameter value are irrelevant. They should be assigned a value of 0, for example.

	Parameter channel					
	PKE, 1st word	IND, 2r	nd word	PWE1 - high, 3rd word	PWE2	- low, 4th word
1512	11 10 0	15 8	7 0	15 0	15 10	9 0
AK	Parameter number	Subindex	Page index	Parameter value	Drive object	Index
0110	0 1 1 1 0 0 1 1 0 0 0 1	0000010	1001000	000000000000000000	000000	00000000000

Figure 3-21 Telegram for a read request from p7841[2]

Write request: Change restart mode (p1210)

The restart mode is inhibited in the factory setting (p1210 = 0). In order to activate the automatic restart with "acknowledge all faults and restart for an ON command", p1210 must be set to 26:

- PKE, bit 12 ... 15 (AK): = 7 (change parameter value (field, word))
- PKE, bit 0 ... 10 (PNU): = 4BA hex (1210 = 4BA hex, no offset, as 1210 < 1999)
- IND, bit 8 ... 15 (subindex): = 0 hex (parameter is not indexed)
- IND, bit 0 ... 7 (page index): = 0 hex (offset 0 corresponds to 0 hex)
- PWE1, bit 0 ... 15: = 0 hex
- PWE2, Bit 0 ... 15: = 1A hex (26 = 1A hex)

	Parameter channel				
	PKE, 1st word	IND, 2r	nd word	PWE1 - high, 3rd word	PWE2 - low, 4th word
1512	11 10 0	15 8	7 0	15 0	15 0
AK	Parameter number	Subindex	Page index	Parameter value (bit 16 31)	Parameter value (bit 0 15)
0 1 1 1	010010111010	00000000	00000000	0000000000000000000	0000000000011010

Figure 3-22 Telegram, to activate the automatic restart with p1210 = 26

Write request: Assign digital input 2 with the function ON/OFF1 (p0840[1] = 722.2)

In order to link digital input 2 with ON/OFF1, you must assign parameter p0840[1] (source, ON/OFF1) the value 722.2 (DI 2). To do this, you must populate the telegram of the parameter channel as follows:

- PKE, bit 12 ... 15 (AK): = 7 hex (change parameter value (field, word))
- PKE, bit 0 ... 10 (PNU): = 348 hex (840 = 348 hex, no offset, as 840 < 1999)

- IND, bit 8 ... 15 (subindex): = 1 hex (CDS1 = Index 1)
- IND, bit 0 ... 7 (page index): = 0 hex (offset 0 corresponds to 0 hex)
- PWE1, Bit 0 ... 15: = 2D2 hex (722 = 2D2 hex)
- PWE2, Bit 10 ... 15: = 3F hex (drive object for SINAMICS G120, always 63 = 3f hex)
- **PWE2, Bit 0** ... **9: = 2 hex** (Index of Parameter (DI 2 = 2))

	Parameter channel					
I	PKE, 1st word	IND, 2r	nd word	PWE1 - high, 3rd word	PWE2	- low, 4th word
1512 11	1 10 0	15 8	7 0	15 0	15 10	9 0
AK	Parameter number	Subindex	Page index	Parameter value	Drive Object	Index
0 1 1 1 0	01101001000	0000001	00000000	0000001011010010	1 1 1 1 1 1	0000000010

Figure 3-23 Telegram, to assign DI 2 with ON/OFF1

Example

Application example, "Read and write to parameters"

Further information is provided on the Internet:

Reading and writing parameters cyclically via PROFIBUS (<u>https://support.industry.siemens.com/cs/ww/en/view/29157692</u>)

3.1.7 Device-to-device communication

"Direct data exchange" is sometimes called "device-to-device communication" or "data exchange broadcast". Here, devices exchange data without any direct involvement of the master.

Example: A converter uses the actual speed value of another converter as its speed setpoint.

Definitions

- Publisher: Device, which sends data for direct data exchange.
- **Subscriber:** Device, which receives the data for direct data exchange from the publisher.
- Links and access points define the data that is used for direct data exchange.

Restrictions

- Direct data exchange in the current firmware version is only possible for converters with PROFIBUS communication.
- A maximum of 12 PZDs are permissible for each drive.
- A maximum of four links are possible from one subscriber to one or several publishers.

Configuring device-to-device communication

Procedure

- 1. In the control, define:
 - Which converters operate as publisher (sender) or subscriber (receiver)?
 - Which data or data areas do you use for direct data exchange?
- In the converter, define: How does the subscriber process the data transferred using direct data exchange?

You have now configured device-to-device communication. \square

3.2 PROFIDRIVE profile - Acyclic communication

The converter supports the following types of acyclic communication:

- For PROFIBUS: acyclic communication via data set 47
- For PROFINET: acyclic communication via B02E hex and B02F hex

The maximum data length per request is 240 bytes.

Note

Values in italics

Values in italics in the following tables mean that you have to adjust these values for a specific request.

Reading parameter values

Table 3-11 Request to read parameters

Data block	Byte n	Bytes n + 1	n	
Header	Reference 01 hex FF hex	01 hex : Read job	0	
	01 hex (ID of drive objects, at G120 always = 1)	Number of parameters (m)	2	
Address, parameter 1	Attribute 10 hex: Parameter value 20 hex: Parameter description	Number of the indices 00 hex EA hex (For parameters without index: 00 hex)	4	
	Parameter number 0001 hex FFFE hex			
	Number of the 1st index 0000 hex FFFE hex (for parameters without index: 0000 hex)			
Address, parameter 2				
Address, parameter m				

Table 3-12Converter response to a read request

Data block	Byte n	Bytes n + 1	n
Header	Reference (identical to a read request)	01 hex: Converter has executed the read re- quest. 81 hex: Converter was not able to completely execute the read request.	
	01 hex (ID of drive objects, at G120 always = 1)	Number of parameters (m) (identical to the read request)	2

Data block	Byte n	Bytes n + 1	n
Values, parameter 1	Format 02 hex: Integer8 03 hex: Integer16 04 hex: Integer32 05 hex: Unsigned8 06 hex: Unsigned16 07 hex: Unsigned32 08 hex: FloatingPoint 0A hex: OctetString 0D hex: TimeDifference 34 hex: TimeOfDay without date indication 35 hex: TimeDifference with date indication 36 hex: TimeDifference without date indication 41 hex: Byte 42 hex: Word 43 hex: Double word 44 hex: Error	Number of index values or - for a negative response - number of error values	4
	Value of the 1st index or - for a negative respon You can find the error values in a table at the en	nse - error value 1 d of this section.	6
Values, parameter 2			
Values, parameter m			

Changing parameter values

Table 3-13	Request to	change	parameters

Data block	Byte n	Bytes n + 1	n
Header	Reference 01 hex FF hex	02 hex: Change request	0
	01 hex (ID of drive objects, at G120 always = 1)	Number of parameters (m) 01 hex 27 hex	2
Address, parameter 1	10 hex : Parameter value	Number of indices 00 hex EA hex (00 hex and 01 hex are equivalents)	4
	Parameter number 0001 hex FFFF hex		6
	Number of the 1st index 0000 hex FFFE he	x	8
Address, parameter 2			
Address, parameter m			

Data block	Byte n	Bytes n + 1	n		
Values, parameter 1	Format 02 hex: Integer 8 03 hex: Integer 16 04 hex: Integer 32 05 hex: Unsigned 8 06 hex: Unsigned 16 07 hex: Unsigned 32 08 hex: Floating Point 0A hex: Octet String 0D hex: Time Difference 34 hex: TimeOfDay without date indication 35 hex: TimeDifference with date indication 36 hex: TimeDifference without date indication 41 hex: Byte 42 hex: Word 43 hex: Double word	Number of index values 00 hex EA hex			
	Value of the 1st index				
Values, parameter 2					
Values, parameter m					

 Table 3-14
 Response, if the converter has executed the change request

Data block	Byte n	Bytes n + 1	n
Header	Reference (identical to a change request)	02 hex (change request successful)	0
	01 hex (ID of drive objects, at G120 always = 1)	Number of parameters (identical to a change request)	2

 Table 3-15
 Response if the converter was not able to completely execute the change request

Data block	Byte n	Bytes n + 1	n
Header	Reference (identical to a change request)	82 hex: (Converter was not able to completely execute the write request)	0
	01 hex (ID of drive objects, at G120 always = 1)	Number of parameters (identical to a change request)	2
Values, parameter 1	Format 40 hex: Zero (change request for this data block executed) 44 hex: Error (change request for this data block not executed)	Number of error values ock 00 hex ock 01 hex or 02 hex	
	Only for "Error" - error value 1 You can find the error values in the table at the end of this section.		
	Only for "Error" - error value 2 Error value 2 is either zero, or it contains the number of the first index where the error occurred.		
Values, parameter 2			

Data block	Byte n	Bytes n + 1	n
Values, parameter m			

Error values

Table 3-16	Error value in the parame	eter response
------------	---------------------------	---------------

Error value 1	Significance
00 hex	Illegal parameter number (access to a parameter that does not exist)
01 hex	Parameter value cannot be changed (change request for a parameter value that cannot be changed)
02 hex	Lower or upper value limit exceeded (change request with a value outside the value limits)
03 hex	Incorrect subindex (access to a parameter index that does not exist)
04 hex	No array (access with a subindex to non-indexed parameters)
05 hex	Incorrect data type (change request with a value that does not match the data type of the parameter)
06 hex	Setting not permitted, only resetting (change request with a value not equal to 0 without permission)
07 hex	Descriptive element cannot be changed (change request to a descriptive element that cannot be changed)
09 hex	Description data not available (access to a description that does not exist, parameter value is available)
0B hex	No master control (change request but with no master control)
0F hex	Text array does not exist (although the parameter value is available, the request is made to a text array that does not exist)
11 hex	Request cannot be executed due to the operating state (access is not possible for temporary reasons that are not specified)
14 hex	Inadmissible value (change request with a value that is within the limits but which is illegal for other permanent reasons, i.e. a parameter with defined individual values)
15 hex	Response too long (the length of the actual response exceeds the maximum transfer length)
16 hex	Illegal parameter address (illegal or unsupported value for attribute, number of elements, parameter number, subindex or a combination of these)
17 hex	Illegal format (change request for an illegal or unsupported format)
18 hex	Number of values not consistent (number of values of the parameter data to not match the number of elements in the parameter address)
19 hex	Drive object does not exist (access to a drive object that does not exist)
20 hex	Parameter text cannot be changed
21 hex	Service is not supported (illegal or not support request ID).
6B hex	A change request for a controller that has been enabled is not possible. (The converter rejects the change request because the motor is switched on. Observe the "Can be changed" parameter attribute (C1, C2, U, T) in the parameter list.
6C hex	Unknown unit.
6E hex	Change request is only possible when the motor is being commissioned (p0010 = 3).
6F hex	Change request is only possible when the power unit is being commissioned (p0010 = 2).
70 hex	Change request is only possible for quick commissioning (basic commissioning) (p0010 = 1).
71 hex	Change request is only possible if the converter is ready (p0010 = 0).
72 hex	Change request is only possible for a parameter reset (restore to factory setting) (p0010 = 30).

Error value 1	Significance
73 hex	Change request possible only during commissioning of the safety functions (p0010 = 95).
74 hex	Change request is only possible when a technological application/unit is being commissioned (p0010 = 5).
75 hex	Change request is only possible in a commissioning state (p0010 \neq 0).
76 hex	Change request is not possible for internal reasons (p0010 = 29).
77 hex	Change request is not possible during download.
81 hex	Change request is not possible during download.
82 hex	Accepting the master control is inhibited via BI: p0806.
83 hex	Desired interconnection is not possible (the connector output does not supply a float value although the connector input requires a float value)
84 hex	Converter does not accept a change request (converter is busy with internal calculations. See parameter r3996 in the parameter list.
	Manuals and technical support (Page 217)
85 hex	No access methods defined.
86 hex	Write access only during commissioning of the data records (p0010 = 15) (operating status of the converter prevents a parameter change.)
87 hex	Know-how protection active, access locked
C8 hex	Change request below the currently valid limit (change request to a value that lies within the "absolute" limits, but is however below the currently valid lower limit)
C9 hex	Change request above the currently valid limit (example: a parameter value is too large for the converter power)
CC hex	Change request not permitted (change is not permitted as the access code is not available)

3.3 PROFIdrive profile - Diagnostic channels

The converters provide the diagnostics standardized for PROFIBUS and PROFINET. This means that it is possible to directly output faults and alarms at an HMI (control system screen).

Here, PROFINET offers more functions than PROFIBUS

- PROFIBUS: Faults without component assignment
- PROFINET: Faults and alarms with component assignment

The fault and alarm messages are saved in the converter in the following parameters

- r0947[0 ... 63]: Fault number
- r2122[0 ... 63]: Alarm code
- r3120[0 ... 63]: Components which are involved with the fault (only for PROFINET)
- r3121[0...63]: Components which are involved with the alarm (only for PROFINET)

The converter transfers the messages in the sequence in which they occurred

The control generates the time stamp when the messages are received

3.3.1 Diagnostics with PROFINET

PROFINET uses the channel diagnostics to transfer PROFIdrive message classes.

Reading out diagnostics data

The control requests the diagnostics data from the converter using "Read data set", e.g. using a read record with index 800C hex.

The following rules apply:

- 1 Message block (=ChannelDiagnosisData) if (one or several) faults of the same message class are detected at the converter
- n message blocks if at the converter, n faults of different message classes are detected

Further information is provided in the Internet: To access this link, you must be a member of PROFIBUS and PROFINET International (PI).

PROFINET IO specification (<u>http://www.profibus.com/nc/download/specifications-standards/downloads/profinet-io-specification/display/</u>)

3.3.2 Diagnostics with PROFIBUS

The following objects belonging to a diagnostics message in PROFIBUS

- Standard diagnostics
 - Sequence: Always at the first position of the message
 - Length is always 6 bytes

• Identifier-related diagnostics

- Sequence: At the second, third or fourth position
- Identification using the header,
- For SINAMICS G120, the length is always 2 bytes

• Status messages/module status

- Sequence: At the second, third or fourth position
- Identification using the header
- Length for SINAMICS G120:
 - 5 bytes for configuration using GSD
 - 6 bytes when configuring using the object library

Channel-related diagnostics

- Sequence: At the second, third or fourth position
- Identification using the header
- Length is always 3 bytes
- Diagnostics alarm with DS0 / DS1
 - Sequence: Always at the last position of the message
 - Slot-specific The current state of the slot responsible for the message is transferred.

Note

Precondition for diagnostics via PROFIBUS

The master must operate in the DPV1 mode for diagnostics via PROFIBUS.

Standard diagnostics

Byte	Namo				l	Bit			
No.	Name	7	6	5	4	3	2	1	0
1	Station status 1	Master_ Lock = 0	Prm_ Fault	0	Not supported	Ext_Diag	Cfg_Fault	Station_ not_ Ready	Station_ Non_ Exist = 0
2	Station status 2	0	0	Sync_ Mode	Freeze_ Mode	WD_ON	0	Start_ Diag = 0	Prm_Req
3	Station status 3	Ext_Diag_ Overflow	0	0	0	0	0	0	0
4			Master_Add						
5			Ident_Number (HighByte) of the slave						
6				Ident_I	Number (Lo	wByte) of th	e slave		

The following values are decisive for the diagnostics:

- **Ext_Diag**: Group signal for diagnostics in the device:
 - 0: No fault is active
 - 1: At least one alarm or fault is active
- Ext_Diag_Overflow:

Display for the diagnostics overflow in the device (for more than 240 bytes)

Identifier-related diagnostics

Byte Name					I	Bit			
No.	Name	7	6	5	4	3	2	1	0
1	Header byte	Hea 0	ader 1	Block length 2 32 For SINAMICS G120 always = 2					
2	Bit structure	KB_7	KB_6	KB_5 KB_4 KB_3 KB_2 KB_1 KB_(KB_0
• •	•			•	• •				• • •
m	Bit structure			KB_n+1 KB_n					

The identifier-related diagnostics provides a bit (KB_n) for each slot allocated when configuring the device. If a diagnostics message is active at a slot, then its KB_n = 1.

For G120 only one slot is allocated:

- KB_0 when configuring with the GSD
- KB_3 when configuring with the object manager

Status messages, module status

Byte	Namo	Bit							
No.	Maine	7	6	5	4	3	2	1	0
1	Header byte	Hea 0	ader 0	Block length 2 32 For SINAMICS G120 = 5 or 6					
2	Module status		82 hex (status block)						
3	Slot		0						
4	Specifier				(D			
5	Slot structure	Slo	Slot_4 Slot_3 Slot_2 Slot_1					ot_1	
• •	•	• • •						• • •	
m	Slot structure			Slot n					

For G120, independent of the status, for all slots "00" is always output, i.e. valid user data.

Channel-related diagnostics

Byte	Name				E	Bit				
No.	Name	7	6	5	4	3	2	1	0	
n	Header byte	Hea 1	nder 0	Module number 0 63						
n+1	Bit structure	Input / 1	Output 1		0 -	no compon	ent assignm	nent		
n+2	Bit structure	Chann 0	el type - uns 0	pecific Message classes, see the following table 0					ble	
2	Undervoltage				22	Motor	Motor overload			
3	Overvolt	tage			23	Comm	Commun. with controller faulted			
9	Error				24	Safety	Safety monit. Detected an error			
16	Hardwar	e/software	error		25	Act. Po	Act. Position/speed value error			
17	Line sup	ply/filter fa	ulted		26	Interna	Internal communication faulted			
18	DC link o	overvoltage	9		27	Infeed	Infeed faulted			
19	Power electronics faulted				28	Braking	Braking controller faulted			
20	Electronic component overtemp.				29	Externa	External signal state error			
21	Ground/	phase faul	t detected		30	Applica	Application/function faulted			

When multiple faults are allocated at one converter with the same message class, then only one message is displayed.

Diagnostics alarm with DS0 / DS1

Byte	Name		1	1	l	Bit			
No.		7	6	5	4	3	2	1	0
1	Header bytes	Hea 0	ader 0			Block ler	ngth = 15		
2		0			Diagi	nostics alar	m = 1		
3		0			Slot For SINA	number 0 MICS G120	. 244) 1 or 4: Cor Conf	nfiguration vi	via GSD = 1 a library = 4
4		0	0	31, sequ	ence numb	er	Add_Ack	Alarm S	pecifier ¹⁾
5	DS0 byte 0	0	0	0	0	0 2)	0	0 ³⁾	0 4)
6	DS0 byte 1	0	0	0	1 ⁵⁾	0 6)	0 6)	0 6)	0 ⁶⁾
7	DS0 byte 2	0	0	0	0	0	0	0	0
8	DS0 byte 3	0	0	0	0	0	0	0	0
9	Info byte 1	Mixed		= 4	l5 hex (Cha	nnelTypeID	= SINAMIC	CS)	
10	Info byte 2			= 24	1 (diagnosti	c bits / char	inel)		
11	Info byte 3			=	1 (one cha	nnel signals	5)		
12	Channel Error Vector	0	0	0	0	0	0	0	1
13	Channel-	Err 7	Err 6	Err 5	Err 4	Err 3	Err 2	Err 1	Err 0
14	related diagnostics	Err 15	Err 14	Err 13	Err 12	Err 11	Err 10	Err 9	Err 8
(channel 0)		0	0	0	0	Err 19	Err 18	Err 17	Err 16
1)) Alarm specifier 4) Module fault								

1)

- 1: Fault is active and the slot is not OK
- 2: Fault is resolved and the slot is OK
- 3: Fault is resolved and the slot is not OK
- Channel fault present 2)
 - 0: No fault is active
 - 1: Fault is active
- 3) Internal fault
 - 0: No fault is active
 - 1: Fault is active

0: No fault is active

- 1: Fault is active
- Channel information present 5) 1: DS1 exists
- Type of class module = 0011 (dis-6) tributed)

A table with the message classes is provided in the List Manual of the converter.

Overview of the manuals (Page 217)

3.4 Identification & maintenance data (I&M)

3.4 Identification & maintenance data (I&M)

I&M data

The converter supports the following identification and maintenance (I&M) data.

I&M data	Format	Explanation	Associated param- eters	Example for the content
1&M0	u8[64] PROFIBUS	Converter-specific data, read only	-	See below
	u8[54] PROFINET			
I&M1	Visible String [32]	Plant/system identifier	p8806[0 31]	"ak12-ne.bo2=fu1"
	Visible String [22]	Location code	p8806[32 53]	"sc2+or45"
1&M2	Visible String [16]	Date	p8807[0 15]	"2013-01-21 16:15"
1&M3	Visible String [54]	Any comment	p8808[0 53]	-
1&M4	Octet String[54]	Check signature to track changes for Safe- ty Integrated.	p8809[0 53]	Values of r9781[0] and r9782[0]
		This value can be changed by the user.		
		The test signature is reset to the value generated by the machine if p8805 = 0 is used.		

When requested, the converter transfers its I&M data to a higher-level control or to a PC/PG with installed STEP 7 or TIA Portal.

I&M0

Designation	Format	Example for the con- tent	Valid for PROFI- NET	Valid for PROFI- BUS
Manufacturer-specific	u8[10]	00 00 hex		✓
MANUFACTURER_ID	u16	42d hex (=Siemens)	✓	✓
ORDER_ID	Visible String [20]	"6SL3246-0BA22-1FA0"	✓	✓
SERIAL_NUMBER	Visible String [16]	"T-R32015957"	✓	✓
HARDWARE_REVISION	u16	0001 hex	✓	✓
SOFTWARE_REVISION	char, u8[3]	"V" 04.70.19	✓	✓
REVISION_COUNTER	u16	0000 hex	✓	✓
PROFILE_ID	u16	3A00 hex	✓	✓
PROFILE_SPECIFIC_TYPE	u16	0000 hex	1	✓
IM_VERSION	u8[2]	01.02	✓	✓
IM_SUPPORTED	bit[16]	001E hex	✓	✓

3.5 S7 communication

3.5 S7 communication

Communication via the S7 protocol facilitates the following:

- Access to the converter with Startdrive.
- Remote maintenance of the converter with Startdrive across network boundaries.
 Remote maintenance across network boundaries (<u>https://</u>support.industry.siemens.com/cs/ww/en/view/97550333)
- Control of the converter directly via SIMATIC Panels via PROFIBUS or PROFINET without higher-level control.
 - Directly accessing a SINAMICS G120 converter from a SIMATIC panel (Page 55)

Note

Number of S7 protocol connections

The converter supports four S7 protocol connections. Two of these are required for Startdrive. Each of the remaining two are available for access to the converter via SIMATIC Panels.

3.5.1 Directly accessing a SINAMICS G120 converter from a SIMATIC panel

Example of direct access to the converter via a SIMATIC panel

You want to use the SIMATIC panel to do the following:

- Switch the converter on and off
- Enter a setpoint
- Display the actual value and status

Requirements

You have installed the following software packages on your computer and made the following settings:

- WINCCflex 2008 SP1 or higher
- Startdrive
- You have now configured the converter in Startdrive.
- Converter and panel are connected with one another via PROFIBUS or PROFINET.
- The same baud rates are set in the converter and in the panel.
- The bus address configured in WinCC flexible matches the bus address of the converter.

3.5 S7 communication

Adjusting settings in the converter

Procedure

- 1. Make the following settings and enables so that the converter can accept commands from the panel:
 - Set the two signal sources for OFF2 (p0844 and p0845) to 1: p0844 = 1 p0845 = 1
 - Set the two signal sources for OFF3 (p0848 and p0849) to 1: p0848 = 1 p0849 = 1
 - Set the enables for the ramp-function generator: p1140 = 1

. p1141 = 1

 Set the setpoint enable: p1142 = 1

2. Adjust the parameters for the ON/OFF1 command from the SIMATIC panel

- Set p0840[0] = 2094.0

In doing so, you connect up the ON/OFF1 command using the Bit 0 of the BICO transformer 2094. The signal source for this parameter is p2099.

Set p2099[0] = p2900.
 In doing so, you give the ON/OFF1 command by setting P2900 = 1 (ON) or 0 (OFF1)

3. Set parameters for the setpoint default

- Set:
 - p1070 = 1001 (fixed setpoint 1 as setpoint)
 - p1016 = 1 (direct selection of the speed setpoint)
 - p1020 = 1 (fixed speed setpoint selection, bit 0)

4. Actual value and status word

No further settings are required on the converter side for displaying the actual speed value (r0021) and the status word (r0052).

You have now made the settings in the converter.

3.5 S7 communication

Settings at the SIMATIC panel

Procedure

1. Configure the connection using WinCC flexible

- Enter a name for the connection
- Set the value in the "Active" column to "On".
- Select "SIMATIC S7 300/400" as the communication driver.
- Set the value in the "Online" column to "On".

2. Make the following settings for the configured connection:

- Select the interface (IF1 B for PROFIBUS, "Ethernet" for PROFINET).
- Set the baud rate for PROFIBUS.
- Assign a bus address (PROFIBUS) or an IP address (PROFINET).
- Select S7ONLINE as the access point.
- If no other control is connected to the converter, select "Only master on bus".
- Select cyclical operation.
- 3. ON/OFF1:
 - Create a variable for the parameter p2900, which refers to the address "Data block 2900 with the data word DBD 0 (data type double word)":
 DB2900.DBD 0
 You can switch ON/OFF1 on the panel using one or two buttons.

4. Setpoint

Create a variable for the parameter 1001, which refers to the address "Data block 1001 with the data word DBD 0 (data type real)":
 DB1001.DBD 0
 You can display it through an I/O field.

5. Actual value display

 Create a variable for the parameter r0021, which refers to the address "Data block 21 with the data word DBD 0 (data type real)": DB21.DBD 0
 You can dicplay it through an I/O field

You can display it through an I/O field.

6. Status display

Create a variable for the parameter r0052, which refers to the address "Data block 52 with the data word DBW 0 (data type word)":
 DB52.DBW 0
 You can display it through an I/O field with a binary display, for example.

You have now made the most important settings in the SIMATIC panel. $\hfill\square$

General information for accessing converter parameters

You must create a variable with the following structure for each parameter that you want to display or change using the SIMATIC panel: DBX DBY Z

- X: Data block number Parameter number
- Y: Data type (can be found in the parameter list)
- Z: Data block offset ≜ Parameter index

Figure 3-25 Accessing converter parameters using a SINAMICS G120 as an example

3.6 Communication via PROFINET

You can either integrate the converter in a PROFINET network or communicate with the converter via Ethernet.

The converter in PROFINET IO operation

Figure 3-26 The converter in PROFINET IO operation (examples)

The converter supports the following functions:

- RT
- IRT: The converter forwards the clock synchronism, but does not support clock synchronism.
- MRP: Media redundancy, impulsed with 200 ms. Precondition: Ring topology With MRP, you get an uninterrupted switchover if you set the failure monitoring time to a value > 200 ms.
- MRPD: Media redundancy, bumpless. Precondition: IRT and the ring topology created in the control

- Diagnostic alarms in accordance with the error classes specified in the PROFIdrive profile.
- Device replacement without removable data storage medium: The replacement converter is assigned the device name from the IO controller, not from its memory card or from the programming device.
- Shared Device for converters that support PROFIsafe.

The converter as Ethernet node

Figure 3-27 The converter as Ethernet node (examples)

Further information on PROFINET

Further information on PROFINET can be found on the Internet:

- PROFINET the Ethernet standard for automation (<u>http://w3.siemens.com/mcms/</u> automation/en/industrial-communications/profinet/Pages/Default.aspx)
- PROFINET system description (<u>https://support.industry.siemens.com/cs/ww/en/view/</u> 19292127)

3.6.1 Converter with PROFINET interface

The pin assignment and the connectors that you require for your converter are listed in the following tables.

You can implement either a ring or line-type topology using the two sockets at the converter. You only require one of the two sockets at the beginning and end of a line.

You can use switches to realize other topologies.

Converter/Control Unit		Connection via				
		X150 P1/ X150 P2 (RJ45)	X03/X04 (RJ45)	X03/X04 (M12)		
	6120					
	• CU230P-2 PN	x				
	• CU240E-2 PN	x				
	• CU240E-2 PN-F	х				
	• CU250S-2 PN	х				
the second se	G120C					
	• G120C PN	X				
	G120D					
	• CU240D-2 PN			x		
	• CU240D-2 PN-F			x		
	• CU250D-2 PN-F			х		
	• CU240D-2 PN-F [PP]		х			
	• CU250D-2 PN-F [PP]		х			
	G115D					
	• G115D PN			x (X150 P1/P2)		

Table 3-17Assignment table

Signa	Ι	X150 P1/ X150 P2 (RJ45)	X03/X04 (RJ45)	X03/X04, X150 P1/P2 (M12)
TX-	Transmit data -	1	1	1
RX+,	Receive data +	3	2	2
TX+	Transmit data +	2	3	3
RX-	Receive data -	6	6	4
		4	4	
		5	5	
		7	7	
		8	8	

Table 3-18Connector pin assignments

Recommended connector

RJ45, IP20: 6GK1901-1BB10-2Ax0

Information for assembling the SIMATIC NET Industrial Ethernet FastConnect RF45 plug 180 can be found on the Internet:

Assembly instructions for the SIMATIC NET Industrial Ethernet FastConnect RJ45 plug (<u>http://support.automation.siemens.com/WW/view/en/37217116/133300</u>)

3.6.2 Integrating converters into PROFINET

Note

PROFINET interface X150

The network with which interface X150 is connected must be separated from the rest of the plant network in accordance with the Defense in Depth concept. Manual access to cables and any open connections must be protected as in a control cabinet.

To connect the converter to a control system via PROFINET, proceed as follows:

Procedure

- Integrate the converter in the bus system (e.g. ring topology) of the control using PROFINET cables and the two PROFINET sockets X150-P1 and X150-P2 or X03 and X04. The position of the sockets is given in the operating instructions for the converter. Pin assignment: Converter with PROFINET interface (Page 60). The maximum permitted cable length from the previous station and to the subsequent one is 100 m.
- 2. Externally supply the converter with 24 V DC through terminals 31 and 32 or via X01 (X01/X02 with G115D).

The external 24 V supply is only required if communications with the control system should also operate when the line voltage is switched off.

You have connected the converter to the control using PROFINET.

3.6.3 PROFINET IO operation

3.6.3.1 What do you have to set for communication via PROFINET?

Check the communication settings using the following table. If you answer "Yes" to these questions, you have correctly set the communication settings and can control the converter via the fieldbus.

Questions	Answer/description
Is the converter correctly connected to the bus network?	Integrating converters into PROFINET (Page 61)
Do the IP address and device name in the converter and control match?	Configuring communication to the control (Page 63)
Is the same telegram set in the converter as in the higher- level control?	Setting the telegram in the control
Are the signals that the converter and the control ex- change via PROFINET correctly interconnected?	Interconnect signals in the converter in conformance with PROFI- drive. PROFIDRIVE profile - Cyclic communication (Page 13) PROFIDRIVE profile - Acyclic communication (Page 42)

Communication with the control, even when the line voltage is switched off

So that communication with the control system in your plant or system continues to function even when the line voltage is switched off, you must externally supply the converter/Control Unit with 24 V DC. To do this, use terminals 31 and 32 or connector X01 (X01/X02 with G115D). You can find additional details in the operating instructions for the converter or the Control Unit.

3.6.3.2 Configuring communication to the control

Configuring the communication using SIMATIC S7 control

If the converter is not included in the hardware library, you have the following options:

- Install the current Startdrive version.
- Install the GSDML of the converter using "Options/Manage general station description (GSD)" in the components catalog.

Configuring the communication using a non-Siemens control

- 1. Import the device file (GSDML) of the converter into the calculation tool for your control system.
- 2. Configure the communication.

Configuring communication with Startdrive

Proceed as follows to make the settings for communication with the control system.

- Activate the following windows in Startdrive: "View/Project tree" and "View/Inspector window".
- Open the drive in the project tree and double click on "Device configuration". This opens the dialog in the inspector window for setting the PROFINET interface.
- Click on "Ethernet addresses".
- Enter the appropriate values.

Device overview	
Antrieb_1 [G120P CU230F	2-2 PN] 💽 Properties 🚺 Info 🗓 Diagnostics 🖬 🖃 🔻
General IO tags	System constants Texts
 General PROFINET interface [X150] General Ethernet addresses Telegram configuration Advanced options 	Ethernet addresses Interface networked with Subnet: PN/IE_2 Add new subnet
Module parameter	IP protocol IP address: 192 . 168 . 0 . 1 Subnet mask: 255 . 255 . 0 Use router Router address: 0 . 0 . 0 . 0
	PROFINET Generate PROFINET device name automatically PROFINET device name: antrieb_1 Converted name: antriebxb1edd0 Device number:

You have configured communication with the control system.

You can enter or read out data directly via the parameter view. To do this, select the "Communication" parameter group and the "Show advanced parameters" option.

3.6.3.3 Installing GSDML

Procedure

- 1. Save the GSDML to your PC.
 - With Internet access:
 GSDML (<u>https://support.industry.siemens.com/cs/ww/en/ps/13222/dl</u>)
 - Without Internet access: Insert a memory card into the converter. Set p0804 = 12. The converter writes the GSDML as a zipped file (*.zip) into directory /SIEMENS/SINAMICS/ DATA/CFG on the memory card.
- 2. Unzip the GSDML file on your computer.
- 3. Import the GSDML into the engineering system of the controller.

You have now installed the GSDML in the engineering system of the controller.

3.6.3.4 Activating diagnostics via the control

The converter provides the functionality to transmit fault and alarm messages (diagnostic messages) to the higher-level control according to the PROFIdrive error classes.

The functionality must be selected in the higher-level controller and activated by powering up.

3.6.4 PROFlenergy

3.6.4.1 Energy-saving mode

Overview

PROFIenergy is a standard based on PROFINET. PROFIenergy is certified and described in the PROFIenergy profile of the PNO.

The higher-level controller transfers the control commands and status queries in acyclic operation via data record 80A0 hex.

The converter supports PROFlenergy profile V1.1 and function unit class 3.

G115D, G120 and G120C converters support energy-saving mode 2.

G120D converters support energy-saving mode 1.

Function description

Behavior of the converter with active energy-saving mode 2:

- The converter outputs alarm A08800.
- The RDY LED flashes green: 500 ms on, 3 000 ms off.

- The converter does not send any diagnostic interrupts.
- If the higher-level controller goes to stop or the bus connection to the higher-level controller is interrupted, the converter exits the energy-saving mode and resumes normal operation.

Behavior of the converter with active energy-saving mode 1:

- The converter switches off the supply voltage for its digital outputs if they are not interconnected with r5613.x (displays the energy-saving mode) or are being used as safety-relevant outputs.
- The converter switches off the supply voltage of its encoders unless they are HTL encoders assigned to the position controller.

Example

You can find an application example for PROFlenergy on the Internet:

PROFlenergy - saving energy with SIMATIC S7 (<u>https://</u> support.industry.siemens.com/cs/ww/en/view/41986454)

Parameters

Number	Name	Factory setting
r5600	Pe energy-saving mode ID	-
r5613	CO/BO: Pe energy-saving active/inactive	-

3.6.4.2 Control commands

Function description

Command	Explanation
Start_Pause	Switches to the energy-saving mode depending on the pause dura- tion.
Start_Pause_with_time_re- sponse	Switches to the energy-saving mode depending on the pause dura- tion and also specifies the transition times in the command response
End_Pause	Switches from the energy-saving mode to the operating state.
	Cancels switching from the operating state to energy-saving mode.

Settings

- Minimum pause time: p5602
 - When the pause time sent using the command "Start_Pause" is equal to or greater than the value in p5602[1], the converter goes to energy-saving mode.
 - If the pause time is less than p5602[1], the converter rejects the command "Start_Pause" with 50 hex (no appropriate pause mode).

If the controller sends the command "End_Pause" or "Start_Pause" with a pause time of 0, the motor cannot be switched on. An OFF1/ON command is required to switch the motor on again.

- Maximum pause time: p5606
- Disable PROFlenergy
 If you set p5611.0 = 1, you disable the response of the converter to PROFlenergy control commands. In this case, the converter rejects the "Start_Pause" command with 50 hex (no appropriate pause mode).
- Transition to energy-saving mode
 - With p5611.2 = 0, you enable the transition to energy-saving mode from operating state S1 (switching on inhibited) or S2 (ready to switch on).
 - With p5611.2 = 1, you enable the transition to energy-saving mode from operating states
 S3 (ready for operation) and S4 (operation).

To do this, you must also set the following:

- p5611.1 = 1: With the transition to energy-saving mode, the converter triggers an OFF1 command and enters the switching on inhibited state (S1).
- p5611.1 = 0: You use p5614 to interconnect a signal source that you use to switch off the converter and place it in switching on inhibited state (S1).

3.6.4.3 Status queries

Function description

Command	Explanation
List_Energy_Saving_Modes	Returns all supported energy-saving modes
Get_Mode	Returns information about the selected energy-saving mode
PEM_Status	Returns the current PROFlenergy status
PEM_Status_with_CTTO	Returns the current PROFlenergy status together with the regular transition time to the operating state
PE_ldentify	Returns the supported PROFlenergy commands
Query_Version	Returns the implemented PROFlenergy profile
Get_Measurement_List	Returns the measured value IDs that can be accessed using the "Get_Measurement_Values" command
Get_Measure- ment_List_with_object_number	Returns the measured value IDs and the associated object number that can be accessed using the "Get_Measurement_Values_with_object_number" command.

Command	Explanation
Get_Measurement_Values	Returns the measured values requested via the measured value ID
Get_Measurement_Val- ues_with_object_number	Returns the measured values requested via the measured value ID and the object number. The object number corresponds to the drive ob- ject ID.

3.6.4.4 Error values and measured values

Function description

Table 3-19Error values in the parameter response

Error val- ue 1	Meaning
001 hex	Invalid Service_Request_ID
03 hex	Invalid Modifier
04 hex	Invalid Data_Structure_Identifier_RQ
06 hex	No PE energy-saving mode supported
07 hex	Response too long
08 hex	Invalid block header
50 hex	No suitable energy-saving mode available
51 hex	Time is not supported
52 hex	Impermissible PE_Mode_ID
53 hex	No switch to energy saving mode because of state operate
54 hex	Service or function temporarily not available

Table 3-20 Measured values

PROF	PROFlenergy Measured value Accuracy ID Name Do- Class main				SINAMICS source parameters		Value
Measured value Accuracy		Uni			range		
ID	Name	Do-	Class	t	Num-	Name	
		main			ber		
34	Active power	1	12	W	r0032	Active power smoothed	r2004
166	Power factor	1	12	1	r0038	Power factor smoothed	0 1
200	Active energy im-	2	11	Wh	r0039[Energy drawn	-
	port				1]		

3.6.5 The converter with PROFINET interface as Ethernet node.

As default setting, the converter is set for PROFINET IO communication. Alternatively, you have the option of integrating the converter into an Ethernet network via the PROFINET interface.

This means that from any location in a network, you can use Startdrive to make diagnostic queries, change parameters or carry out commissioning work.

PROFINET I/O communication is not possible with the converter as Ethernet node.

Integrating a converter into an Ethernet network (assigning an IP address)

Procedure

- 1. Set p8924 (PN DHCP mode) = 2 or 3
 - p8924 = 2
 The DHCP server assigns the IP address based on the MAC address of the converter
 - p8924 = 3
 The DHCP server assigns the IP address based on the device name of the converter
- 2. Save the settings with p8925 = 2. The next time that the converter switches on, it retrieves the IP address. After this, you can address the converter as an Ethernet node.

Note

Immediate switchover without restart

The switchover to DHCP is performed immediately and without a restart if the change is carried out with the EtherNet/IP command "Set Attribute Single" (class F5 hex, attribute 3). The following options are available:

- Via an EtherNet/IP controller
- Via an EtherNet/IP commissioning tool

You have now integrated the converter into Ethernet

Displays

- r8930: Device name of the converter
- r8934: Operating mode, PN or DHCP
- r8935: MAC address

Additional options of integrating converters into Ethernet

You also have the option of integrating the converter into Ethernet using Proneta or STEP 7, for example.

Here is the example of the "Edit Ethernet station" screen form from Step 7, which you can use to make the required settings.

3.7 Communication via PROFIBUS

ernet-Teilnehmer bear	beiten		
Ethernet Teilnehmer			
		Unline erreichbare Teilnehmer	
MAC-Adresse:		Durchsuchen	
P-Konfiguration einstellen-			
 IP-Parameter verwende 	en		
15.1.1		Netzübergang	
IP-Adresse:		Keinen Router verwenden	
Subnetzmaske:		C Router verwenden	
		Adresse:	
Client-ID:	en		
Gerätename vergeben			
Gerätename:		Name zuweisen	
Rücksetzen auf Werkseins	tellungen		
		Zurücksetzen	
			,

See also

Overview of the manuals (Page 217)

3.7 Communication via PROFIBUS

The PROFIBUS DP interface has the following functions:

- Cyclic communication
- Acyclic communication
- Diagnostic alarms

General information on PROFIBUS DP can be found in the Internet:

- PROFIBUS information (<u>https://support.industry.siemens.com/cs/ww/en/view/</u> 1971286)
- Installation guidelines of the PNO (<u>http://www.profibus.com/downloads/installation-guide/</u>)

3.7.1 Converters with PROFIBUS interface

You can find the connectors and the connector assignments of the PROFIBUS DP interface in the following tables.

You can implement a line-type topology using the two connectors at the converter. You can use switches to realize other topologies.

Converter/Control Unit		Connection via			
		X126 (D Sub - socket)	X03, on (M12)	X04, off (M12)	
		5 1 00000 0000 9 6		2 153 4	
	G120				
	• CU230P-2 DP	x			
	• CU240B-2 DP	х			
	• CU240E-2 DP	х			
	• CU240E-2 DP-F	х			
	• CU250S-2 DP	х			
	G120C				
	• G120C DP	х			
	G120D				
	• CU240D-2 DP		x	x	
	• CU240D-2 DP-F		x	x	
	• CU250D-2 DP-F		X	Х	

Table 3-21Assignment table - connectors

Table 3-22	Connector p	pin assignments
------------	-------------	-----------------

Signal	X126 (D Sub - socket)	X03, on (M12)	X04, off (M12)
	$5 \dots 1$ $\underbrace{\circ \circ \circ \circ \circ}_{\circ \circ \circ \circ \circ}$ $9 \dots 6$		2 (153 (4)
Shield, ground connection	1	5	5
	2	1	1
RxD/TxD-P, receive and transmit (B/B')	3	4	4

CNTR-P, control signal	4		
DGND, reference potential for data (C/C')	5		
VP, supply voltage	6		
	7	3	3
RxD/TxD-N, receive and transmit (A/A')	8	2	2
	9		

Recommended PROFIBUS connectors

We recommend connectors with the following article numbers for connecting the PROFIBUS cable:

- 6GK1500-0FC10
- 6GK1500-0EA02

3.7.2 What do you have to set for communication via PROFIBUS?

Configuring PROFIBUS communication

You require the appropriate engineering system to configure PROFIBUS communication in the PROFIBUS master.

If required, load the GSD file of the converter into the engineering system.

Configuring communication to the control system (Page 75)

Setting the address

Set the address of the PROFIBUS device.

 \square Set the PROFIBUS address (Page 77)

Setting the telegram

Set the same telegram in the converter as in the PROFIBUS master. Interconnect the telegrams in the control program of the PROFIBUS master with the signals of your choosing.

PROFIDRIVE profile - Cyclic communication (Page 13)

Application examples

You can find application examples for PROFIBUS communication on the Internet:

Controlling the speed of a SINAMICS G110M/G120/G120C/G120D with S7-300/400F via PROFINET or PROFIBUS, with Safety Integrated (via terminal) and HMI (https:// support.industry.siemens.com/cs/ww/en/view/60441457)

Controlling the speed of a SINAMICS G110M / G120 (Startdrive) with S7-1500 (TO) via PROFINET or PROFIBUS, with Safety Integrated (via terminal) and HMI (https:// support.industry.siemens.com/cs/ww/en/view/78788716)

3.7.3 Integrating converters into PROFIBUS

To connect the converter to a control system via PROFIBUS DP, proceed as follows:

- 1. Integrate the converter into the bus system (e.g. line topology) of the control using PROFIBUS cables.
 - Converters with IP20 degree of protection using socket X126
 - Converters with IP65 degree of protection (CU240D/CU250D) via X03 and X04

The position of the socket is given in the operating instructions for the converter. Pin assignment: Converters with PROFIBUS interface (Page 72). The maximum permitted cable length to the previous station and the subsequent one is 100 m at a baud rate of 12 Mbps. You can achieve a maximum cable length of 400 m by using a maximum of 3 repeaters.

2. Externally supply the converter with 24 V DC through terminals 31 and 32 or via X01. The external 24 V supply is only required if communications with the control system should also operate when the line voltage is switched off.

You have now connected the converter to the control system using PROFIBUS DP.

3.7.4 Configuring communication to the control system

Configure the communication in the control system after you have connected the converter to the bus.

3.7.4.1 Configuring the communication using SIMATIC S7 control

- If the converter is listed in the component catalog in the TIA Portal, you can configure the communication in the SIMATIC control.
- If the converter is not listed in the hardware library, you can either install the newest Startdrive version or install the GSD of the converter via "Extras/GSD-Install file" in HW-Config.

3.7.4.2 Configuring the communication with a third-party control system

If you are working with a third-party control system, you must install the device file (GSD) of the converter in the control before you configure the communication.

Installing the GSD (Page 76) .

If you have installed the GSD, configure the communication. To do this, follow the documentation of your control system.

3.7.4.3 Installing the GSD

Procedure

- 1. Save the GSD on your PC using one of the following methods.
 - With Internet access:
 GSD (<u>http://support.automation.siemens.com/WW/view/en/22339653/133100</u>)
 - Without Internet access: Insert a memory card into the converter. Set p0804 = 12. The converter writes the GSD as zipped file (*.zip) into directory /SIEMENS/SINAMICS/ DATA/CFG on the memory card.
- 2. Unzip the GSD file on your computer.
- 3. Import the GSD in the engineering system of the controller.

You have now installed the GSD file in the engineering system of the controller.

3.8 Select telegram

3.7.5 Set the PROFIBUS address

Valid address area: 1 ... 125

You have the following options for setting the address:

• Using the address switch on the Control Unit:

Figure 3-28 Address switch with example for bus address 10

The address switch has priority over the other settings.

• With a commissioning tool, e.g. an operator panel, via parameter p0918 (factory setting: p0918 = 126).

It is only possible to change p0918 if an invalid address is set in the address switch.

You can find the position of the address switch in the operating instructions for the converter.

Manuals and technical support (Page 217)

Activating the changed bus address

Procedure

- 1. Set the address as described above.
- 2. Switch off the converter power supply.
- 3. Wait until all LEDs on the converter are dark.
- 4. Switch on the converter power supply again. Your settings become effective after switching on.

You have now set the bus address.

3.8 Select telegram

Requirement

In the basic commissioning you have selected the control using PROFIBUS or PROFINET.

3.8 Select telegram

Telegrams for SINAMICS G120 converters

The following table shows all of the telegrams for the G120 converter.

In your converter, you have a list of telegrams for selection that are available for your particular converter.

Value p0922

- 1: Standard telegram 1, PZD-2/2 (factory setting, exceptions: CU250D and CU250S)
- 2: Standard telegramm 2, PZD-4/4
- 3: Standard telegram 3, PZD-5/9
- 4: Standard telegram 4, PZD-6/14
- 7: Standard telegram 7, PZD 2/2 (factory setting CU250D)
- 9: Standard telegram 9, PZD-10/5
- 20: Standard telegram 20, PZD-2/6
- 110: SIEMENS telegram 110, PZD-12/7
- 112: SIEMENS telegram 111, PZD-12/12
- 350: SIEMENS telegram 350, PZD-4/4
- 352: SIEMENS telegram 352, PZD-6/6
- 353: SIEMENS telegram 353, PZD-2/2, PKW-4/4
- 354: SIEMENS telegram 354, PZD-6/6, PKW-4/4
- 999: Free telegram Strend telegram/change signal interconnection (Page 28) (factory setting, CU250S)

For further information about telegrams:

PROFIDRIVE profile - Cyclic communication (Page 13).

Telegrams for SINAMICS G115D converters

The list of telegrams for the SINAMICS G115D converters can be found in the G115D operating instructions. See:

Manuals and technical support (Page 217)

PROFIsafe telegram selection

The settings for the PROFIsafe telegram selection are described in the "Safety Integrated" Function Manual.

Communication via EtherNet/IP

Overview

EtherNet/IP is real-time Ethernet, and is mainly used in automation technology. The following options are available for integrating SINAMICS G converters into EtherNet/IP:

- You can use the SINAMICS profile.
- You can use the ODVA AC/DC drive profile.
- You can define the assemblies for the process data using the objects that are supported by the converter.

See also

Configuring communication (Page 82)

The pin assignment and the connectors that you require for your converter are listed in the following tables.

You can implement a line-type topology using the two sockets at the converter. You only require one of the two sockets at the beginning and end of a line.

You can use switches to realize other topologies.

4.1 Converters with Ethernet/IP interface

Converter/Control Unit			Connection via	
		X150 P1/ X150 P2 (RJ45) 8 1	X03/X04 (RJ45)	X03/X04 (M12)
	G120			
	• CU230P-2 PN	х		
	• CU240E-2 PN	х		
	• CU240E-2 PN-F	х		
	• CU250S-2 PN	х		

Communication via EtherNet/IP

4.1 Converters with Ethernet/IP interface

	G120C			
	• G120C PN	x		
	G120D			
	• CU240D-2 PN			х
	• CU240D-2 PN-F			х
	• CU250D-2 PN-F			х
	• CU240D-2 PN-F [PP]		x	
	• CU250D-2 PN-F [PP]		x	
	G115D			
	• G115D PN			x (X150 P1/P2)

Table 4-2Connector pin assignments

Signa	1	X150 P1/ X150 P2 (RJ45)	X03/X04 (RJ45)	x03/x04, x150 P1/P2 (M12)
TX-	Transmit data -	1	1	1
RX+,	Receive data +	3	2	2
TX+	Transmit data +	2	3	3
RX-	Receive data -	6	6	4
		4	4	
		5	5	
		7	7	
		8	8	

Recommended connector

RJ45, IP20: 6GK1901-1BB10-2Ax0

Information for assembling the SIMATIC NET Industrial Ethernet FastConnect RF45 plug 180 can be found on the Internet:

Assembly instructions for the SIMATIC NET Industrial Ethernet FastConnect RJ45 plug (<u>https://support.industry.siemens.com/cs/ww/en/ps/15251/man</u>)

4.3 What do you need for communication via EtherNet/IP?

4.2 Connect converter to EtherNet/IP

Overview

To connect the converter to a control system via Ethernet, proceed as follows:

Procedure

- 1. Connect the converter to the control system via an Ethernet cable.
- 2. Create an object for data exchange. You have the following options:
 - Load the EDS file into your controller if you want to use the ODVA profile.
 You can find the EDS file on the Internet:
 EDS (https://support.industry.siemens.com/cs/ww/de/view/78026217)
 - If your controller does not accept the EDS file, or if you wish to use the SINAMICS profile, you must create a generic module in your controller:
 Create generic I/O module (Page 97)

You have connected the converter to the control system via EtherNet/IP. $\hfill \square$

Example

You can find an example showing how to connect a converter to the control system via Ethernet/IP on the Internet:

Application example (<u>https://support.industry.siemens.com/cs/ww/en/view/82843076</u>)

See also

EtherNet/IP (http://www.odva.org/Home/ODVATECHNOLOGIES/EtherNetIP/EtherNetIPLibrary/ tabid/76/Ing/en-US/Default.aspx)

Manuals and technical support (Page 217)

4.3 What do you need for communication via EtherNet/IP?

Check the communication settings using the following questions. If you answer "Yes" to the questions, you have correctly set the communication settings and can control the converter via the fieldbus.

- Is the converter correctly connected to the EtherNet/IP?
- Is the EDS file installed in your control system?
- Have the bus interface and IP address been correctly set?
- Have the signals that the converter and the control system exchange been correctly interconnected?

4.4 Configuring communication

4.4 Configuring communication

Overview

EtherNet/IP is realtime Ethernet, and is mainly used in automation technology.

Function description

You must set the following parameters to configure the converter communication via EtherNet/IP:

Procedure

- 1. p2030 = 10
- 2. The following parameters must match your EtherNet configuration:
 - p8921 = IP address
 - p8922 = standard gateway
 - p8923 = subnet mask
 - p8920 = station name
- 3. p8925 = 2
- 4. Select the EtherNet/IP profile:

SINAMICS profile	ODVA AC/DC drive profile
p8980 = 0	p8980 = 1
Select the appropriate telegram using p0922. PROFIDRIVE profile - Cy- clic communication (Page 13)	p0922 = 1: The converter communicates using telegram 1. Other telegrams are not possible. However, when required you can extend telegram 1.
	When required, set the following parameters:
	• p8981
	• p8982
	• p8983

- 5. Switch off the converter power supply.
- 6. Wait until all LEDs on the converter are dark.
- 7. Switch on the converter power supply again.

You have now configured the converter for communication via EtherNet/IP. $\hfill\square$

4.4 Configuring communication

Parameter

Number	Name	Factory setting
p2030	Fieldbus interface protocol selection	Dependent on the
	0: no protocol	converter
	10: EtherNet/IP	
p8920	PN Name of Station	-
p8921	PN IP Address	0
p8922	PN Default Gateway	0
p8923	PN Subnet Mask	0
p8925	Activate PN interface configuration	0
	0: No function	
	1: Reserved	
	2: Activate the configuration and save	
	3: Delete configuration	
r8931	PN IP Address actual	-
r8932	PN Default Gateway actual	-
r8933	PN Subnet Mask actual	-
p8980	EtherNet/IP profile	0
	0: SINAMICS	
	1: ODVA AC/DC	
p8981	EtherNet/IP ODVA STOP mode	0
	0: OFF1	
	1: OFF2	
p8982	EtherNet/IP ODVA speed scaling	128
	123: 32	
	124: 16	
	128: 1	
	129: 0.5	
	133: 0.03125	
p8983	EtherNet/IP ODVA torque scaling	128
	Values the same as p8982	

More information

EtherNet/IP objects and assemblies of the converter:

Supported objects (Page 84)

See also

Overview of the manuals (Page 217)

4.5 Supported objects

Overview

Object class		Object name	Objects re-	ODVA objects	SINAMICS ob-
hex	dec		quired		jects
1 hex	1	Identity object	x		
4 hex	4	Assembly Object	x		
6 hex	6	Connection Manager Object	x		
28 hex	40	Motor Data Object		x	
29 hex	41	Supervisor Object		x	
2A hex	42	Drive Object		x	
32C hex	812	Siemens Drive Object			х
32D hex	813	Siemens Motor Data Object			х
F5 hex	245	TCP/IP Interface Object ¹⁾	x		
F6 hex	246 Ethernet Link Object ¹⁾		x		
300 hex	768 Stack Diagnostic Object			x	х
302 hex	770	70 Adapter Diagnostic Object		x	х
303 hex	771	Explicit Messages Diagnostic Object		x	х
304 hex	772	Explicit Message Diagnostic List Object		x	x
401 hex	1025	Parameter object		x	х

¹⁾ These objects are part of the EtherNet/IP system management.

Identity Object, Instance Number: 1 hex

Supported services

Class

- Get Attribute allGet Attribute single
- Instance Get Attribute all
 - Get Attribute single
 - Reset

Table 4-3Class Attribute

No.	Service	Туре	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

No.	Service	Туре	Name	Value/explanation
1	get	UINT16	Vendor ID	1251
2	get	UINT16	Device Type - ODVA AC Drive - Siemens Drive	02 hex 12 hex
3	get	UINT16	Product code	r0964[1]
4	get	UINT16	Revision	The versions should match the EDS file
5	get	UINT16	Status	See the following table
6	get	UINT32	Serial number	bits 0 19: consecutive number; bits 20 23: Production identifier bits 24 27: Month of manufacture (0 = Jan, B = Dec) Bits 28 31: Year of manufacture (0 = 2002)
7	get	Short String	Product name	Max. length 32 bytes

Table 4-4 Instance Attribute

Table 4-5 Explanation of No. 5 of the previous table

Byte	Bit	Name	Description		
1	0	Owned	 Converter is not assigned to any master Converter is assigned to a master 		
	1		Reserved		
	2	Configured	0: Ethernet/IP basic settings 1: Modified Ethernet/IP settings		
			For G120, always = 1		
	3		Reserved		
	4 7	Extended Device Status	 0: Self-test or status not known 1: Firmware update active 2: At least one I/O connection with error 3: No I/O connections 4: Incorrect configuration in the ROM 5: Fatal fault 6: At least one I/O connection is active 7: All I/O connections in the quiescent state 8 15: Reserved 		
2	8 11		Not used		
	12 15		Reserved		

Assembly Object, Instance Number: 4 hex

Supported services

• Get Attribute single Class

- Instance Get Attribute single
 - Set Attribute single

No.	Service	Туре	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Table 4-6 Class Attribute

Table 4-7 Instance Attribute

No.	Service	Туре	Name	Value/explanation
3	set	Array of UINT8	Assembly	1 byte array

Connection Manager Object, Instance Number: 6 hex

Supported services

Class • Get Attribute all

- Get Attribute single
- Instance Forward open
 - Forward close
 - Get Attribute single
 - Set Attribute single

Table 4-8 Class Attribute

No.	Service	Туре	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Table 4-9 Instance Attribute

No.	Service	Туре	Name	Value/explanation
1	get	UINT16	OpenReqs	Counters
2	get	UINT16	OpenFormat Rejects	Counters
3	get	UINT16	OpenResource Rejects	Counters
4	get	UINT16	OpenOther Rejects Counters	
5	get	UINT16	CloseReqs	Counters
6	get	UINT16	CloseFormat Rejects	Counters
7	get	UINT16	CloseOther Rejects	Counters
8	get	UINT16	ConnTimeouts	Counters
				Number of bus errors

Motor Data Object, Instance Number 28 hex

Supported services

Class • Get Attribute single

- Instance Get Attribute single
 - Set Attribute single

Table 4-10 Class Attribute

No	Serv- ice	Туре	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Table 4-11 Instance Attribute

No	Service	Туре	Name	Value/explanation
•				
3	get, set	USINT	Motor Type	p0300 motor type, see the following table
6	get, set	UINT16	Rated Current	p0305 rated motor current
7	get, set	UINT16	Rated Voltage	p0304 rated motor voltage
8	get, set	UINT32	Rated Power	p0307 rated motor power
9	get, set	UINT16	Rated Frequency	p0310 rated motor frequency
10	get, set	UINT16	Rated Temperature	p0605 motor temperature threshold
11	get, set	UINT16	Max Speed	p0322 maximum motor speed
12	get, set ¹⁾	UINT16	Pole Count	p0314 value of p0314*2
13	get, set ²⁾	UINT32	Torque Constant	p0316 motor torque constant
14	get, set	UINT32	Inertia	p0341 motor moment of inertia
15	get, set	UINT16	Base Speed	p0311 motor rated speed

¹⁾ G120C and G120P: Only "get" possible.

²⁾ G115D: Only "get" possible.

Value in p	0300	Ethernet/IP motor data object		
0	no motor	0	Non-standard motor	
1	Induction motor	7	Squirrel-cage induction motor	
2	Synchronous motor	3	PM synchronous motor	
10	1LE1 induction motor	7	Squirrel-cage induction motor	
13	1LG6 induction motor	7	Squirrel-cage induction motor	
17	1LA7 induction motor	7	Squirrel-cage induction motor	
19	1LA9 induction motor	7	Squirrel-cage induction motor	
100	1LE1 induction motor	7	Squirrel-cage induction motor	
104	1PH4 induction motor	3	PM synchronous motor	
107	1PH7 induction motor	0	Non-standard motor	

Value in p0300		Etheri	net/IP motor data object
108	1PH8 induction motor		Switched reluctance motor
200	1PH8 synchronous motor	0	Non-standard motor
204	1LE4 synchronous motor	3	PM synchronous motor
237	1FK7 synchronous motor	0	Non-standard motor
10000	Motor with DRIVE-CLiQ	0	Non-standard motor
10001	Motor with DRIVE-CLiQ 2nd D	0	Non-standard motor

Supervisor Object, Instance Number: 29 hex

Supported services

Class	•	Get Attribute single	Instance	•	Get Attribute single	

Set Attribute single

Table 4-12 Class Attribute

No	Serv- ice	Туре	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Table 4-13 I	nstance Attribute
--------------	-------------------

No	Serv- ice	Туре	Name	Value/explanation	
3	get, set	Bool	Run1	STW.0 operation, clockwise rotation	
5	get, set	Bool	Net Control	trol Internal 0: Local 1: Network	
6	get	UINT8	State	ite 0: Vendor Specific 1: Startup 2: Not_Ready 3: Ready 4: Enabled 5: Stopping 6: Fault_Stop 7: Faulted	
7	get	Bool	Running1	7: Faulted Ig1 ZSW1:2 1: - (Enabled and Run1) or - (Stopping and Running1) or - (Fault_Stop and Running1) 0 = Other state	

No	Serv- ice	Туре	Name	Value/explanation
9	get	Bool	Ready	ZSW1:0 1: - Ready or - Enabled or - Stopping 0 = Other state
10	get	Bool	Fault	ZSW1:3 drive fault
11	get	Bool	Warning	ZSW1:7 alarm active
12	get, set	Bool	Fault reset	STW.7 acknowledge fault
13	get	UINT16	Fault Code	r945[0] error code
14	get	UINT16	Warning Code	r2122[0] alarm code
15	get	Bool	CtlFromNet	Display from Net Control 1: Control from network 0: Local control

Drive Object, Instance Number: 2A hex

Supported services

Class • Get Attribute single

- Instance Get Attribute single
 - Set Attribute single

Table 4-14Class Attribute

No	Serv- ice	Туре	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Table 4-15 Instance Attribute

No	Serv- ice	Туре	Name	Value/explanation
3	get	Bool	At reference	r2197.4 (for G115D: r2197.7) 1: Speed setp - act val deviation in tolerance t_off 0: Otherwise
4	get, set	Bool	Net_reference	Internal O: Local 1: Network (for G115D: "get" only)
6	get	UINT8	Drive_Mode	p1300 manufacturer-specific, see following table
7	get	INT	Speed Actual	Main actual value, see speed units
8	get, set	INT	Speed Ref	Main setpoint, see speed units
9	get	INT	Current Actual	r0027 absolute current actual value, smoothed

No	Serv- ice	Туре	Name	Value/explanation
10	get, set ¹⁾	INT	Current limit	p0323 maximum motor current
15	get	INT	Power Actual	r0032 actual active power smoothed
16	get	INT	Output voltage	r0025 output voltage smoothed
17	get	INT	Output voltage	r0072 output voltage
18	get, set	UINT16	AccelTime	p1120 ramp-function generator ramp-up time
19	get, set	UINT16	DecelTime	p1121 ramp-function generator, ramp-down time
20	get, set	UINT16	Low Speed Lim	p1080 minimum speed
21	get, set	UINT16	High Speed Lim	p1082 maximum speed
22	get, set	SINT	Speed Scale	p8982 Ethernet/IP ODVA speed scaling
29	get	Bool	Ref From Net	Internal - display of Net_Reference 0: Local 1: Network

¹⁾ G115D: Only "get" possible.

Value	e in p1300	Ethe	ernet/IP motor data object	
0	U/f with linear characteristic	1	Open loop speed (frequency)	
1	U/f with linear characteristic and FCC	0	Vendor-specific mode	
2	U/f with parabolic characteristic			
3	U/f with parameterizable characteristic			
4	U/f with linear characteristic and ECO]		
5	U/f for drives requiring a precise frequency (e.g. in the textile sector)			
6	U/f for drives requiring a precise frequency and FCC			
7	U/f for parabolic characteristic and ECO			
19	U/f with independent voltage setpoint			
20	Speed control (without encoder)	2	Closed-loop speed control	
22	Torque control (without encoder)	3	Torque control	

Siemens Drive Object, Instance Number: 32C hex

Supported services

Class • Get Attribute single

- Instance Get Attribute single
 - Set Attribute single

Table 4-16	Class Attribute
	Class Attribute

No.	Service	Туре	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

No.	Туре	Service	Name	Value/explanation
2	INT16	get, set	Commissioning state	p0010 commissioning parameter filter
3 18	WORD	get	STW1	STW1 bit-by-bit access: Attr.3 = STW1.0 Attr.18 = STW1.15
19	WORD	get	Main setpoint	Main setpoint
20 35	WORD	get	ZSW1	ZSW1 bit-by-bit access: Attr.20 = ZSW1.0 Attr.35 = ZSW1.15
36	WORD	get	Actual Frequency	Main actual value (actual frequency)
37	REAL	get, set	Ramp Up Time	p1120[0] ramp-function generator ramp-up time
38	REAL	get, set	Ramp Down Time	p1121[0] ramp-function generator ramp-down time
39	REAL	get, set	Current Limit	p0640[0] current limit
40	REAL	get, set	Frequency MAX Limit	p1082[0] maximum speed
41	REAL	get, set	Frequency MIN Limit	p1080[0] minimum speed
42	REAL	get, set	OFF3 Ramp Down Time	p1135[0] OFF3 ramp-down time
43	UINT32 / BOOL	get, set	PID Enable	p2200[0] technology controller enable
44	REAL	get, set	PID Filter Time Constant	p2265 technology controller actual val- ue filter time constant
45	REAL	get, set	PID D Gain	p2274 technology controller differentia- tion time constant
46	REAL	get, set	PID P Gain	p2280 technology controller proportion- al gain
47	REAL	get, set	PID I Gain	p2285 technology controller integral time
48	REAL	get, set	PID Up Limit	p2291 technology controller maximum limiting
49	REAL	get, set	PID Down Limit	p2292 technology controller minimum limiting
50	REAL	get	Speed setpoint	r0020 speed setpoint
51	REAL	get	Output Frequency	r0024 output frequency
52	REAL	get	Output Voltage	r0025 output voltage
53	REAL	get	DC Link Voltage	r0026[0] DC-link voltage
54	REAL	get	Actual Current	r0027 current actual value
55	REAL	get	Actual Torque	r0031 torque actual value
56	REAL	get	Output power	r0032 actual active power value
57	REAL	get	Motor Temperature	r0035[0] motor temperature
58	REAL	get	Power Unit Temperature	r0037[0] power unit temperature
59	REAL	get	Energy kWh	r0039 energy display
60	UINT8	get	CDS Eff (Local Mode)	r0050 active command data set
61	WORD	get	Status Word 2	r0053 status word 2
62	WORD	get	Control Word 1	r0054 control word 1

Table 4-17 Instance Attribute

No.	Туре	Service	Name	Value/explanation
63	REAL	get	Motor Speed (Encoder)	r0061 actual speed value
64	UINT32	get	Digital Inputs	r0722 digital inputs status
65	UINT32	get	Digital Outputs	r0747 digital outputs status
66	REAL	get	Analog Input 1	r0752[0] analog input 1
67	REAL	get	Analog Input 2	r0752[1] analog input 2
68	REAL	get	Analog Output 1	r0774[0] analog output 1
69	REAL	get	Analog Output 2	r0774[1] analog output 2
70	UINT16	get	Fault Code 1	r0947[0] fault number 1
71	UINT16	get	Fault Code 2	r0947[1] fault number 2
72	UINT16	get	Fault Code 3	r0947[2] fault number 3
73	UINT16	get	Fault Code 4	r0947[3] fault number 4
74	UINT16	get	Fault Code 5	r0947[4] fault number 5
75	UINT16	get	Fault Code 6	r0947[5] fault number 6
76	UINT16	get	Fault Code 7	r0947[6] fault number 7
77	UINT16	get	Fault Code 8	r0947[7] fault number 8
78	REAL	get	Pulse Frequency	r1801 pulse frequency
79	UINT16	get	Alarm Code 1	r2110[0] alarm number 1
80	UINT16	get	Alarm Code 2	r2110[1] alarm number 2
81	UINT16	get	Alarm Code 3	r2110[2] alarm number 3
82	UINT16	get	Alarm Code 4	r2110[3] alarm number 4
83	REAL	get	PID setpoint Output	r2260 technology controller setpoint af- ter the ramp-function generator
84	REAL	get	PID Feedback	r2266 technology controller actual value after the filter
85	REAL	get	PID Output	r2294 technology controller output sig- nal

Siemens Motor Data Object, Instance Number: 32D hex

Supported services

Class • Get Attribute single

- Instance Get Attribute single
 - Set Attribute single

Table 4-18Class Attribute

No.	Service	Туре	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

No.	Service	Туре	Name	Value/explanation
2	get, set	UINT16	Commissioning state	p0010
3	get	INT16	Motor Type	p0300
6	get, set	REAL	Rated Current	p0305
7	get, set	REAL	Rated Voltage	p0304
8	get, set	REAL	Rated Power	p0307
9	get, set	REAL	Rated Frequency	p0310
10	get, set	REAL	Rated Tempera- ture	p0605
11	get, set	REAL	Max Speed	p0322
12	get, set	UINT16	Pole pair number	p0314
13	get, set	REAL	Torque Constant	p0316
14	get, set	REAL	Inertia	p0341
15	get, set	REAL	Base Speed	p0311
19	get, set	REAL	Cos Phi	p0308

Table 4-19 Instance Attribute

TCP/IP Interface Object, Instance Number: F5 hex

Supported services

Class

- Get Attribute allGet Attribute single
- Instance Get Attribute all
 - Get Attribute single
 - Set Attribute single

Table 4-20 Class Attribute

No.	Service	Туре	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Table 4-21 Instance Attribute

No.	Service	Туре	Name	Value/explanation
1	get	UINT32	Status	Fixed value: 1 hex 1: Configuration acknowledged, by DHCP or saved values
2	get	UINT32	Configuration Ca- pability	Fixed value: 94 hex 4 hex: DHCP supported 10 hex: Configuration can be adjusted 80 hex: ACD-capable

No.	Service	Туре	Name	Value/explanation
3	get, set	UINT32	Configuration Control	1 hex: Saved values 3 hex: DHCP
4	get	UINT16	Path Size (in WORDs)	Fixed value: 2 hex
		UINT8	Path	20 hex, F6 hex, 24 hex, 05 hex, where 5 hex is the number of instances of F6 hex (four physical ports plus one internal port).
5	get, set	STRING	Interface Configu-	r61000 Name of Station
		UINT32	ration	r61001 IP address
6	get, set	UINT16	Host Name	Host Name Length
		STRING		
10	get, set	UINT8	Select ACD	local OM flash: 0: Disabled, 1: Enabled
11	get, set	UINT8	Last Conflict De-	local OM flash ACD Activity
	get get, set get, set get, set get, set get, set	UINT8	tected	local OM flash Remote MAC
		UINT8		local OM flash ARP PDU

Link Object, Instance Number: F6 hex

Supported services

Class

- Get Attribute allGet Attribute single
- Instance Get Attribute all
 - Get Attribute single
 - Set Attribute single

Table 4-22 Class Attribute

No.	Service	Туре	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Table 4-23 Instance Attribute

No.	Service	Туре	Name	Value/explanation
1	get	UINT32	Interface Speed	0: link down 10: 10 Mbps 100: 100 Mbps
2	get		Interface Flags	Bit 1: Link-Status Bit 2: Duplex Mode (0: Half duplex, 1 duplex) Bit 3 5: Automatic state identification Bit 6: Reset required Bit 7: Local hardware fault (0 = ok)

No.	Service	Туре	Name	Value/explanation
3	get	ARRAY	Physical Address	r8935 Ethernet MAC address
4	get_and_cl ear	Struct of	Interface Counters	Optional; required if the Media Counters attribute is implemen- ted
		UINT32	In Octets	Received octets
		UINT32	In Ucast Packets	Received Unicast packets
		UINT32	In NUcast Packets	Received non-Unicast packets
		UINT32	In Discards	Incoming packets, not processed
		UINT32	In Errors	Incoming packets with errors
		UINT32	In Unknown Protos	Incoming packets with unknown protocol
		UINT32	Out Octets	Sent octets
		UINT32	Out Ucast Packets	Sent Unicast packets
		UINT32	Out NUcast packets	Sent non-Unicast packets
		UINT32	Out Discards	Outgoing packets, not processed
		UINT32	Out Errors	Outgoing packets, with errors
5	get_and_cl	Struct of	Media Counters	Media-specific counters
	ear	UINT32	Alignment Errors	Structure received, which does not match the number of octets
		UINT32	FCS Errors	Structure received, which does not pass the FCS check
		UINT32	Single Collisions	Structure successfully transmitted, precisely one collision
		UINT32	Multiple Collisions	Structure successfully transmitted, multiple collisions
		UINT32	SQE Test Errors	Number of SQE errors
		UINT32	Deferred Transmis- sions	First transmission attempt delayed
		UINT32	Late Collisions	Number of collisions that occurred delayed by 512 bit timers to the request
		UINT32	Excessive Collisions	Transmission unsuccessful. Reason: Intensive collision
		UINT32	MAC Transmit Errors	Transmission unsuccessful. Reason: An internal MAC sublayer receiving error
		UINT32	Carrier Sense Errors	Times that the carrier sense condition was lost or never asserted when attempting to transmit a frame
		UINT32	Frame Too Long	Structure too large
		UINT32	MAC Receive Errors	Transmit unsuccessful. Reason: An internal MAC sublayer receiv- ing error
6	get, set	Struct of	Interface Control	-
		UINT16	Control Bits	-
		UINT16	Forced Interface Speed	-
10	get	String	Interface Label	Interface-Label

Parameter Object, Instance Number: 401 hex

Supported services

Class • Get Attribute all

Instance

- Get Attribute all
- Set Attribute single

No.	Service	Туре	Name
1	get	UINT16	Revision
2	get	UINT16	Max Instance
3	get	UINT16	Num of Instances

Cyclic communication is established via parameter object 401.

Example: Read parameter 2050[10] (connector output to interconnect the PZD received from the fieldbus controller)

Get Attribute single function with the following values:

- Class = 401 hex
- Instance = 2050 = 802 hex corresponds to the parameter number
- Attribute = 10 = A hex corresponds to index 10

Example: Parameter 1520[0] writing (upper torque limit)

Set Attribute single function with the following values:

- Class = 401 hex
- Instance = 1520 = 5F0 hex corresponds to the parameter number
- Attribute = 0 = 0 hex corresponds to index 0
- Data = 500.0 (value)

4.5.1 Supported ODVA AC/DC assemblies

Overview

Numb	er	required/	Туре	Name
hex	dec	optional		
14 hex	20	Required	Sending	Basic Speed Control Output
46 hex	70	Required	Receiving	Basic Speed Control Input

Assembly Basic Speed Control, Instance Number: 20, type: Output

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O
0						Fault		RUN
						Reset		Forward
1								
2	Speed Refere	nce (Low Byte	e)					
3	Speed Refere	nce (High Byte	e)					

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O 0 Faulted Running Forward 1 2 Speed Actual (Low Byte) 3 Speed Actual (High Byte)

Assembly Basic Speed Control, Instance Number: 70, type: Input

4.6 Create generic I/O module

Overview

For certain controllers, or if you wish to use the SINAMICS profile, you cannot use the EDS file provided by Siemens. In these cases, you must create a generic I/O module in the control system for the cyclic communication.

Function description

Procedure

- 1. In your control, create a generic device with Ethernet/IP functionality.
- 2. In the control, enter the lengths for the process data for cyclic communication in the new device which you set in the converter: r2067[0] (input), r2067[1] (output), e.g.: Standard telegram 2/2 4 ms is supported as the minimum value for RPI (Requested Packet Interval).
- 3. In the converter, set the same values for IP address, subnet mask, default gateway and name of the station as in the control.
 - \square Configuring communication (Page 82)

You have created a generic I/O module for cyclic communication with the converter.

Further information

You can find a detailed description of how to create a generic I/O module on the Internet: Generating an EDS file (http://support.automation.siemens.com/WW/view/en/82843076) 4.7 The converter as an Ethernet station

4.7 The converter as an Ethernet station

Integrating a converter into an Ethernet network (assigning an IP address)

Procedure

- 1. Set p8924 (PN DHCP mode) = 2 or 3
 - p8924 = 2
 The DHCP server assigns the IP address based on the MAC address of the converter
 - p8924 = 3
 The DHCP server assigns the IP address based on the device name of the converter
- 2. Save the settings with p8925 = 2. The next time that the converter switches on, it retrieves the IP address. After this, you can address the converter as an Ethernet node.

Note

Immediate switchover without restart

The switchover to DHCP is performed immediately and without a restart if the change is carried out with the EtherNet/IP command "Set Attribute Single" (class F5 hex, attribute 3). The following options are available:

- Via an EtherNet/IP controller
- Via an EtherNet/IP commissioning tool

You have now integrated the converter into Ethernet

Displays

- r8930: Device name of the converter
- r8934: Operating mode, PN or DHCP
- r8935: MAC address

Additional options of integrating converters into Ethernet

You also have the option of integrating the converter into Ethernet using Proneta or STEP 7, for example.

Here is the example of the "Edit Ethernet station" screen form from Step 7, which you can use to make the required settings.

4.7 The converter as an Ethernet station

nernet-Teilnehme	r bearbeiten		×
Ethernet Teilnehmer			_
		Online erreichbare Teilnehmer	
MAC-Adresse:		Durchsuchen	
IP-Konfiguration eins	stellen		
IP-Parameter ve	rwenden		
ID A L		Netzübergang	
IP-Adresse:		Keinen Router verwenden	
Subnetzmaske:		C Router verwenden	
		Adresse:	
Client-ID:	 MACAdlesse 		
IP-Konfiguration a	uweisen		
Gerätename vergeb	en		
Gerätename:		Name zuweisen	
Rücksetzen auf We	rkseinstellungen		_
		Zurücksetzen	
Schließen		Hilfe	

See also

Overview of the manuals (Page 217)

You can find the required settings for the converter as Ethernet node in section "The converter with PROFINET interface as Ethernet node. (Page 69)".

4.7 The converter as an Ethernet station

Communication via RS485

Converter/Control Unit		Fieldbus connection for			
		USS	Modbus RTU	BACnet MS/TP	P1
	G120				
	CU230P-2 HVAC	1	1	1	1
	• CU230P-2 BT	✓	1	✓	✓
	• CU240B-2	1	1		
	• CU240E-2	1	1		
	• CU240E-2 F	1	1		
	• CU250S-2	1	1		
	G120C				
	G120C USS/MB	~	~		

Table 5-1 Assignment table - fieldbus systems via RS485

5.1 Converter with RS485 interface

You can find the connectors and the connector assignments of the RS485 interface in the following tables.

lable 5-2 Assignment table	Table 5-2	Assignment table
----------------------------	-----------	------------------

Converter/Control Unit		Connection via	
	X128	X03, in (M12)	X04, out (M12)
		264	2 (1,5,3)
		6	4

5.1 Converter with RS485 interface

	G120		
	• CU230P-2 HVAC	х	
	• CU230P-2 BT	х	
	• CU240B-2	х	
	• CU240E-2	х	
	• CU240E-2 F	х	
	• CU250S-2	х	
	G120C		
	• G120C USS/MB	x	

Table 5-3Pin assignment

Signal	X128	X03, in (M12)	X04, out (M12) (1)(5)(3) (4)
Not assigned	5	1/3	1/3
RS485N, receive and transmit (-)	3		
RS485N, receive		2	
RS485N, transmit (-)			2
RS485P, receive and transmit (+)	2		
RS485P, receive		4	
RS485P, transmit (+)			4
0 V, reference potential	1	5	5
Cable shield	4		

5.2 Integrating converters into a bus system via the RS485 interface

Connecting to a network via RS485

Connect the converter to the fieldbus via the RS485 interface.

The RS485 connector has short-circuit proof, isolated pins.

You must switch-in the bus-terminating resistor for the first and last nodes.

You can find the position of the RS485 connector and the bus terminating resistor in the operating instructions for the converter or the Control Unit.

The precondition for error-free communications is that the first and last station are supplied with power.

Communications are maintained if you withdraw individual devices from the bus without interrupting the cable (this is not possible for converters with a high degree of protection).

Communication with the control, even when the line voltage is switched off

So that communication with the control system in your plant or system continues to function even when the line voltage is switched off, you must externally supply the converter/Control Unit with 24 V DC. To do this, use terminals 31 and 32 or connector X01 (X01/X02 with G115D). You can find additional details in the operating instructions for the converter or the Control Unit.

5.3 Communication via USS

The USS protocol is a serial data link between a master and up to a maximum of 31 devices.

A master is, for example:

- A programmable logic controller (e.g. SIMATIC S7-200)
- A PC

The converter is always a device.

The maximum cable length is:

- 1200 m for a baud rate up to 38400 bit/s and maximum of 32 nodes
- 1000 m for a baud rate of 187500 bit/s and a maximum of 30 nodes

Additional information on how to connect the converter to a USS fieldbus: [] Integrating converters into a bus system via the RS485 interface (Page 103).

5.3 Communication via USS

5.3.1 Basic settings for communication

Overview

Depending on the converter, the following options are available for setting communication via the USS:

- For all converters with an RS485 interface: 21 "USS Fieldbus"
- For converters with a CU230P-2 HVAC / CU230P-2 BT 108 "BT Mac 8: USS fieldbus"
 For additional information, please refer to the operating instructions of your converter.
 Overview of the manuals (Page 217).

Procedure with default setting 21 "USS Fieldbus"

Proceed as follows to set communication via USS:

- 1. Activate communication via the RS485 interface using one of the following options:
 - With Startdrive during commissioning in step "Default setting of setpoint/command sources": 21: USS fieldbus
 - With the BOP-2 during basic commissioning under step "MAc PAr P15": FB USS
 - Via the parameter number: p0015 = 21
- 2. Set the bus protocol via p2030: p2030 = 1
- 3. Set the converter address.
- 4. Make additional changes based on the parameters listed in the following section.
- 5. If you are working with Startdrive, back up the settings so they are not lost if the power fails.

You have now made the settings for communication via USS.

5.3.1.1 Setting the address

Valid address area: 0 ... 31

You have the following options for setting the address:

Using the address switch on the Control Unit:

Figure 5-1 Address switch with example for bus address 10

The address switch has priority over the other settings.

Using Startdrive or an operator panel via parameter p2021 (default setting: p2021 = 0) it is only possible to change p2021 if an invalid address is set in the address switch. If you are working with Startdrive, back up the settings so they are not lost if the power fails.

You can find the position of the address switch in the operating instructions for the converter.

Manuals and technical support (Page 217)

Activating the changed bus address

Procedure

- 1. Set the address as described above.
- 2. Switch off the converter power supply.
- 3. Wait until all LEDs on the converter are dark.
- 4. Switch on the converter power supply again. Your settings become effective after switching on.

You have now set the bus address.

5.3.1.2 Parameters to set communication via USS

Fieldbus protocol selection p2030 = 1 (USS)

Baud rate p2020 = 8, 38400 bit/s

Setting range: 2400 bit/s ... 187500 bit/s

Fieldbus analog outputs p0791[0 ... 1]

Parameter to interconnect the analog outputs for control via the fieldbus

Fieldbus interface USS PZD number p2022 = 2

Setting the number of 16-bit words in the PZD part of the USS telegram Setting range: 0... 8 (0 ... 8 words)

5.3 Communication via USS

Fieldbus interface USS PKW number, p2023 = 127

Setting the number of 16-bit words in the PKW part of the USS telegram Setting range:

- 0, 3, 4: fixed length with 0, 3 or 4 words
- 127: variable lengths

Fieldbus error statistics r2029

Displaying receive errors at the fieldbus interface

Fieldbus monitoring time p2040 = 100 ms

Setting range: 0 ms ... 1999999 ms

The more devices that are connected in the network, the longer the fieldbus monitoring time must be.

If process data is not transferred within one cycle of the fieldbus monitoring time, then the converter shuts down with fault F01910.

 $p2040 = 0 \Rightarrow$ bus monitoring deactivated.

5.3.2 Telegram structure

Overview

A USS telegram comprises a series of elements with a defined sequence. Each element contains 11 bits.

Figure 5-2 Structure of a USS telegram

Telegram part	Description								
Start delay / response	There is always a start / response delay between two telegrams.								
delay	Telegram monitoring (Page 117)								
STX	An ASCII character (02 hex) indicates the beginning of the message.								
LGE	The telegram length "LGE" is calculated as follows:								
	LGE = user data (n bytes) + ADR (1 byte) + BCC (1 byte)								
Telegram part	Description								
---------------	---	---	------------------	---------	--------	---------	---------	---------	------------
ADR	7	6	5	4	3	2	1	0	
	Special telegram	Mirror telegram	Broadcast bit		 	Address	6		
	 Bit 7 = 0: Normal data exchange. Bit 7 = 1, to transfer telegrams that require a net data structure different from the device profile. 								
	 Bit 6 = 0: Normal data exchange. Bit 6 = 1: Testing the bus connection: The converter returns the telegram unchanged to the master. 								telegram
	 Bit 5 = 0: Normal data exchange. (Bit 5 = 1: Not supported in the converter.) 								
	• Bits 0	4: Address o	of the conve	rter.					
User data	Spec	Specify user data of telegram (Page 107).							
BCC	Checksum (exclusive or) across all te	elegrar	n byte	s – wit	h the e	excepti	on of BCC.

5.3.3 Specify user data of telegram

Overview

The user data of the telegram consist of the following elements:

- Parameter channel (PIV) for writing and reading parameter values
- Process data (PZD) for controlling the drive

Log data	Pa	Parameter channel (PIV)							Process data (PZD)											
Log words	PK	W1	PK	W2	PK	W3	PK	W4	:::	PKWn	ηPΖ	ZD1	ΡZ	D2	ΡZ	D3	ΡZ	D4	:::	PZD8
PIV/PZD structure	P۲	٢E	IN	D	ΡW	/E1	ΡW	/E2	:::	PWEn	ารา	W1	HS	SW			ST	W2	:::	
											IZS	SW1	IHI	W			IZS	W2		
Data byte	1	2	3	4	5	6	7	8	:::	P	P +1	P +2	P +3	P +4	P +5	P +6	P +7	P +8	:::	P +16
	p2023 = 3								p2	022	= 2									
	p2023 = 4							p2	022	= 4	-	·								
	p20	023	= 12	27 (vari	able	e len	gth))		p2	022	= 8							

Figure 5-3 USS telegram - user data structure

Function description

Parameter channel

You specify the length of the parameter channel in parameter p2023:

- p2023 = 0
 With this setting, no parameter values are transferred.
- p2023 = 3 You can select this setting if you only want to read or write 16-bit data or alarm signals.

• p2023 = 4:

If you want to read or write 32-bit values (for example indexed parameters or bit parameters, e.g. r0722.2), then this setting is required. In this case, the send or receive telegram always contains four words, even if only three would be required. The values are right-justified in the 4th word.

• p2023 = 127:

If you set p2023 = 127 (variable length), the send and response telegrams are exactly as long as the task requires.

Process data

Parameter p2022 defines the length for the process data. You can transfer up to eight process data items in one telegram ($p2022 = 0 \dots 8$). For p2022 = 0, no process data is transferred.

Parameters

Parameter	Description	Factory setting		
p2022	Fieldbus interface USS PZD number	2		
p2023	Fieldbus interface USS PKW number	127		

5.3.4 USS parameter channel

Structure of the parameter channel

Depending on the setting in p2023, the parameter channel has a fixed length of three or four words, or a variable length, depending on the length of the data to be transferred.

1. and 2nd word contain the parameter number and index as well as the type of job (read or write). The other words of the parameter channel contain parameter contents. The parameter contents can be 8-bit values, 16-bit values (such as baud rate) or 32-bit values (e.g. CO parameters). The parameter contents are entered right justified in the word with the highest number. Words that are not required are assigned 0.

Bit 11 in the 1st word is reserved and is always assigned 0.

The diagram shows a parameter channel that is four words long.

Parameter channel							
PKE (1st word) IND (2nd word)			d word)	PWE (3rd and 4th word)			
1512 11	10 0	15 8	7 0	15 0	15 0		
AK S	PNU	Page index	Subindex	PWE 1, High Word	PWE 2, Low Word		
Р							
М							

You can find examples of telegrams at the end of this section.

Function description

AK: Request and response ID

AK	Description	Response identifier			
		positive	nega- tive		
0	No request	0	7/8		
1	Request parameter value	1/2	7/8		
2	Change parameter value (word)	1	7/8		
3	Change parameter value (double word)	2	7/8		
4	Request descriptive element ¹⁾	3	7/8		
6 ²⁾	Request parameter value (field) ¹⁾	4/5	7/8		
7 2)	Change parameter value (field, word) 1)	4	7/8		
8 2)	Change parameter value (field, double word) 1)	5	7/8		
9	Request number of field elements	6	7/8		

Table 5-4 Request identifiers, control \rightarrow converter

¹⁾ The required element of the parameter is specified in IND (2nd word).

²⁾ The following request IDs are identical: $1 \equiv 6$, $2 \equiv 7$ and $3 \equiv 8$. We recommend that you use identifiers 6, 7 and 8.

Table 5-5	Response identifiers, converter \rightarrow control
-----------	---

AK	Description
0	No response
1	Transfer parameter value (word)
2	Transfer parameter value (double word)
3	Transfer descriptive element ¹⁾
4	Transfer parameter value (field, word) ²⁾
5	Transfer parameter value (field, double word) ²⁾
6	Transfer number of field elements
7	Converter cannot process the request. In the most significant word of the parameter channel, the converter sends an error number to the control, refer to the following table.
8	No master controller status / no authorization to change parameters of the parameter channel interface

¹⁾ The required element of the parameter is specified in IND (2nd word).

²⁾ The required element of the indexed parameter is specified in IND (2nd word).

No.	Description
00 hex	Illegal parameter number (access to a parameter that does not exist)
01 hex	Parameter value cannot be changed (change request for a parameter value that cannot be changed)
02 hex	Lower or upper value limit exceeded (change request with a value outside the value limits)
03 hex	Incorrect subindex (access to a subindex that does not exist)
04 hex	No array (access with a subindex to non-indexed parameters)
05 hex	Incorrect data type (change request with a value that does not match the data type of the parameter)
06 hex	Setting not permitted, only resetting (change request with a value not equal to 0 without permission)
07 hex	Descriptive element cannot be changed (change request to a descriptive element error value that cannot be changed)
0B hex	No master control (change request but with no master control, see also p0927.)
0C hex	Keyword missing
11 hex	Request cannot be executed due to the operating state (access is not possible for temporary reasons that are not specified)
14 hex	Inadmissible value (change request with a value that is within the limits but which is illegal for other permanent reasons, i.e. a parameter with defined individual values)
65 hex	Parameter number is currently deactivated (depending on the mode of the converter)
66 hex	Channel width is insufficient (communication channel is too small for response)
68 hex	Illegal parameter value (parameter can only assume certain values)
6A hex	Request not included / task is not supported (the valid request identifications can be found in table "Request identifications controller → converter")
6B hex	No change access for a controller that is enabled . (The operating state of the conerter prevents a parameter change)
86 hex	Write access only for commissioning (p0010 = 15) (operating state of the converter prevents a parameter change)
87 hex	Know-how protection active, access locked
C8 hex	Change request below the currently valid limit (change request to a value that lies within the "absolute" limits, but is however below the currently valid lower limit)
C9 hex	Change request above the currently valid limit (example: a parameter value is too large for the converter power)
CC hex	Change request not permitted (change is not permitted as the access code is not available)

Table 5-6Error numbers for response identifier 7

PNU (parameter number) and page index

Parameter number	PNU	Page index
0000 1999	0000 1999	0 hex
2000 3999	0000 1999	80 hex
6000 7999	0000 1999	90 hex
8000 9999	0000 1999	20 hex
10000 11999	0000 1999	A0 hex
20000 21999	0000 1999	50 hex
29000 29999	0000 1999	70 hex

Parameter number	PNU	Page index
30000 31999	0000 1999	F0 hex
60000 61999	0000 1999	74 hex

Subindex

For indexed parameters, the parameter index is located in subindex as hexadecimal value.

PWE: Parameter value or connector

Parameter values or connectors can be located in the PWE.

Table 5-7 Param	ieter value	e or connect	or
-----------------	-------------	--------------	----

	PWE 1	PWE 2			
Parameter value	Bit 15 0	Bit 15 8	Bit 7 0		
	0	0	8-bit value		
	0	-bit value			
	32-bit	value			
Connector	Bit 15 0	Bit 15 10	Bit 9 0		
	Number of the connector	3F hex	The index or bit field number of the connec- tor		

Examples

Read request: Read out serial number of the Power Module (r7841[2])

To obtain the value of the indexed parameter r7841, you must fill the telegram of the parameter channel with the following data:

- PKE, Bit 12 ... 15 (AK): = 6 (request parameter value (field))
- PKE, Bit 0 ... 10 (PNU): = 1841 (parameter number without offset) Parameter number = PNU + offset (page index) (7841 = 1841 + 6000)
- IND, bit 8 ... 15 (page index): = 2 (index of parameter)
- IND, bit 0 ... 7 (subindex): = 90 hex (offset 6000 corresponds to 90 hex)
- Because you want to read the parameter value, words 3 and 4 in the parameter channel for requesting the parameter value are irrelevant. They should be assigned a value of 0, for example.

	Parameter channel						
F	PKE, 1st word	IND, 2r	nd word	PWE1 - high, 3rd word	PWE2 - Iov	w, 4th word	
151211	10 0	15 8	7 0	15 0	15 8	7 0	
AK	Parameter number	Page index	Subindex	Parameter value	Parameter value	Parameter value	
0 1 1 0 0	1 1 1 0 0 1 1 0 0 0 1	0000010	1001000	000000000000000000	00000000	00000000	

Figure 5-4 Telegram for a read request from r7841[2]

Parameter number

Parameter numbers < 2000	PNU = parameter number. Write the parameter number into the PNU (PKE bit 10 0).
Parameter numbers ≥ 2000	PNU = parameter number - offset. Write the parameter number minus the offset into the PNU (PKE bit 10 0). Write the offset in the page index (IND bit 15 8).

Parameter num-	Offset	Page inc	dex							
ber		Hex	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
0000 1999	0	0 hex	0	0	0	0	0	0	0	0
2000 3999	2000	80 hex	1	0	0	0	0	0	0	0
6000 7999	6000	90 hex	1	0	0	1	0	0	0	0
8000 9999	8000	20 hex	0	0	1	0	0	0	0	0
10000 11999	10000	A0 hex	1	0	1	0	0	0	0	0
20000 21999	20000	50 hex	0	1	0	1	0	0	0	0
29000 29999	28000	70 hex	0	1	1	1	0	0	0	0
30000 31999	30000	F0 hex	1	1	1	1	0	0	0	0
60000 61999	60000	74 hex	0	1	1	1	0	1	0	0

Table 5-8Offset and page index of the parameter numbers

Indexed parameters

For indexed parameters, you must write the index as hex value into the subindex (IND bit 7 ... 0).

Parameter contents

Parameter contents can be parameter values or connector parameters. You require two words for connector parameters. You can find more information on interconnecting connector parameters in the operating instructions of the converter in the section "Interconnecting signals in the converter".

Enter the parameter value in the parameter channel right-justified as follows:

- 8-bit values: Low word, bits bits 8 ... 15 are zero. 0 ... 7,
- 16-bit values: Low word, bits 0 ... 15,
- 32-bit values: Low word and high word
- Enter a connector parameter right-justified as follows:
- Number of the connector parameter:
- Drive object of the connector parameter: Low word, bits 10 ... 15
- The index or bit field number of the connector parameter: Low word, bits 0 ... 9

High word

5.3.4.1 Telegram examples, length of the parameter channel = 4

Read request: Read out serial number of the Power Module (r7841[2])

To obtain the value of the indexed parameter r7841, you must fill the telegram of the parameter channel with the following data:

- PKE, bit 12 ... 15 (AK): = 6 (request parameter value (field))
- PKE, bit 0 ... 10 (PNU): = 1841 (parameter number without offset) Parameter number = PNU + offset (page index) (7841 = 1841 + 6000)
- IND, bit 8 ... 15 (page index): = 90 hex (offset 6000 corresponds to 90 hex)
- IND, bit 0 ... 7 (subindex): = 2 (index of parameter)
- Because you want to read the parameter value, words 3 and 4 in the parameter channel for requesting the parameter value are irrelevant. They should be assigned a value of 0, for example.

Parameter channel						
	PKE, 1st word	IND, 2r	nd word	PWE1 - high, 3rd word	PWE2 - Iov	w, 4th word
151211	1 10 0	15 8	7 0	15 0	15 8	7 0
AK	Parameter number	Page index	Subindex	Parameter value	Parameter value	Parameter value
0 1 1 0 0	0 1 1 1 0 0 1 1 0 0 0 1	0000010	1001000	000000000000000000	00000000	00000000

Figure 5-5 Telegram for a read request from r7841[2]

Write request: Changing the automatic restart mode (p1210)

Parameter p1210 defines the automatic restart mode:

- PKE, bit 12 ... 15 (AK): = 7 (change parameter value (field, word))
- PKE, bit 0 ... 10 (PNU): = 4BA hex (1210 = 4BA hex, no offset, as 1210 < 1999)
- IND, bit 8 ... 15 (page index): = 0 hex (offset 0 corresponds to 0 hex)
- IND, bit 0 ... 7 (subindex): = 0 hex (parameter is not indexed)
- PWE1, bit 0 ... 15: = 0 hex
- PWE2, bit 0 ... 15: = 1A hex (26 = 1A hex)

	Parameter channel				
F	PKE, 1st word	IND, 2r	nd word	PWE1 - high, 3rd word	PWE2 - low, 4th word
1512 11	10 0	15 8	7 0	15 0	15 0
AK	Parameter number	Page index	Subindex	Parameter value (bit 16 31)	Parameter value (bit 0 15)
0 1 1 1 0	10010111010	00000000	00000000	000000000000000000	0000000000011010

Figure 5-6 Telegram, to activate the automatic restart with p1210 = 26

Write request: Assign digital input 2 with the function ON/OFF1 (p0840[1] = 722.2)

In order to link digital input 2 with ON/OFF1, you must assign parameter p0840[1] (source, ON/OFF1) the value 722.2 (DI 2). To do this, you must fill the telegram of the parameter channel as follows:

- PKE, bit 12 ... 15 (AK): = 7 hex (change parameter value (field, word))
- PKE, bit 0 ... 10 (PNU): = 348 hex (840 = 348 hex, no offset, as 840 < 1999)
- IND, bit 8 ... 15 (page index): = 0 hex (offset 0 corresponds to 0 hex)

- IND, bit 0 ... 7 (subindex): = 1 hex (command data set CDS1 = index1)
- PWE1, bit 0 ... 15: = 2D2 hex (722 = 2D2 hex)
- PWE2, bit 10 ... 15: = 3f hex (drive object for SINAMICS G120 always 63 = 3f hex)
- PWE2, bit 0 ... 9: = 2 hex (index or bit number of the parameter: DI 2 = r0722.2)

Parameter channel						
	PKE, 1st word	IND, 2r	nd word	PWE1 - high, 3rd word	PWE2	- low, 4th word
15121	1 10 0	15 8	7 0	15 0	15 10	9 0
AK	Parameter number	Page index	Subindex	Parameter value	Drive Object	Index
0 1 1 1 (0 0 1 1 0 1 0 0 1 0 0 0	00000000	0000001	000000101010010010	1 1 1 1 1 1	0000000010

Figure 5-7 Telegram, to assign DI 2 with ON/OFF1

5.3.5 USS process data channel (PZD)

Function description

The process data channel (PZD) contains the following data depending on the transmission direction:

- Control words and setpoints for the device.
- Status words and actual values for the master.

Figure 5-8 Process data channel

The first two words are:

- Control 1 (STW1) and main setpoint (HSW)
- Status word 1 (ZSW1) and main actual value (HIW)

If p2022 is greater than or equal to 4, then the converter receives the additional control word (STW2).

Control word 1 (STW1)

Bit	Significance	Explanation	Signal inter- connection in the con- verter
0	0 = OFF1	The motor brakes with the ramp-down time p1121 of the ramp-function generator. The converter switches off the motor at standstill.	p0840[0] = r2090.0
	$0 \rightarrow 1 = ON$	The converter goes into the "ready" state. If, in addition bit $3 = 1$, then the converter switches on the motor.	
1	0 = OFF2	Switch off the motor immediately, the motor then coasts down to a standstill.	p0844[0] = r2090.1
	1 = No OFF2	The motor can be switched on (ON command).	
2	0 = Quick stop (OFF3)	FF3) Quick stop: The motor brakes to a standstill with the OFF3 ramp-down time p1135.	
	1 = No quick stop (OFF3)	The motor can be switched on (ON command).	
3	0 = Inhibit operation	Immediately switch-off motor (cancel pulses).	p0852[0] =
	1 = Enable operation	Switch-on motor (pulses can be enabled).	r2090.3
4	0 = Disable RFG	The converter immediately sets its ramp-function gen- erator output to 0.	p1140[0] = r2090.4
	1 = Do not disable RFG	The ramp-function generator can be enabled.	
5	0 = Stop RFG	The output of the ramp-function generator stops at the actual value.	p1141[0] = r2090.5
	1 = Enable RFG	The output of the ramp-function generator follows the setpoint.	
6	0 = Inhibit setpoint	The converter brakes the motor with the ramp-down time p1121 of the ramp-function generator.	p1142[0] = r2090.6
	1 = Enable setpoint	Motor accelerates to the setpoint with the ramp-up time p1120.	
7	$0 \rightarrow 1 = Acknowledge faults$	Acknowledge fault. If the ON command is still active, the converter switches to the "switching on inhibited" state.	p2103[0] = r2090.7
8, 9	Reserved		
10	0 = No control via PLC	Converter ignores the process data from the fieldbus.	p0854[0] =
	1 = Control via PLC	Control via fieldbus, converter accepts the process data from the fieldbus.	r2090.10
11	1 = Direction reversal	Invert setpoint in the converter.	p1113[0] = r2090.11
12	Reserved		
13	1 = MOP up	Increase the setpoint saved in the motorized potenti- ometer.	p1035[0] = r2090.13
14	1 = MOP down	Reduce the setpoint saved in the motorized potentiom- eter.	p1036[0] = r2090.14
15	Reserved		

Status word 1 (ZSW1)

Bit	Significance	Remarks	Signal inter- connection in the con- verter
0	1 = Ready for switching on	Power supply switched on; electronics initialized; pul- ses locked.	p2080[0] = r0899.0
1	I = Ready Wotor is switched on (ON/OFF1 = 1), no fault is active. With the command "Enable operation" (STW1.3), the converter switches on the motor.		p2080[1] = r0899.1
2	1 = Operation enabled Motor follows setpoint. See control word 1, bit 3.		p2080[2] = r0899.2
3	1 = Fault activeThe converter has a fault. Acknowledge fault using STW1.7.		p2080[3] = r2139.3
4	1 = OFF2 inactive	Coast down to standstill is not active.	p2080[4] = r0899.4
5	1 = OFF3 inactive	Quick stop is not active.	p2080[5] = r0899.5
6	1 = Switching on inhibi- ted active	It is only possible to switch on the motor after an OFF1 followed by ON.	p2080[6] = r0899.6
7	1 = Alarm active	Motor remains switched on; no acknowledgement is necessary.	p2080[7] = r2139.7
8	1 = Speed deviation with- in the tolerance range	Setpoint / actual value deviation within the tolerance range.	p2080[8] = r2197.7
9	1 = Master control re- quested	The automation system is requested to accept the converter control.	p2080[9] = r0899.9
10	1 = Comparison speed reached or exceeded	Speed is greater than or equal to the corresponding maximum speed.	p2080[10] = r2199.1
11	1 = Torque limit not reached	Fallen below comparison value for current or torque.	p2080[11] = r0056.13 / r1407.7
12	Reserved		p2080[12] = r0899.12
13	0 = Alarm, motor over- temperature		p2080[13] = r2135.14
14	1 = Motor rotates clock- wise	Internal converter actual value > 0.	p2080[14] = r2197.3
	0 = Motor rotates coun- ter-clockwise	Internal converter actual value < 0.	
15	0 = Alarm, converter thermal overload		p2080[15] = r2135.15

5.3.6 Telegram monitoring

Function description

You require the telegram runtimes in order to set the telegram monitoring. The character runtime is the basis of the telegram runtime:

Baud rate in bit/s	Transmission time per bit	Character run time (= 11 bits)
9600	104.170 μs	1.146 ms
19200	52.084 µs	0.573 ms
38400	26.042 μs	0.286 ms
57600	17.361 µs	0.191 ms
115200	8.681 μs	0.095 ms

Table 5-9 Character runtime

The telegram runtime is longer than just purely adding all of the character runtimes (=residual runtime). You must also take into consideration the character delay time between the individual characters of the telegram.

The total telegram runtime is always less than 150% of the pure residual runtime.

Before each request telegram, the master must maintain the start delay. The start delay must be $> 2 \times$ character runtime.

The device only responds after the response delay has expired.

Figure 5-10 Start delay and response delay

|--|

Baud rate in bit/s	Transmission time per character (= 11 bits)	Min. start delay
9600	1.146 ms	> 2.291 ms
19200	0.573 ms	> 1.146 ms

Baud rate in bit/s	Transmission time per character (= 11 bits)	Min. start delay
38400	0.286 ms	> 0.573 ms
57600	0.191 ms	> 0.382 ms
115200	0.095 ms	> 0.191 ms

The character delay time must be shorter than the start delay.

Telegram monitoring of the master

With your USS master, we recommend that the following times are monitored:

- Response delay: Response time of the device to a request from the master The response delay must be < 20 ms, but longer than the start delay
- Telegram runtime: Transmission time of the response telegram sent from the device

Telegram monitoring of the converter

The converter monitors the time between two requests of the master. Parameter p2040 defines the permissible time in ms. If a time p2040 \neq 0 is exceeded, then the converter interprets this as telegram failure and responds with fault F01910.

150% of the residual runtime is the guide value for the setting of p2040, i.e. the telegram runtime without taking into account the character delay times.

For communication via USS, the converter checks bit 10 of the received control word 1. If the bit is not set when the motor is switched on ("Operation"), the converter responds with fault F07220.

Parameters

Parameter	Description	Factory setting
p2040	Fieldbus interface monitoring time	1 000 ms

5.4 Communication using Modbus RTU

Overview of communication using Modbus

The Modbus protocol is a communication protocol based on a client/server architecture. Selected parameters and process data are exchanged in a cyclic access via the Modbus register.

Modbus offers three transmission modes:

- Modbus ASCII via a serial interface data in the ASCII code. The data throughput is lower compared to RTU.
- **Modbus RTU** via a serial interface data in the binary format. The data throughput is greater than in ASCII code.
- Modbus TCP via Ethernet Data are transferred as TCP/IP packages TCP port 502 is reserved for Modbus TCP.

General information about communication using Modbus RTU

Communication using Modbus RTU takes place over the RS485 interface with a maximum of 247 devices.

- The maximum cable length is 1200 m.
- To polarize the receive and transmit lines, there are two 100 k Ω resistors, which you can switch in or switch out using the DIP switch next to the fieldbus interface.

Note

It is not permitted to change over the units

The "Unit switchover" function – for details see the operating instructions of the Control Unit – is not permissible with this bus system!

5.4.1 Basic settings for communication

Overview

Depending on the converter, the following options are available for setting communication via the Modbus RTU:

- For all converters with an RS485 interface: 21 "USS Fieldbus"
- For converters with a CU230P-2 HVAC / CU230P-2 BT 109 "BT Mac 9: Modbus RTU Fieldbus" For additional information, please refer to the operating instructions of your converter.
 Overview of the manuals (Page 217).

Procedure with default setting 21 "USS Fieldbus"

Proceed as follows to set communication via Modbus RTU:

- 1. Activate communication via the RS485 interface using one of the following options:
 - With Startdrive during commissioning step "Default setting of setpoint/command sources":
 21: USS foldburg
 - 21: USS fieldbus
 - With the BOP-2 during the basic commissioning under step "MAc PAr P15": FB USS
 - Via parameter number: p0015 = 21
- 2. Set the bus protocol via p2030: p2030 = 2
- 3. Set the converter address.
- 4. Make additional changes based on the parameters listed in the following section.
- 5. If you are working with Startdrive, back up the settings so they are not lost if the power fails.

You have now made the settings for communication via Modbus.

5.4.1.1 Setting the address

Valid address area: 1 ... 247

You have the following options for setting the address:

• Using the address switch on the Control Unit from 1 ... 127:

Address switch with example for bus address 10 Figure 5-11

The address switch has priority over the other settings.

Using Startdrive or an operator panel via parameter p2021 from 1 ... 247 (default setting: p2021 = 1)

Setting via p2021 is only possible if address 0 is set in the address switch.

If you are working with Startdrive, back up the settings so they are not lost if the power fails.

You can find the position of the address switch in the operating instructions for the converter.

Manuals and technical support (Page 217)

Activating the changed bus address

Procedure

- 1. Set the address as described above.
- 2. Switch off the converter power supply.
- 3. Wait until all LEDs on the converter are dark.
- 4. Switch on the converter power supply again. Your settings become effective after switching on.

You have now set the bus address.

5.4.1.2 Parameters for setting communication via Modbus RTU

General settings

Fieldbus protocol selection p2030 = 2 (Modbus RTU)

Baud rate p2020 = 7, 19200 bit/s

Setting range: 4800 bit/s ... 187500 bit/s

Parity

In the factory, the converter is set for controllers with "parity even". You can adapt the parity at your controller using p2031:

- p2031 = 0: No parity, 1 stop bit or 2 stop bits
- p2031 = 1: Odd parity, 1 stop bit
- p2031 = 2: Even parity, 1 stop bit
- p2031 = 3: No parity, 1 stop bit

Modbus timing p2024[0 ... 2]

p2024[0]: Maximum device telegram processing time:

The time after which the device must have sent a response to the master. 0 ms ... 10000 ms, factory setting = 6000 ms.

• p2024[1]: Character delay time:

Character delay time: Maximum permissible time between the individual characters in the Modbus frame. (Modbus standard processing time for 1.5 bytes).

 p2024 [2]: Inter-telegram delay: maximum permissible time between Modbus telegrams. (Modbus standard processing time for 3.5 bytes).

Values for p2024 [1] and p2024 [2] Table 5-11 Baud rates, transmission times, and delays (Page 125).

Fieldbus monitoring time p2040 = 1000 ms

Setting range: 0 ms ... 1999999 ms

The more devices that are connected in the network, the longer the fieldbus monitoring time must be.

If process data is not transferred within one cycle of the fieldbus monitoring time, then the converter shuts down with fault F01910.

 $p2040 = 0 \Rightarrow$ bus monitoring deactivated.

Fieldbus error statistics r2029

Displaying receive errors at the fieldbus interface

Interconnecting analog outputs

If you set communication via Modbus (p2030 = 2), then the analog outputs of the converter are internally interconnected with the fieldbus analog outputs:

- p0771[0] = 791[0]
- p0771[1] = 791[1].

The values for p0791[0] and p0791[1] are written via registers 40523 and 40524. Interconnections between parameter p0791 and other sources are rejected.

This means that the control outputs system-specific values via the analog outputs of the converter.

However, if you still wish to display a converter-specific value, you must adapt the appropriate wiring.

Example

- AO 0 should display the value written via the control with register 40523. In this particular case, no other settings are required in the converter.
- AO 1 should display the smoothed actual current value. To do this, you must set p0771[1] = 27 (r0027 smoothed actual current value). In this case, a write access via register 40524 to p0791[1] results in a fault message in the control.

Note

Reset to the factory setting for Modbus

If you have set communication via Modbus (p2030 = 2), when restoring the factory settings, the analog outputs are again interconnected with p0771[0] = 791[0] and p0771[1] = 791[1].

5.4.2 Modbus RTU telegram

Description

For Modbus, there is precisely one master and up to 247 devices. The master always starts the communication. Devices send data when requested to do so by the master. Device-to-device communication is not possible. The converter always operates as device.

The following figure shows the structure of a Modbus RTU telegram.

Modbus RTU telegram									
Start delay	Applii №	kation Dat lodbus fra	ta Unit / ame	Inter- frame delay	• • •	Inter- frame delay	Applikation Data U Modbus frame	nit /	Ende delay
		Clava		Protoco	l Data Unit (PD	U)	CDC		
		Slave	Function Code		Data				
> 2 5 4	outo	1 byto	1 byto		0 252 byt	20	2 byte	• • •	
2 3.3 1	Jyle	T byte	T Dyte		0 202 Dyte	55	CRC low CRC high	•••	
≥ 3.5 k	byte $+^{N}$ 1 byte $+^{N}$								
t = charac	ter dela	w time							

 t_z = character delay time

The data area of the telegram is structured according to the mapping tables.

Figure 5-12 Modbus with delay times

5.4.3 Baud rates and mapping tables

Permissible baud rates and telegram delay

The Modbus RTU telegram requires pauses for the following situations:

- for the start identifier
- for separating the individual frames
- for the end identifier

Minimum duration: Processing time for 3.5 bytes (can be set via p2024[2]).

A character delay time is also permitted between the individual bytes of a frame. Maximum duration: Processing time for 1.5 bytes (can be set via p2024[1]).

Baud rate in bit/s (p2020)	Transmission time per character (11 bits)	Minimum pause be- tween two telegrams (p2024[2])	Maximum pause be- tween two bytes (p2024[1])
4800	2.292 ms	≥ 8.021 ms	≤ 3.438 ms
9600	1.146 ms	≥ 4.010 ms	≤ 1.719 ms
19200 (factory setting)	0.573 ms	≥ 1.75 ms	≤ 0.859 ms
38400	0.286 ms	≥ 1.75 ms	≤ 0.75 ms
57600	0.191 ms	≥ 1.75 ms	≤ 0.556 ms
76800	0.143 ms	≥ 1.75 ms	≤ 0.417 ms
93750	0.117 ms	≥ 1.75 ms	≤ 0.341 ms
115200	0.095 ms	≥ 1.75 ms	≤ 0.278 ms
187500	0.059 ms	≥ 1.75 ms	≤ 0.171 ms

Table 5-11 Baud rates, transmission times, and delays

Note

The factory setting for p2024[1] and p2024[2] is 0. The converter defines the particular values depending on the protocol selection (p2030) or the baud rate.

Modbus register

The converter supports the subsequently listed registers. Error "Exception Code" is output if an attempt is made to access other registers.

Note

Read and write access to converter data

R: read via FC03; W: write via FC06; R/W: read via FC03 or write via FC06

Table 5-12 Assigning the Modbus registers to the process data

Regis- ter	Description	Access	Scaling	Data / parameter
40100	Control word	R/W	1	Process data 1
40101	Main setpoint	R/W	1	Process data 2
40110	Status word	R	1	Process data 1
40111	Main actual value	R	1	Process data 2

5.4.4 Mapping tables - converter data

Regis-	Description	Ac-	Unit	Scaling	ON/OF	F text/	Data / parameter
ter		cess			value	range	
Digital o	outputs	1	1		1		Γ
40200	DO 0	R/W		1	HIGH	LOW	p0730, r747.0, p748.0
40201	DO 1	R/W		1	HIGH	LOW	p0731, r747.1, p748.1
40202	DO 2	R/W		1	HIGH	LOW	p0732, r747.2, p748.2
Analog	outputs						
40220	AO 0	R	%	100	-100.0 .	100.0	r0774.0
40221	AO 1	R	%	100	-100.0 .	100.0	r0774.1
40222	AO 2	R	%	100	-100.0 .	100.0	r0774.2
40523	AO 0	R/W	%	100	-199.99 .	199.99	p0791.0
40524	AO 1	R/W	%	100	-199.99 .	199.99	p0791.1
40525	AO 2	R/W	%	100	-199.99 .	199.99	p0791.2
Digital i	nputs	•	•	•			•
40240	DI O	R		1	HIGH	LOW	r0722.0
40241	DI 1	R		1	HIGH	LOW	r0722.1
40242	DI 2	R		1	HIGH	LOW	r0722.2
40243	DI 3	R		1	HIGH	LOW	r0722.3
40244	DI 4	R		1	HIGH	LOW	r0722.4
40245	DI 5	R		1	HIGH	LOW	r0722.5
Analog i	nputs						•
40260	AI 0	R	%	100	-300.0 .	300.0	r0755 [0]
40261	AI 1	R	%	100	-300.0 .	300.0	r0755 [1]
40262	AI 2	R	%	100	-300.0 .	300.0	r0755 [2]
40263	AI 3	R	%	100	-300.0 .	300.0	r0755 [3]

 Table 5-13
 Assigning the Modbus registers to the parameters - inputs and outputs

 Table 5-14
 Assigning the Modbus registers to the parameters - converter data

Regis- ter	Description	Ac- cess	Unit	Scaling	ON/OFF text/ value range	Data / parameter
40300	Powerstack number	R		1	0 32767	r0200
40301	Converter firmware	R		1	e.g. 470	r0018 / 10000
40320	Rated power	R	kW	100	0 327.67	r0206
40321	Current limit	R/W	A	10	10.0 400.0	p0640
40322	Ramp-up time	R/W	S	100	0.00 650.0	p1120
40323	Ramp-down time	R/W	S	100	0.00 650.0	p1121
40324	Reference speed	R/W	RPM	1	6 32767	p2000
Converte	er diagnostics					
40340	Speed setpoint	R	RPM	1	-16250 16250	r0020
40341	Actual speed value	R	RPM	1	-16250 16250	r0022

Communication via RS485

5.4 Communication using Modbus RTU

Regis- ter	Description	Ac- cess	Unit	Scaling	ON/OFF text/ value range	Data / parameter
40342	Output frequency	R	Hz	100	- 327.68 327.67	r0024
40343	Output voltage	R	V	1	0 32767	r0025
40344	DC link voltage	R	V	1	0 32767	r0026
40345	Current actual value	R	А	100	0 163.83	r0027
40346	Actual torque value	R	Nm	100	- 325.00 325.00	r0031
40347	Actual active power	R	kW	100	0 327.67	r0032
40348	Energy consumption	R	kWh	1	0 32767	r0039
40349	Control priority	R		1	HAND AUTO	r0807

 Table 5-15
 Assigning the Modbus registers to the parameters - fault diagnostics

Regis- ter	Description	Ac- cess	Unit	Scaling	ON/OFF text/ value range	Data / parameter
40400	Failure number, index 0	R		1	0 32767	r0947 [0]
40401	Failure number, index 1	R		1	0 32767	r0947 [1]
40402	Failure number, index 2	R		1	0 32767	r0947 [2]
40403	Fault number, index 3	R		1	0 32767	r0947 [3]
40404	Fault number, index 4	R		1	0 32767	r0947 [4]
40405	Fault number, index 5	R		1	0 32767	r0947 [5]
40406	Fault number, index 6	R		1	0 32767	r0947 [6]
40407	Fault number, index 7	R		1	0 32767	r0947 [7]
40408	Alarm number	R		1	0 32767	r2110 [0]
40409	Actual alarm code	R		1	0 32767	r2132
40499	PRM ERROR code	R		1	0 255	

 Table 5-16
 Assigning the Modbus registers to the parameters - technology controller

Regis- ter	Description	Ac- cess	Unit	Scaling	ON/OFF text/ value range	Data / parameter
40500	Technology controller enable	R/W		1	0 1	p2200, r2349.0
40501	Technology controller MOP	R/W	%	100	-200.0 200.0	p2240
Technolo	ogy controller adjustment					
40510	Time constant for actual value filters of the technology controller	R/W		100	0.00 60.0	p2265
40511	Scaling factor for actual value of the technology controller	R/W	%	100	0.00 500.00	p2269
40512	Proportional amplification of the tech- nology controller	R/W		1000	0.000 65.000	p2280
40513	Integral time of the technology control- ler	R/W	S	1	0 60	p2285
40514	Time constant D-component of the tech- nology controller	R/W		1	0 60	p2274

Regis- ter	Description	Ac- cess	Unit	Scaling	ON/OFF text/ value range	Data / parameter
40515	Max. limit of technology controller	R/W	%	100	-200.0 200.0	p2291
40516	Min. limit technology controller	R/W	%	100	-200.0 200.0	p2292

 Table 5-17
 Assigning the Modbus registers to the parameters - PID diagnostics

Regis- ter	Description	Ac- cess	Unit	Scaling	ON/OFF text/ value range	Data / parameter
40520	Effective setpoint acc. to internal tech- nology controller MOP ramp-function generator	R	%	100	-100.0 100.0	r2250
40521	Actual value of technology controller af- ter filter	R	%	100	-100.0 100.0	r2266
40522	Output signal technology controller	R	%	100	-100.0 100.0	r2294

Table 5-18 Modbus registers for communication via DS47

Regis-	Description	Ac-	Unit	Scaling	Data / parameter
ter		cess			
40601	DS47 Control	R/W			
40602	DS47 header	R/W			
40603	DS47 data 1	R/W			
40722	DS47 data 120	R/W			

Table 5-19Modbus registers for multi-pump control

Register	Last reg- ister	Description	Ac- cess	Unit	Scaling	ON/OFF text/value range	Data / parameter
40800		Status word	R		1	0 65535	p29529
40801		Motor index speed control	R		1	0 3	p29538
40802		Status word, service mode	R		1	0 65535	p29544
40804	40805	Motor 1 operating hours	R/W	h	10	0 429496729.5	p29530[0]
40806	40807	Motor 2 operating hours	R/W	h	10	0 429496729.5	p29530[1]
40808	40809	Motor 3 operating hours	R/W	h	10	0 429496729.5	p29530[2]
40810	40811	Motor 4 operating hours	R/W	h	10	0 429496729.5	p29530[3]

5.4.5 Acyclic communication via Modbus RTU

Acyclic communication or general parameter access is realized using the Modbus registers 40601 ... 40722.

Acyclic communication is controlled using 40601. 40602 contains the function code (always = 47 = 2F hex) and the number of the following user data. User data are contained in registers 40603 ... 40722.

Overview of acyclic communication

	Va	lue in the reg	gister	Explanation
40601	40602		40603 40722	
0	47			Write values for acyclic access
1	47	Request length [bytes]	Request data	Activate acyclic access
2	47	Response length [bytes]	Response data	Response for a successful request
2	47	0	Error code	Response for an erronous request

Error codes

1 hex: Invalid Length (invalid length)

2 hex: Invalid State (in the current converter state, this action is not permitted)

3 hex: Invalid function code (FC \neq 2F hex)

4 hex: Response not ready (the response has still not been issued)

5 hex: Internal Error (general system error)

Incorrect access operations to parameters via data set 47 are logged in registers 40603 ... 40722.

5.4.6 Write and read access using function codes

Basic structure of read and write access using function codes

Slave		Protocol Data Unit (PDU)	CRC	
ID	FC	Data	low	high
1 Byte	1 Byte	0 252 Bytes	2 B	yte

Function codes used

For data exchange between the master and device, predefined function codes are used for communication via Modbus.

The converter uses the following Modbus function codes:

- FC 03: Holding register to read data from the converter
- FC 06: Write single register to write to individual register
- FC 16: Write to multiple registers to write to several registers

Structure of a read request via Modbus function code 03 (FC 03)

Any valid register address is permitted as the start address.

Via FC 03, the control can address more than one register with one request. The number of addressed registers is contained in bytes 4 and 5 of the read request.

Value	Byte	Description
11 h	0	Device address
03 h	1	Function code
00 h	2	Register start address "High" (register 40110)
6D h	3	Register start address "Low"
00 h	4	Number of registers "High" (2 registers: 40110; 40111)
02 h	5	number of registers "Low"
xx h	6	CRC "Low"
xx h	7	CRC "High"

 Table 5-20
 Structure of a read request via device number 17, example

The response returns the corresponding data set:

Value	Byte	Description
11 h	0	Device address
03 h	1	Function code
04 h	2	Number of bytes (4 bytes are returned)
11 h	3	Data first register "High"
22 h	4	Data first register "Low"
33 h	5	Data second register "High"
44 h	6	Data second register "Low"
xx h	7	CRC "Low"
xx h	8	CRC "High"

 Table 5-21
 Device response to the read request, example

Table 5-22 Invalid read request	Table 5-22	Invalid read request
---------------------------------	------------	----------------------

Read request	Converter response
Invalid register address	Exception code 02 (invalid data address)
Read a write-only register	Telegram in which all values are set to 0.
Read a reserved register	
Controller addresses more than 125 registers	Exception code 03 (invalid data value)
The start address and the number of registers of an address are located outside of a defined register block	Exception code 02 (invalid data address)

Structure of a write request via Modbus function code 06 (FC 06)

Start address is the holding register address.

Via FC 06, with one request, only precisely one register can be addressed. The value, which is written to the addressed register, is contained in bytes 4 and 5 of the write request.

Table 5-23Structure of a write request for device number 17, example

Value	Byte	Description
11 h	0	Device address
06 h	1	Function code
00 h	2	Register start address "High" (write register 40100)
63 h	3	Register start address "Low"
55 h	4	Register data "High"
66 h	5	Register data "Low"
xx h	6	CRC "Low"
xx h	7	CRC "High"

The response returns register address (bytes 2 and 3) and the value (bytes 4 and 5), which the higher-level control had written to the register.

Value	Byte	Description
11 h	0	Device address
06 h	1	Function code
00 h	2	Register start address "High"
63 h	3	Register start address "Low"
55 h	4	Register data "High"
66 h	5	Register data "Low"
xx h	6	CRC "Low"
xx h	7	CRC "High"

Table 5-24 Device response to the write request

Table 5-25 Invalid write request

Write request	Converter response
Incorrect address (a holding register address does not exist)	Exception Code 02 - invalid data ad- dress
Write to a "read-only" register	Exception Code 04 - device failure
Write to a reserved register	

For Exception Code 4, via the holding register 40499, you can read out the internal drive error code, which has occurred for the last parameter access via the holding register.

5.4.7 Acyclically read and write parameter via FC 16

Via FC 16, with one request, up to 122 registers can be written to directly one after the other, while for Write Single Register (FC 06) you must individually write the header data for each register.

Header

In addition to the device address, enter the transfer type, the start address and the number of the following registers in the header.

User data

You control the access in the user data via register 40601.

In register 40602, you define the acyclic access as well as the length of the request data.

Register 40603 contains the request reference - it is defined by the user - and the access type -reading or writing.

Register 40604 contains the number of the drive object (always 1) and the number of parameters that are read or written.

Register 40605 contains the attribute that you use to control whether you read out the parameter value or the parameter attribute. In the number of elements you specify how many indices are read.

See also

PROFIDRIVE profile - Acyclic communication (Page 42)

5.4.7.1 Read parameter

Example: r0002 read acyclically

Table 5-26	Write parameter	request: F	Reading the	e parameter	value of r0	002 from	device numbe	er 17
------------	-----------------	------------	-------------	-------------	-------------	----------	--------------	-------

Value	Byte	Description
11 h	0	Device address
10 h	1	Function code (write multiple)
0258 h	2,3	Register start address
0007 h	4,5	Number of registers to be read (40601 40607)
0E h	6	Number of data bytes (7 registers, each 2 bytes = 14 bytes)
0001 h	7,8	40601: DS47 Control = 1 (activate request)
2F0A h	9,10	40602: Function 2F h (47), request length 10 bytes (0A h)
8001 h	11,12	40603: Request reference = 80 h, request identifier = 1 h
0101 h	13,14	40604: DO-Id = 1, number of parameters = 1
1001 h	15,16	40605: Attribute, number of elements = 1
0002 h	17,18	40606: Parameter number = 2
0000 h	19,20	40607: Subindex = 0
xx h	21	CRC "Low"
xx h	22	CRC "High"

Table 5-27	Start parameter rec	uest: Reading the	e parameter value	of r0002 from	device number 17

Value	Byte	Description	
11 h	0	Device address	
03 h	1	Function code (read)	
0258 h	2,3	Register start address	
0007 h	4,5	Number of registers to be read (40601 40607)	
0010 h	6,7	Number of registers	
xx h	8	CRC "Low"	
xx h	9	CRC "High"	

Value	Byte	Description
11 h	0	Device address
03 h	1	Function code (read)
20 h	2	Number of following data bytes (20 h: 32 bytes corresponds to 16 registers)
0002 h	3,4	40601: DS47 Control = 2 (the request was executed)
2F08 h	5,6	40602: Function code 2F h (47), response lengths 8 bytes
8001 h	7,8	40603: Request reference mirrored = 80 h,
		response identifier = 1 (request parameter)
0101 h	9,10	40604: DO-ID = 1, number of parameters = 1
0301 h	11,12	40605: Format, number of elements = 1
001F h	13,14	40606: Parameter value = $1F h$ (31)
xx h	15	CRC "Low"
xx h	16	CRC "High"

 Table 5-28
 Response for successful read operation

	Table 5-29	Response for	unsuccessful r	ead operation -	read request still	not completed
--	------------	--------------	----------------	-----------------	--------------------	---------------

Value	Byte	Description
11 h	0	Device address
03 h	1	Function code (read)
20 h	2	Number of following data bytes (20 h: 32 bytes corresponds to 16 registers)
0001 h	3,4	40601: Check value 1 = request is processed
2F00 h	5,6	40602: Function 2F h(47), response length 0 (fault)
0004 h	7,8	40603: Error code: 0004 Response Not Ready (response has still not been
		issued)
xx h	9	CRC "Low"
xx h	10	CRC "High"

5.4.7.2 Write parameter

Example: Set p1121 = 12.15

Table 5-30	Write parameter request: Writing the parameter value of p1121 from device number 17
------------	---

Value	Byte	Description	
11 h	0	Device address	
10 h	1	Function code (write multiple)	
0258 h	2,3	Register start address	
000A h	4,5	Number of registers to be written to (40601 40610)	
14 h	6	Number of data bytes (10 registers, each 2 bytes = 20 bytes)	
0001 h	7,8	40601: C1 (activate request)	
2F10 h	9,10	40602: Function 2F h (47), request length 16 bytes (10 h)	
8002 h	11,12	40603: Request reference = 80 h, request identifier = 2 h (write)	
0101 h	13,14	40604: DO-Id = 1, number of parameters = 1	
1001 h	15,16	40605: Attribute, number of elements = 1	
0461 h	17,18	40606: Parameter number = 1121	
0000 h	19,20	40607: Subindex = 0	
0801 h	21,22	40608: Format + number of values	
4142 h	23,24	40609: Parameter value 12,15	
6666 h	25,26	40610: Parameter value	
xx h	27	CRC "Low"	
xx h	28	CRC "High"	

 Table 5-31
 Start parameter request: Writing the parameter value of p1121 from device number 17

Value	Byte	Description	
11 h	0	Device address	
06 h	1	Function code (write)	
0258 h	2,3	Register start address	
0007 h	4,5	Number of registers to be written to (40601 40610)	
0010 h	6,7	Number of registers	
xx h	8	CRC "Low"	
xx h	9	CRC "High"	

Table 5-32Response for successful write operation

Value	Byte	Description
11 h	0	Device address
06 h 20 h 0002 h 2F04 h	1 2 3,4 5,6	Function code (write) Number of following data bytes (20 h: 32 bytes corresponds to 16 registers) 40601: DS47 Control = 2 (request was executed) 40602: Function code 2F h (47), response length 4 bytes
8002 h 0101 h	7,8 9,10	40603: Request reference mirrored = 80 h, response identifier = 2 (change parameter) 40604: DO-ID = 1, number of parameters = 1
xx h xx h	11 12	CRC "Low" CRC "High"

Value	Byte	Description
11 h	0	Device address
06 h	1	Function code (write)
20 h	2	Number of following data bytes (20 h: 32 bytes corresponds to 16 registers)
0001 h	3,4	40601: DS47 Control = 1 (request is processed)
2F00 h	5,6	40602: Function 2F h(47), response length 0 (fault)
0004 h	7,8	40603: Error code: 0004 Response Not Ready (response has still not been
		issued)
xx h	9	CRC "Low"
xx h	10	CRC "High"

Table 5-33 Response for unsuccessful write operation - write request still not completed

5.4.8 Communication procedure

Procedure for communication in a normal case

Normally, the master sends a telegram to a device (address range 1 ... 247). The device sends a response telegram to the master. This response telegram mirrors the function code; the device enters its own address in the telegram and so the device identifies itself with the master.

The device only processes orders and telegrams which are directly addressed to it.

Communication error

If the device detects a communication error on receipt (parity, CRC), it does not send a response to the master, since this can lead to "setpoint timeout".

Logical error

If the device detects a logical error within a request, it responds to the master with an "exception response". In the response, the device sets the highest bit in the function code to 1. If the device receives, for example, an unsupported function code from the master, the device responds with an "exception response" with code 01 (Illegal function code).

Exception code	Modbus name	Remark
01	Illegal function code	An unknown (unsupported) function code was sent to the device.
02	Illegal Data Address	An invalid address was requested.
03	Illegal data value	An invalid data value was detected.
04	Server failure	device has terminated during processing.

Table 5-34Overview of exception codes

5.5 Communication via BACnet MS/TP - only CU230P-2 HVAC / BT

Maximum processing time, p2024[0]

The device-response time is the time in which the Modbus master expects a response to a request. Set the same device-response time (p2024 [0] in the converter) in the master and device.

Process data monitoring time (setpoint timeout), p2040

"Setpoint timeout" (F1910) is issued by the Modbus if p2040 is set to a value > 0 ms and no process data is requested within this time period.

The "Setpoint timeout" only applies for access to process data (40100, 40101, 40110, 40111). The "Setpoint timeout" is not generated for parameter data (40200 ... 40522).

Note

Adjust the time (factory setting = 100 ms) depending on the number of devices and the baud rate set on the bus.

5.4.9 Application example

An application example for MODBUS RTU is provided on the Internet:

Communication via the MODBUS interface (<u>https://</u> <u>support.industry.siemens.com/cs/ww/en/view/35928944</u>)

5.5 Communication via BACnet MS/TP - only CU230P-2 HVAC / BT

BACnet properties

In BACnet, components and systems are considered to be black boxes which contain a number of objects. BACnet objects only stipulate the behavior outside the device, BACnet sets no internal functions.

A range of object types and their instances represent one component.

Each BACnet device has precisely one BACnet device object. An NSAP (Network Service Access Point - comprising network number and MAC address; MAC: **M**edium **A**ccess **C**ontrol) uniquely identifies a BACnet device. This address is BACnet-specific and must not be confused with the Ethernet MAC address.

Data exchange with the client

The converter receives control commands and setpoints via service instructions from the control and transmits its status back to the control. The converter can also autonomously send telegrams or execute services, e.g. COV_Notification.

Communication settings

- The Control Unit supports BACnet via RS485 (BACnet MS/TP),
- Communication supports Unicode, coded with the character set UTF-8
- The maximum cable length is 1200 m (3281 ft).

Protocol Implementation Conformance Statement

The Protocol Implementation Conformance Statement (PICS) is available on the Internet:

PICS (<u>https://support.industry.siemens.com/cs/us/en/view/109760469</u>)

Note

It is not permitted to change over the units

The "Unit switchover" function – for details see the operating instructions of the Control Unit – is not permissible with this bus system!

5.5.1 Basic settings for communication

Setting communication via BACnet

Procedure

- 1. Select the default setting 110
 - With Startdrive during commissioning step "Default setting of setpoint/command sources":
 - 110 "BT Mac 10: BACnet MS/TP fieldbus"
 - With the BOP-2 during the basic commissioning under step "MAc PAr P15": P_F bAc
 - Via parameter number: p0015 = 110
- 2. Set the converter address.
- 3. Make additional changes based on the parameters listed in the following sections.
- 4. If you are working with Startdrive, back up the settings so they are not lost if the power fails.

You have now made the settings for communication via BACnet. $\hfill\square$

5.5 Communication via BACnet MS/TP - only CU230P-2 HVAC / BT

Settings by "BT Mac 10: BACnet MS/TP fieldbus"

Fieldbus protocol selection p2030 = 5

Baud rate p2020 = 8, 38400 bit/s

Setting range: 9600 bit/s ... 76800 bit/s

Fieldbus monitoring time p2040 = 1000 ms

Setting range: 0 ms ... 1999999 ms

The more devices that are connected in the network, the longer the fieldbus monitoring time must be.

If process data is not transferred within one cycle of the fieldbus monitoring time, then the converter shuts down with fault F01910.

 $p2040 = 0 \Rightarrow$ bus monitoring deactivated.

5.5.1.1 Setting the address

Valid address area: 0 ... 127

With address 0, the converter responds to a broadcast.

You have the following options for setting the BACnet address:

• Using the address switch on the Control Unit:

Figure 5-13 Address switch with example for bus address 10

The address switch has priority over the other settings.

Using Startdrive or an operator panel via parameter p2021 (default setting: p2021 = 0). it is only possible to change p2021 if the address switch is set to 0. If you are working with Startdrive, back up the settings so they are not lost if the power fails.

You can find the position of the address switch in the operating instructions for the converter.

 \square Manuals and technical support (Page 217)

Activating the changed bus address

Procedure

- 1. Set the address as described above.
- 2. Switch off the converter power supply.
- 3. Wait until all LEDs on the converter are dark.
- 4. Switch on the converter power supply again. Your settings become effective after switching on.

You have now set the bus address.

5.5 Communication via BACnet MS/TP - only CU230P-2 HVAC / BT

5.5.1.2 Parameters for setting communication via BACnet

General settings

Processing times p2024[0 ... 2]

p2024[0]: 0 ms ... 10000 ms, maximum processing time (APDU timeout), factory setting = 6000 ms, p2024 [1 ... 2]: Irrelevant

BACnet communication parameter p2025[0 ... 3]

- p2025 [0]: 0 ... 4194303: Device object instance number, Factory setting = 1
- p2025 [1]: 1 ... 10: Maximum Info Frames, factory setting = 5
- p2025 [2]: 0 ... 39: Number of APDU Retries (repeated attempts after fault telegrams), factory setting = 3
- p2025 [3]: 1 ... 127: maximum manager address, factory setting = 32

Setting COV_Increment p2026[0 ... 75]

(COV = change of values) 0 ... 4194303.000, factory setting = 1. A maximum of 32 COVs are permissible.

COV_Increment: Changes the value of the "present value" of an object instance for which the server transfers an UnConfirmedCOV_Notification or ConfirmedCOV_Notification.

You can use these parameters to set the converter value changes for which an UnConfirmedCOV_Notification or ConfirmedCOV_Notification result is sent.

The factory setting 1 means that the converter sends an UnConfirmedCOV_Notification or ConfirmedCOV_Notification if the considered value, e.g. for a range of 0 ... 10 V, changes by an absolute value \geq 1.

This requires an active SubscribeCOV_Service to send the relevant object instance.

You can also set the COV_Increment via the object property "COV_Increment" of the relevant analog input, analog output or analog value.

BACnet language selection p2027

German/English - only becomes effective after power off/on

Fieldbus error statistics r2029

Displaying receive errors at the fieldbus interface

Device name - default setting, change, restore factory setting

The converter has a device name in BACnet that uniquely identifies the converter.

The device name is preset at initial power up. It has the following structure:
SINAMICS G120 - XAB812-005806 Name of the Control Unit Serial number of the Control Unit

p7610[0...79] contains the device names in ASCII format.

Changing device names

You can change the device name either in the converter or via the controller:

- Converter: Change p7610
- Controller: Change the "object-name" property via the Write Property Service

Restoring factory settings

The device name is retained when the factory settings are restored.

If you wish to reset the name to the factory setting, original value, set p7610[0] = NULL (ASCII-0).

Interconnecting analog outputs, restoring factory settings

If you set communication via BACnet, the converter switches its analog outputs with the fieldbus.

The control then specifies the values which the converter outputs via its analog outputs.

To display a converter-specific value, you must change the interconnection of the analog output.

Examples:

- AO 0 should display the value which the control specifies in the ANALOG OUTPUT 0 object. In this particular case, no other settings are required in the converter.
- AO 1 should display the smoothed current actual value of the converter (r0027 smoothed current actual value).
 Interconnect p0771[1] with r0027: p0771[1] = 27
 In this case, write access via the object ANALOG OUTPUT 1 results in an error message in the control.

Reset to the factory setting for BACnet

When restoring the factory setting, the converter again uses the fieldbus to switch its analog outputs.

5.5.2 Supported services and objects

BIBBs used by the converter

The BIBBs (BIBB: **B**ACnet Interoperability **B**uilding **B**lock) are a collection of one or several BACnet services. BACnet services are subdivided into A and B devices. An A device operates as client and a B device as server.

The converter is a server and therefore operates as B device, as "BACnet Application Specific Controller" (B-ASC).

It uses the following executed BIBBs.

Overview of the BIBB used and the associated services

Short designation	BIBB	Service
DS-RP-B	Data Sharing-ReadProperty-B	ReadProperty
DS-RPM-B	Data Sharing-ReadMultipleProperty-B	ReadPropertyMultiple
DS-WP-B	Data Sharing-WriteProperty-B	WriteProperty
DM-DDB-B	Device Management-Dynamic Device	• Who-Is
	Binding-B	• I-Am
DM-DOB-B	Device Management-Dynamic Object Binding-B	• Who-Has
		• I-Have
DM-DCC-B	Device Management-DeviceCommuni- cationControl-B	DeviceCommunicationControl
DS-COV-B	Data Sharing-COV-B	SubscribeCOV,
		ConfirmedCOVNotification,
		UnConfirmedCOVNotification

The converter can simultaneously process up to 32 SubscribeCOV services. These can all refer to the same object instances - or different object instances.

SubscribeCOV monitors the property changes of the following objects:

- Analog Input Al...
- Analog Output AO...
- Analog Value AV...
- Binary Value BV...
- Multi-State Input MSI...

Note

SubscribeCOV services are not retentive; i.e. the manager must re-initiate the SubscribeCOV services when restarting the converter.

Object types in BACnet

Object type	Code digit	Object type	Code digit
Device Object	8	Analog Output AO	1
Binary Input Bl	3	Analog Value AV	2
Binary Output BO	4	Multi-State Input MSI	13
Binary Value BV	5	Octet String Values	47
Analog Input Al	0		

Object properties of the "Device" object type

•	Object_Identifier	•	Application_Software_Version	•	APDU_Timeout
•	Object_Name	•	Protocol_Version	•	Number_Of_APDU_Retries
•	Object_Type	•	Protocol_Revision	•	Max manager
•	System_Status	•	Protocol_Services_Supported	•	Max Info Frames
•	Vendor_Name	•	Protocol_Object_Types_Supported	•	Device Address Binding
•	Vendor_Identifier	•	Object_List	•	Database Revision
•	Model_Name	•	Max_APDU_Length_Accepted 1)		
•	Firmware_Revision	•	Segmentation_Supported ²⁾		

¹⁾ Length = 480, ²⁾ not supported

Properties of the other object types

Property	Object type							
	Binary In- put Bl	Binary Output BO	Binary Val- ue BV	Analog In- put Al	Analog Output AO	Analog Value AV	Multi- State In- put MSI	Octet String val- ues
Object_Identifier	Х	Х	Х	Х	Х	Х	Х	Х
Object_Name	Х	Х	Х	Х	Х	Х	Х	Х
Object_Type	Х	Х	Х	Х	Х	Х	Х	Х
Present_Value	Х	Х	Х	Х	Х	Х	Х	Х
Description	Х	Х	Х	Х	Х	Х	Х	
Status_Flags	Х	Х	Х	Х	Х	Х	Х	Х
Event_State	Х	Х	Х	Х	Х	Х	Х	
Out_Of_Service	Х	Х	Х	Х	Х	X X		
Units				Х	Х	Х		
Priority_Array		Х	X ¹⁾		Х	X ¹⁾		
Relinquish_De- fault		Х	X ¹⁾		Х	X ¹⁾		
Polarity	Х	Х						
Active_Text	Х	Х	Х					
Inactive_Text	Х	Х	Х					
COV_Increment				Х	Х	Х		
State_Text							Х	
Num- ber_of_States							Х	

¹⁾ Only for access type C: Commandable

Note

Language switching

Using parameter p2027, you can switch the language of the BACnet object properties (German, English). Only the English identifiers (e.g. "Object name") are specified in the following tables.

In- stance ID	Object name	Description	Possible val- ues	Text active / text inactive	Access type	Parameter
BIO	DI0 ACT	State of DI 0	ON/OFF	ON/OFF	R	r0722.0
BI1	DI1 ACT	State of DI 1	ON/OFF	ON/OFF	R	r0722.1
BI2	DI2 ACT	State of DI 2	ON/OFF	ON/OFF	R	r0722.2
BI3	DI3 ACT	State of DI 3	ON/OFF	ON/OFF	R	r0722.3
BI4	DI4 ACT	State of DI 4	ON/OFF	ON/OFF	R	r0722.4
BI5	DI5 ACT	State of DI 5	ON/OFF	ON/OFF	R	r0722.5
BI7	DI7 ACT	State of AI 0 - used as DI 11	ON/OFF	ON/OFF	R	r0722.11
BI8	DI8 ACT	State of AI 1 - used as DI 12	ON/OFF	ON/OFF	R	r0722.12
BI10	DO0 ACT	State of DO 0 (relay 1)	ON/OFF	ON/OFF	R	read r0747.0
BI11	DO1 ACT	State of DO 1 (relay 2)	ON/OFF	ON/OFF	R	read r0747.1
BI12	DO2 ACT	State of DO2 (relay 3)	ON/OFF	ON/OFF	R	read r0747.2

Binary Input Objects

Binary Output Objects

ln- stance ID	Object name	Description	Possible val- ues	Text active / text inactive	Access type	Parameter
BOO	DO0 CMD	Controls DO 0 (relay 1)	ON/OFF	ON/OFF	С	p0730
BO1	DO1 CMD	Controls DO 1 (relay 2)	ON/OFF	ON/OFF	С	p0731
BO2	DO2 CMD	Controls DO 2 (relay 3)	ON/OFF	ON/OFF	С	p0732

Analog Input Objects

ln- stance ID	Object name	Description	Unit	Range	Access type	Parameter
AIO	ANALOG IN 0	Al0 input signal	V/mA	Converter-depend- ent	R	r0752[0]
AI1	ANALOG IN 1	Al1 input signal	V/mA	Converter-depend- ent	R	r0752[1]
AI10	AIN 0 SCALED	Scaled AI 0 input signal	%	Converter-depend- ent	R	r0755[0]
AI11	AIN 1 SCALED	Scaled AI 1 input signal	%	Converter-depend- ent	R	r0755[1]

Analog Output Objects

In- stance ID	Object name	Description	Unit	Range	Access type	Parameter
AO0	ANALOG OUT 0	Value of AO0	%	Converter-depend- ent	С	p0791.0
AO1	ANALOG OUT 1	Value of AO1	%	Converter-depend- ent	С	p0791.1

Binary Value BV...

In- stance ID	Object name	Description	Possible values	Text ac- tive	Text in- active	Ac- cess type ¹⁾	Parameter
BVO	RUN STOP- PED	Converter status regardless of com- mand source	RUN / STOP	STOP	RUN	R	r0052.2
BV1	FWD REV	Direction of rotation regardless of command source	REV / FWD	FWD	REV	R	r0052.14
BV2	FAULT ACT	Converter fault	FAULT / OK	FAULT	ОК	R	r0052.3
BV3	WARN ACT	Converter warning	WARN / OK	WARN	ОК	R	r0052.7
BV4	MANUAL AU- TO	Source of Manual/Auto converter control	AUTO / MANUAL	AUTO	LOCAL	R	r0052.9
BV6 ²⁾	MAINT REQ	Maintenance required	MAINT/OK	MAINT	ОК	R	reserved
BV7	HAND CON- TROL	Control of the converter from the BACnet override control via BV93	ON/OFF	0	1	R	r2032[10]
		The "Manual" mode of the operator panel has a higher priority than the BACnet override control.					
BV8	AT SETPOINT	Setpoint reached	YES / NO	YES	NO	R	r0052.8
BV9	AT MAX FREQ	Maximum speed reached	YES / NO	YES	NO	R	r0052.10
BV10	DRIVE READY	Converter ready	YES / NO	YES	NO	R	r0052.1
BV15	HAND RUN- NING	Status of the ON command, regard- less of the source	YES / NO	0	1	R	r2032[0]
BV16	HIB MOD ACT	Energy saving mode is active	ON/OFF	0	1	R	r2399[1]
BV17	ESM MOD	Essential service mode is active	ON/OFF	0	1	R	r3889[0]
BV20	RUN STOP CMD	ON command for the converter (when controlling via BACnet)	RUN / STOP	0	1	С	r0054.0
BV21	FWD REV CMD	Reverse direction of rotation (when controlling via BACnet)	REV / FWD	0	1	С	r0054.11
BV22	FAULT RESET	Acknowledge fault (when control- ling via BACnet)	RESET / NO	0	1	С	r0054.7
BV24	CDS	Changeover drive control	Local / Remote	YES	NO	С	r0054.15
BV26	RUN ENA CMD	Enable converter operation		ENA- BLED	DISA- BLED	C	r0054.3
BV27	OFF2	Status OFF2	RUN / STOP	0	1	С	r0054.1

Communication via RS485

5.5 Communication via BACnet MS/TP - only CU230P-2 HVAC / BT

In- stance ID	Object name	Description	Possible values	Text ac- tive	Text in- active	Ac- cess type ¹⁾	Parameter
BV28	OFF3	Status OFF3	RUN / STOP	0	1	С	r0054.2
		BV28 sets the r0054.4, r0054.5, and r0054.6 bits					
BV50	ENABLE PID	Enable technology controller	ENABLED / DISA- BLED	ENA- BLED	DISA- BLED	С	p2200
BV51	ENABLE PID 0	Enable technology controller 0	ENABLED / DISA- BLED	ENA- BLED	DISA- BLED	С	p11000
BV52	ENABLE PID 1	Enable technology controller 1	ENABLED / DISA- BLED	ENA- BLED	DISA- BLED	С	p11100
BV53	ENABLE PID 2	Enable technology controller 2	ENABLED / DISA- BLED	ENA- BLED	DISA- BLED	С	p11200
BV90	LOCAL LOCK	Use MANUAL (operator panel) to lock converter control		LOCK	UN- LOCK	С	p0806
BV91 ²⁾	LOCK PANEL	Interlocking for operator panel and parameter changes	LOCK/UNLO	0	1	W	reserved
BV93	CTL OVER- RIDE	Converter control using BACnet over- ride control	ON/OFF	0	1	C	r0054.10

¹⁾ C: Commandable, R: Readable, W: Writable

²⁾ reserved for future functional expansions

Analog Value AV...

In- stance ID	Object name	Description	Unit	Range	Access type ¹⁾	Parameter
AV0	OUT FREQ HZ	Output frequency (Hz)	Hz	Converter-depend- ent	R	r0024
AV1	OUT FREQ PCT	Output frequency (%)	%	Converter-depend- ent	R	HIW
AV2	OUTPUT SPEED	Motor speed	RPM	Converter-depend- ent	R	r0022
AV3	DC BUS VOLT	DC-link voltage.	V	Converter-depend- ent	R	r0026
AV4	OUTPUT VOLT	Output voltage	V	Converter-depend- ent	R	r0025
AV5	CURRENT	Motor current	A	Converter-depend- ent	R	r0027
AV6	TORQUE	Motor torque	Nm	Converter-depend- ent	R	r0031
AV7	POWER	Motor power	kW	Converter-depend- ent	R	r0032
AV8	DRIVE TEMP	Heat sink temperature	°C	Converter-depend- ent	R	r0037
AV9	MOTOR TEMP	Measured or calculated motor temperature	°C	Converter-depend- ent	R	r0035

ln- stance ID	Object name	Description	Unit	Range	Access type ¹⁾	Parameter
AV10	KWH NR	Cumulative converter energy consumption (cannot be reset!)	kWh	Converter-depend- ent	R	r0039
AV12	INV RUN TIME	Motor's operating hours (is reset by entering "0")	h	0 4294967295	W	p0650
AV13	INV MODEL	Code number of Power Module		Converter-depend- ent	R	r0200
AV14	INV FW VER	Firmware version		Converter-depend- ent	R	r0018
AV15	INV POWER	Rated power of the converter	kW	Converter-depend- ent	R	r0206
AV16	RPM STPT 1	Reference speed of the converter	RPM	6.0 210000	W	p2000
AV17	FREQ SP PCT	Setpoint 1 (when controlling via BACnet)	%	-199.99 199.99	С	HSW
AV18	ACT FAULT	Number of the fault due to be dealt with		Converter-depend- ent	R	r0947[0]
AV19	PREV FAULT 1	Number of the last fault		Converter-depend- ent	R	r0947[1]
AV20	PREV FAULT 2	Number of the fault before last		Converter-depend- ent	R	r0947[2]
AV21	PREV FAULT 3	Number of the fault third from last		Converter-depend- ent	R	r0947[3]
AV22	PREV FAULT 4	Number of the fault fourth from last		Converter-depend- ent	R	r0947[4]
AV25	SEL STPT	Command to select the setpoint source		0 32767	W	p1000
AV28	AO1 ACT	Signal from AO 1	mA	Converter-depend- ent	R	r0774.0
AV29	AO2 ACT	Signal from AO 1	mA	Converter-depend- ent	R	r0774.1
AV30	MIN Speed	Minimum speed	RPM	0.000 - 19500.000	W	p1080
AV31	MAX Speed	Maximum speed	RPM	0.000 210000.00 0	W	p1082
AV32	ACCEL TIME	Ramp-up time	s	0.00 999999.0	W	p1120
AV33	DECEL TIME	Ramp-down time	s	0.00 999999.0	W	p1121
AV34	CUR LIM	Current limit	A	Converter-depend- ent	R	p0640
AV39	ACT WARN	Indication of a pending alarm		Converter-depend- ent	R	r2110[0]
AV40	PREV WARN 1	Indication of the last alarm		Converter-depend- ent	R	r2110[1]
AV41	PREV WARN 2	Indication of the last but one alarm		Converter-depend- ent	R	r2110[2]
AV5000	RAMP UP TIME	Technology controller ramp-up time	S	0 650	W	p2257
AV5001	RAMP DOWN TIME	Technology controller ramp- down time	S	0 650	W	p2258

In- stance ID	Object name	Description	Unit	Range	Access type ¹⁾	Parameter
AV5002	FILTER TIME	Technology controller actual val- ue filter time constant	s	0 60	W	p2265
AV5003	DIFF TIME	Technology controller differentia- tion time constant	S	0 60	W	p2274
AV5004	PROP GAIN	Technology controller propor- tional gain	s	0 1000	W	p2280
AV5005	INTEG TIME	Technology controller integral time	s	0 1000	W	p2285
AV5006	OUTPUT MAX	Technology controller maximum limiting	%	- 200 200	W	p2291
AV5007	OUTPUT MIN	Technology controller minimum limiting	%	- 200 200	W	p2292
AV5100	RAMP UP TIME 0	Technology controller 0 ramp-up time	s	0 650	W	p11057
AV5101	RAMP DOWN TIME 0	Technology controller 0 ramp- down time	s	0 650	W	p11058
AV5102	FILTER TIME 0	Technology controller 0 actual value filter time constant	s	0 60	W	p11065
AV5103	DIFF TIME 0	Technology controller 0 differen- tiation time constant	s	0 60	W	p11074
AV5104	PROP GAIN 0	Technology controller 0 propor- tional gain	s	0 1000	W	p11080
AV5105	INTEG TIME 0	Technology controller 0 integral time	s	0 1000	W	p11085
AV5106	OUTPUT MAX 0	Technology controller 0 maxi- mum limiting	%	- 200 200	W	p11091
AV5107	OUTPUT MIN 0	Technology controller 0 mini- mum limiting	%	- 200 200	W	p11092
AV5200	RAMP UP TIME 1	Technology controller 1 ramp-up time	s	0 650	W	p11157
AV5201	RAMP DOWN TIME 1	Technology controller 1 ramp- down time	s	0 650	W	p11158
AV5202	FILTER TIME 1	Technology controller 1 actual value filter time constant	s	0 60	W	p11165
AV5203	DIFF TIME 1	Technology controller 1 differen- tiation time constant	s	0 60	W	p11174
AV5204	PROP GAIN 1	Technology controller 1 propor- tional gain	s	0 1000	W	p11180
AV5205	INTEG TIME 1	Technology controller integral time	s	0 1000	W	p11185
AV5206	OUTPUT MAX 1	Technology controller 1 maxi- mum limiting	%	- 200 200	W	p11191
AV5207	OUTPUT MIN 1	Technology controller 1 mini- mum limiting	%	- 200 200	W	p11192
AV5300	RAMP UP TIME 2	Technology controller 2 ramp-up time	S	0 650	W	p11257

ln- stance ID	Object name	Description	Unit	Range	Access type ¹⁾	Parameter
AV5301	RAMP DOWN TIME 2	Technology controller 2 ramp- down time	s	0 650	W	p11258
AV5302	FILTER TIME 2	Technology controller 2 actual value filter time constant	S	0 60	W	p11265
AV5303	DIFF TIME 2	Technology controller 2 differen- tiation time constants	s	0 60	W	p11274
AV5304	PROP GAIN 2	Technology controller 2 propor- tional gain	s	0 1000	W	p11280
AV5305	INTEG TIME 2	Technology controller 2 integral time	s	0 1000	W	p11285
AV5306	OUTPUT MAX 2	Technology controller 2 maxi- mum limiting	%	- 200 200	W	p11291
AV5307	OUTPUT MIN 2	Technology controller 2 mini- mum limiting	%	- 200 200	W	p11292

¹⁾ C: Commandable, R: Readable, W: Writable

Multi-State Input MSI...

Instance ID	Object name	Description	Possible values	Access type	Parameter
MSI0	FAULT 1	Fault number 1	See "List of fault codes	R	r0947[0]
MSI1	FAULT 2	Fault number 2	and alarm codes"	R	r0947[1]
MSI2	FAULT 3	Fault number 3		R	r0947[2]
MSI3	FAULT 4	Fault number 4		R	r0947[3]
MSI4	FAULT 5	Fault number 5		R	r0947[4]
MSI5	FAULT 6	Fault number 6		R	r0947[5]
MSI6	FAULT 7	Fault number 7		R	r0947[6]
MSI7	FAULT 8	Fault number 8		R	r0947[7]
MSI8	WARNING 1	Alarm number 1		R	r2110[0]
MSI9	WARNING 2	Alarm number 2		R	r2110[1]
MSI10	WARNING 3	Alarm number 3		R	r2110[2]
MSI11	WARNING 4	Alarm number 4		R	r2110[3]
MSI12	WARNING 5	Alarm number 5		R	r2110[4]
MSI13	WARNING 6	Alarm number 6		R	r2110[5]
MSI14	WARNING 7	Alarm number 7		R	r2110[6]
MSI15	WARNING 8	Alarm number 8		R	r2110[7]

¹⁾ R: Readable

5.5.3 Acyclic communication (general parameter access) via BACnet

Acyclic communication or general parameter access is realized via BACnet objects DS47IN and DS47OUT.

Acyclic communication uses the octet string value objects OSV0 and OSV1.

Instance ID	Object name	Description	Access type
OSV0	DS47IN	Maximum length 242, of which two bytes header, 240	W
OSV1	DS47OUT	bytes user data	R

The OSV are structured as follows:

Function Code	Request length	User data
2F (1 Byte)	(1 byte)	Maximum 240 bytes

Write parameter request with OSV0 and read with OSV1

To read parameter r0002 write the following values into the present value window of OSV0

Table 5-35	Write parameter	request via OSV0
------------	-----------------	------------------

	Byte	Description
2F h	1	Function code 2F h (47),
0A h	2	Request length 10 bytes (OA h)
80 h	3	Request reference = 80 h
01 h	4	Request identifier = 1 h
01 h	5	DO-Id = 1
01 h	6	Number of parameters = 1
10 h	7	Attribute
01 h	8	Number of elements = 1
0002 h	9,10	Parameter number = 2
0000 h	11,12	Subindex = 0

If the request was successfully processed, then you can read out the response precisely once from the present value window of the OSV1:

Table 5-36 Read parameter content via OSV1

	Byte	Description
2F h	1	Function code 2F h (47)
08 h	2	Response length 8 bytes
80 h	3	Request reference = 80 h
01 h	4	Request identifier = 1 h
01 h	5	DO-Id = 1
01 h	6	Number of parameters = 1
10 h	7	Format
01 h	8	Number of elements = 1
001F h	9,10	Parameter value 1F h = 31

If the response is still not available, then you receive the following message via the present value window of the OSV1:

Table 5-37 Read parameter content via OSV1

	Byte	Description
2F h	1	Function code 2F h (47)
00 h	2	Response length 0 (error)
0004 h	3,4	Error code 4 h (response still not available)

If you wish to read the response once more, then you obtain the following message via the present value window of the OSV1:

Table 5-38 Read parameter content again via OSV1

	Byte	Description
2F h	1	Function code 2F h (47)
00 h	2	response length 0 (error)
0002 h	3,4	Error code 2 h (Invalid State)

Overview of the error codes

1 h: Invalid Length (invalid length)

2 h: Invalid State (action is not permitted in the actual converter state)

3 h: Invalid function Code (FC = 2 hex)

4 h: Response not ready (the response has still not been issued)

5 h: Internal Error (general system error)

Incorrect access operations to parameters via data set 47 are logged in objects OSV0 and OSV1.

5.6 Communication via P1 - only CU230P-2 HVAC, CU230P-2 BT

P1 is an asynchronous master-device communication between what is known as a Field Cabinet (master) and the FLN devices (device). FLN stands for "Floor level network".

The master individually addresses the various devices. A device responds only if the master addresses it. Communication between the devices is not possible.

A Field Cabinet can have several FLN ports. You can connect up to 32 FLN devices to each FLN port (devices).

Settings in the controller

In the Field Cabinet, for each device you must install what is known as a "Logical controller (LCTR) point". In addition, in the Field Cabinet you must define the "Point numbers" for communication.

An overview of the "Point Numbers" is provided on the following pages.

5.6.1 Basic settings for communication via P1

Overview

Procedure

Proceed as follows to set communication via P1:

- 1. Select the default setting 114
 - With Startdrive during commissioning step "Default setting of setpoint/command sources":
 - 114 "BT Mac 14: Communication P1"
 - With the BOP-2 during basic commissioning under step "MAc PAr P15": P_F _P1
 - Via parameter number: p0015 = 114

After selecting default setting 114, the converter automatically sets the following parameters:

- p2030 = 8: Fieldbus protocol P1
- p2020 = 5: Baud rate 4800 bit/s
- p0840 = 2090.0 The ON/OFF1 command is interconnected with control word 1, bit 0
- p0852 = 2090.3: The signal for "Enable operation" is interconnected with control word 1, bit 3
- p2103[0] = 2090.7: The signal for "Acknowledge fault" is interconnected with control word 1, bit 7
- Set the address. Irrespective of the address that has been set, every FLN device responds to telegrams with address 99.
- 3. Make additional changes based on the parameters listed in the following sections.
- 4. If you are working with Startdrive, back up the settings so they are not lost if the power fails.

You have now set the communication via P1. $\hfill\square$

Additional parameters for adapting communication via P1

p2020 = 7: Baud rate 19200 bit/s

p1070 = 2050[1]: Receive main setpoint via fieldbus

p2051[0] = 52: Send status word via fieldbus

p2051[1] = 63: Send speed actual value via fieldbus

5.6.2 Setting the address

Valid address area: 1 ... 99

You have the following options for setting the address:

• Using the address switch on the Control Unit:

Figure 5-14 Address switch with example for bus address 10

The address switch has priority over the other settings.

• Using Startdrive or an operator panel via parameter p2021 (default setting: p2021 = 99). It is only possible to change p2021 if an invalid address is set in the address switch. If you are working with Startdrive, back up the settings so they are not lost if the power fails.

You can find the position of the address switch in the operating instructions for the converter.

Manuals and technical support (Page 217)

Activating the changed bus address

Procedure

- 1. Set the address as described above.
- 2. Switch off the converter power supply.
- 3. Wait until all LEDs on the converter are dark.
- 4. Switch on the converter power supply again. Your settings become effective after switching on.

You have now set the bus address.

5.6.3 Point numbers

The subsequently listed "Point Numbers" for communication are defined using P1 in the converter. The values listed in the tables refer to SI units.

Point	Descriptor	Default/	Units	Slope	Inter-	Subpt.	IO Type	On Text C	off Text	CU Param / Word
No.		factory			cept	Type		Rang	e	Type
-	CTLR ADDRESS	66	1	۲	0	2	LAO_255	0 2	55	p2021
2	APPLICATION	2767	-	1	0	2	LAO_32k	0 327	767	p8998[0]
8	FREQ OUTPUT	0	HΖ	0.04	-650	1*)	LAI_32k	-650	650	r0024
5	SPEED	0	RPM	1	-16250	1*)	LAI_32k	-16250 '	16250	r0022
9	CURRENT	0	A	0.05	0	1*)	LAI_32k	0 163	38.4	r0027
7	TORQUE	0	MN	0.2	-3250	1*)	LAI_32k	-3250 (3250	r0031
8	ACTUAL PWR	0	КW	0.01	0	.	LAI_32k	0 327	.67	r0032
6	TOTAL KWH	0	KWH	1	0	.	LAI_32k	0 327	767	r0039
13	DC BUS VOLTS	0	>	1	0		LAI_32k	0 327	767	r0026
14	REFERENCE	0	HΖ	0.04	-650		LAI_32k	-650	650	r0020
16	RATED PWR	0	КW	0.01	0		LAI_32k	0 327	.67	r0206
17	OUTPUT VOLTS	0	^	1	0		LAI_32k	0 327	767	r0025
20	OVRD TIME	1	HRS	٦	0	2	LAO_255	0 2	55	p8998[1]
21	AR MAX FREQ	0	-	1	0	1	רסו	MAX N	lo I	ZSW:10
22	CMD FWD REV	0	-	1	0	1	LDO	REV F	DW.	STW:11
23	FWD REV	0	1	1	0	.	LDI	FWD	REV	ZSW:14
24	CMD START	0	-	1	0	1	LDO	START S	тор	STW:0
25	STOP RUN	0	-	1	0	1	LDI	RUN S	тор	ZSW:2
26	CONTROL MODE	1	-	1	0	+	LDI	SERIAL L	OCAL	6:MSZ
28	READY TO RUN	0	1	۲	0	-	LDI	READY C	DFF	ZSW:1
29	DAY NIGHT	0		1	0	1	LDO	NIGHT D	AY	p8998[2]
30	CURRENT LMT	0.0	РСТ	0.1	10.0	2	LAO_4k	0 4	00	p0640
31	ACCEL TIME 1	10.00	SEC	0.02	0	2	LAO_32k	0 650	.00	p1120
32	DECEL TIME 1	10.00	SEC	0.02	0	2	LAO_32k	0 650	.00	p1121
34	HAND AUTO	0	1	-	0	2	LDI	HAND A	UTO	r0807.0

RUN ENABLE ENABLED					Juppl.	IO I ype			
I ENABLE BLED	factory			cept	Type		Ran	ige	Type
ABLED	-		1	0	٢	ГРО	ENABLE	OFF	STW:3
	0	1	-	0	~	LDI	NO	OFF	2SW:0
BITAL OUT 1	0	-		0	2	LDO	NO	OFF	p0730 / r747.0
SITAL OUT 2	0	-	1	0	2	LDO	NO	OFF	p0731 / r747.1
SITAL OUT 3	0	-	1	0	2	LDO	NO	OFF	p0732 / r747.2
ALOG IN 1	0	РСТ	0.1	-300.0	1*)	LAI_32k	-300	. 300	r0755[0]
ALOG IN 2	0	РСТ	0.1	-300.0	1*)	LAI_32k	-300	. 300	r0755[1]
IALOG OUT 1	0	РСТ	0.1	-100.0	۲	LAI_32k	-100	. 100	r0774[0]
IALOG OUT 2	0	РСТ	0.1	-100.0	٢	LAI_32k	-100	. 100	r0774[1]
REQ REF	0	РСТ	0.006103515	0	1*)	LAO_32k	0	100	HSW
REQ ACTUAL	0	РСТ	0.012207031	-100.0	1*)	LAI_32k	-100.0	. 100.0	HIW
REQ MAX	3000.00	ΗZ	0.02	1.00	~	LAO_32k	0.10 (650.00	p2000 1/min à Hz
O SP REF	0	РСТ	0.024414063	-200.0	~	LAO_32k	-200.0	. 200.0	p2240
D SP OUT	0	РСТ	0.012207031	-100.0	-	LAI_32k	-100.0	. 100.0	r2250
O UP LMT	100.0	РСТ	0.024414063	-200.0	7	LAO_32k	-200.0	. 200.0	p2291
D LO LMT	0	РСТ	0.024414063	-200.0	~	LAO_32k	-200.0	. 200.0	p2292
D ΟυΤΡυΤ	0	РСТ	0.012207031	0	-	LAI_32k	-100.0	. 100.0	r2294
FEEDBACK	0	РСТ	0.012207031	-100.0	1*)	LAI_32k	-100.0	. 100.0	r2266
GAIN	1.000	I	0.01	0	2	LAO_32k	0 10	00.00	p2280
BAIN	0	SEC	0.002	0	2	LAO_32k	0 6	00.00	p2285
GAIN	0	I	0.002	0	2	LAO_32k	0 6	00.00	p2274
IABLE PID	0	-	1	0	2	LDO	NO	OFF	p2200
EDBK GAIN	100.0	PCT	0.02	0	2	LAO_32k	0 5(00.00	p2269
W PASS	0	I	0.01	0	2	LAO_32k	0 6	00.00	p2265
GITAL IN 0	0	1	1	0	٢	LDI	NO	OFF	r0722.0

Communication via RS485

No. factory factory factory factory Word Tyr 72 DIGITAL IN 1 0 - 1 0 0 - 722.1 73 DIGITAL IN 2 0 - 1 0 1 LDI ON OFF 772.1 74 DIGITAL IN 2 0 - 1 0 1 LDI ON OFF 772.3 75 DIGITAL IN 3 0 - 1 0 1 LDI ON OFF 772.3 76 DIGITAL IN 5 0 - 1 0 1 LDI ON OFF 772.4 772 BI DIGITAL IN 5 0 - 1 0 D 772.4 772.4 76 DIGITAL IN 5 0 - 1 0 D - 772.4 772.4 76 DIGITAL IN 5 0 - 1 0 0 0 0 772.4	Point	Descriptor	Default/	Units	Slope	Inter-	Subpt.	IO Type	On Text	Off Text	CU Param /
72 DIGITAL IN 1 0 1 0 1 DI <	No.		factory			cept	Type		Ran	ge	Word Type
73 Digital IN 2 0 - 1 0 0 0 0 172.2 74 Digital IN 3 0 - 1 0 1 DD 0N 0F 172.3 75 Digital IN 3 0 - 1 0 1 DD 0N 0F 172.3 76 Digital IN 5 0 - 1 0 1 DD 0N 0F 172.3 76 Digital IN 5 0 - 1 0 1 DD 0N 0F 172.3 80 WDOG TIME 100 ms 10 0 2 LA 2N 00.00 29.99 0040 81 NVERTER VER Apr 50 ms 10 0 1 <td>72</td> <td>DIGITAL IN 1</td> <td>0</td> <td></td> <td>1</td> <td>0</td> <td>1</td> <td>LDI</td> <td>NO</td> <td>OFF</td> <td>r722.1</td>	72	DIGITAL IN 1	0		1	0	1	LDI	NO	OFF	r722.1
74 DIGITALIN3 0 1 0 1 DI 80 WDOG TIME 100 ms 10 0 2 10 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	73	DIGITAL IN 2	0		1	0	1	LDI	NO	OFF	r722.2
75 DIGITAL IN 4 0 1 0 OFF 772.4 76 DIGITAL IN 5 0 - 1 0 7 OFF 772.5 80 WDOG TIME 100 ms 10 0 2 LAO_BK 0.0. 55.30 p2040 81 NVERTER VER Apr 50 - 0.01 0 2 LAI_32K 0.0.05 99.9 p0410 83 INVERTER VER Apr 50 - 1 0 2 LAI_32K 0.0.0 90470 90 ACTIVE FAULT 0 - 1 0 2 LAI_32K 0.0.3767 p04701 91 1stFAULT 0 - 1 0 1 0 32767 p04701 92 ActIVE FAULT 0 - 1 0 1 0 32767 p04701 92 JarbuLT 0 - 1 0 1 0 <td< td=""><td>74</td><td>DIGITAL IN 3</td><td>0</td><td></td><td>1</td><td>0</td><td>1</td><td>LDI</td><td>NO</td><td>OFF</td><td>r722.3</td></td<>	74	DIGITAL IN 3	0		1	0	1	LDI	NO	OFF	r722.3
76 DIGITAL IN5 0 1 0 1 DI OFF 772.5 80 WDOG TIME 100 ms 100 0 2 LAO_SK 0 9.999 70018 83 INVERTER VER Apr 50 0.01 0 2 LAI_32K 0 9.999 7018 84 DRIVE MODEL 0 1 0 2 LAI_32K 0.0.0 9.999 7016 91 DRIVE MODEL 0 1 0 1 LAI_32K 032767 7094710 92 ACTIVE FAULT 0 1 0 1 LAI_32K 032767 7094710 92 Jar FAULT 0 1 0 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	75	DIGITAL IN 4	0		1	0	1	LDI	NO	OFF	r722.4
80 WDOG TIME 100 ms 10 0 2 LAO_BK 06530 2040 83 INVERTER VER Apr 50 0.01 0 2 LAI_32K 00.0099.99 fr018 84 DRIVE MODEL 0 1 0 2 LAI_32K 00.0099.99 fr018 90 ACTIVE FAULT 0 1 0 1 LAI_32K 0.0.32767 fr0347[1] 91 1 st FAULT 0 1 0 1 LAI_32K 032767 fr0347[1] 92 2nd FAULT 0 1 0 1 LAI_32K 032767 fr0347[1] 92 2nd FAULT 0 1 0 1 fr01 fr034 fr0347[2] <	76	DIGITAL IN 5	0		1	0	1	LDI	NO	OFF	r722.5
33 INVERTER VER Apr 50 0.01 2 Lal_32k 00.00 99.99 P018 84 DRIVE MODEL 0 - 1 0 2 Lal_32k 00.00 99.99 P0170 90 ACTIVE FAULT 0 - 1 0 2 Lal_32k 032767 P04710 91 1st FAULT 0 - 1 0 1 0 032767 P04710 92 Zad FAULT 0 - 1 0 1 Lal_32k 032767 P04710 93 3rd FAULT 0 - 1 0 1 Lal_32k 032767 P04712 93 3rd FAULT 0 - 1 0 1 Lal_32k 032767 P04712 94 FAULT 0 - 1 0 1 Lal_32k 032767 P04723 95 FAULTACK 0 - 1	80	WDOG TIME	100	ms	10	0	2	LAO_8k	9 0	5530	p2040
84 DRIVE MODEL 0 1 0 2 Lal_32K 032767 r0200 90 ACTIVE FAULT 0 1 0 1* Lal_32K 032767 r0947[0] 91 1st FAULT 0 1 0 1* Lal_32K 032767 r0947[1] 92 2nd FAULT 0 1 0 1* Lal_32K 032767 r0947[1] 92 2nd FAULT 0 1 0 1* Lal_32K 032767 r0947[2] 93 3rd FAULT 0 1 0 1* Lal_32K 032767 r0947[2] 94 FAULT 0 - 1 0 1* LDI 0 32767 r0947[2] 94 FAULT 0 - 1 0 1* LDI 0 32767 r0947[2] 95 FAULTACK 0 -	83	INVERTER VER	Apr 50		0.01	0	2	LAI_32k	00'00	99.99	r0018
90 ACTIVE FAULT 0 1 0 1*1 LAI_3ZK 0 32767 10947[0] 91 1st FAULT 0 1 0 1*3 0 32767 10947[1] 92 2nd FAULT 0 1 0 1*) LAI_3ZK 0 32767 10947[1] 93 3nd FAULT 0 1 0 1*) LAI_3ZK 0 32767 10947[2] 94 FAULT 0 1 0 1*) LAI_3ZK 0 32767 10947[2] 94 FAULT 0 1 0 1*) LAI_3ZK 0 32767 10947[2] 95 FAULT 0 1 0 1 0K ZK ZK 96 WANING 0 1 0 1*) LAI_3ZK 0 ZK ZK ZK ZK ZK	84	DRIVE MODEL	0		1	0	2	LAI_32k	0 3	2767	r0200
91 1st FauLt 0 1 0 1*1 Lal_32k 032767 1094711 92 2nd FauLt 0 1 0 1*) Lal_32k 032767 1094712 93 3rd FAULt 0 1 0 1*) Lal_32k 032767 1094712 94 FAULt 0 1 0 1*) Lal_32k 032767 1094713 94 FAULT 0 1 0 1*) Lal_32k 032767 1094713 95 FAULTACK 0 1 0 1* LDO OK ZsW:3 96 WARNING 0 1 0 1* OK ZsW:7 97 ACTIVE WARNING 0 1 D LDO OK ZsW:7 98 RAM TO ROM 0 1 0 1* DOK POK	06	ACTIVE FAULT	0		1	0	1*)	LAI_32k	C 0	2767	r0947[0]
92 2nd FAULT 0 1 0 132K 032767 10947[2] 93 3rd FAULT 0 1 0 1*) LAI_32K 032767 10947[3] 94 FAULT 0 1 0 1*) LAI_32K 032767 10947[3] 94 FAULT 0 1 0 1*) LDI PULT NG ZSW:3 95 FAULT ACK 0 1 0 1 LDO OF ZSW:3 96 WARNING 0 1 0 1*) LAI_32K 032767 f2110[0] 97 ACTIVE WARNING 0 1 0 1*] LAI_32K 032767 f2110[0] 98 RAM TO ROM 0 1 0 1*] LDO ACT KST f2110[0] 94 ERCOR STATUS 0 1 0 <td>91</td> <td>1st FAULT</td> <td>0</td> <td></td> <td>1</td> <td>0</td> <td>1*)</td> <td>LAI_32k</td> <td>C 0</td> <td>2767</td> <td>r0947[1]</td>	91	1st FAULT	0		1	0	1*)	LAI_32k	C 0	2767	r0947[1]
93 3rd FAULT 0 1 0 1* LAI_3ZK 032767 r0947[3] 94 FAULT 0 1 0 1 LDI CMLT CK ZSW:3 95 FAULTACK 0 1 0 1 LDI CK ZSW:3 96 WARNING 0 1 0 1 LDI MRN CK ZSW:7 97 ACTIVE WARNING 0 1 0 1*/32K 032767 r2110[0] 98 RAM TOROM 0 1 0 1*/32K 02557 r2110[0] 96 ERROR STATUS 0 1 0 02555 r917/p10	92	2nd FAULT	0		1	0	1*)	LAI_32k	203	2767	r0947[2]
94 FAULT 0 1 0 1 LDI FAULT OK ZSW:3 95 FAULTACK 0 1 0 1 LDO OF ZSW:7 96 WARNING 0 1 0 1 LDI OR OF ZSW:7 97 ACTIVE WARNING 0 1 0 1*/32K 032767 ZSW:7 98 RAM TOROM 0 1 0 1*/32K 032767 P110[0] 98 ERROR STATUS 0 1 0 1*/55 0255 P371/p10	93	3rd FAULT	0		1	0	1*)	LAI_32k	C 0	2767	r0947[3]
95 FAULTACK 0 1 0 1 LDO OF STW:7 96 WARNING 0 1 0 1 LDI MARN OK ZSW:7 97 ACTIVE WARNING 0 1 0 1*) LAI_32k 032767 r2110[0] 98 RAM TO ROM 0 1 0 1*) LDO SAVE P071/ P10 99 ERROR STATUS 0 1 0 1*) LAI_255 0255 F947[0]	94	FAULT	0	-	1	0	1	rdi	FAULT	ОК	ZSW:3
96 WARNING 0 1 0 1 LDI WARN OK ZSW:7 97 ACTIVE WARNING 0 1 0 1*) LAI_32K 032767 r2110[0] 98 RAM TO ROM 0 1 0 1* LAI_32K 032767 r2110[0] 99 ERROR STATUS 0 1 0 1* LAI_255 0255 r947[0]	95	FAULT ACK	0		1	0	1	LDO	NO	OFF	STW:7
97 ACTIVE WARNING 0 1 0 1.32K 032767 r2110[0] 98 RAM TO ROM 0 1 0 1 LDO SAVE DONE p971/ p10 99 ERROR STATUS 0 1 0 1*) LAI_255 0255 r947[0]	96	WARNING	0		1	0	1	LDI	WARN	ОК	ZSW:7
98 RAM TO ROM 0 1 0 1 LDO SAVE DONE p971/p10 99 ERROR STATUS 0 1 0 1*) LAI_255 0 255 F947[0]	97	ACTIVE WARNING	0	-	1	0	1*)	LAI_32k	0 3	2767	r2110[0]
99 ERROR STATUS 0 1 0 1*) LAI_255 0 0 255 r947[0]	98	RAM TO ROM	0		1	0	1	LDO	SAVE	DONE	p971/ p10=30
	66	ERROR STATUS	0	1	1	0	1*)	LAI_255	0 0	255	r947[0]

Communication via RS485

1*): For reasons of compatibility, these type 1 subpoints can save COV area information. Point Number 98 RAM TO ROM was implemented in order to be able to save these in a non-volatile fashion.

Communication over CANopen

General information on CAN

You can find general information about CAN on the Internet:

CAN Internet pages (<u>http://www.can-cia.org</u>)

You can find the CANdictionary with explanations of CAN terminology on the Internet:

CAN downloads (<u>http://www.can-cia.org/index.php?id=6</u>).

Integrating a converter in a CANopen network

You can find the EDS file for integrating the converter in a CANopen network on the Internet:

EDS (http://support.automation.siemens.com/WW/view/en/48351511)

The EDS file is the description file of the SINAMICS G120 converter for CANopen networks. In this way, you can use the objects of the DSP 402 device profile.

The following Control Units and converters have an CANopen interface

G120 CU230P-2 CAN G120 CU250S-2 CAN

G120C CAN

Signal	D sub connector
	$ \begin{array}{c} X126 \\ 1 & \dots & 5 \\ \hline \bullet \bullet \bullet \bullet \bullet \\ 6 & \dots & 9 \end{array} $
	1
CAN_L, CAN signal (dominant low)	2
CAN_GND, CAN ground	3
	4
(CAN _SHLD), optional shield	5
(CAN_GND), optional ground	6

Table 6-1Pin assignment of the connector

CAN_H, CAN signal (dominant high)	7
	8
	9

Grounding the CANopen Control Unit

The CAN ground (pin 3) and the optional ground are electrically isolated from the ground potential of the system.

The optional shield (pin 5) and the connector housing are connected with the ground potential of the system.

CANopen functions of the converter

CANopen is a communication protocol with line-type topology that operates on the basis of communication objects (COB).

SINAMICS G120 converters with CANopen interface comply with the following standards:

- CiA 301 (Application Layer and Communication Profile)
- CiA 303-3 (Indicator Specification)
- CiA 306 (Electronic Data Sheet Specification for CANopen)
- CiA 402 (Device Profile for Drives and Motion Control)

Communication objects (COB)

The converter operates with the following communication objects:

- **MMT** Network management (NMT service) (Page 161) Network management objects for controlling CANopen communication and for monitoring the individual nodes on the basis of a manager-device relationship.
- SDO SDO services (Page 164)
 Service data objects for reading and changing parameters
- PDO PDO services (Page 167) Process data objects to transfer process data, TPDO to transmit, RPDO to receive process data
- SYNC
 Synchronization objects
- EMCY Time stamp and fault messages

COB ID

A communication object contains the data to be transferred and a unique 11-bit COB ID. The COB ID also defines the priority for processing the communication objects. The communication object with the lowest COB ID always has the highest priority.

6.1 Network management (NMT service)

COB ID for individual communication objects

You will find the specifications for the COB IDs of the individual communication objects below:

Cannot be changed

Pre-assigned with 80 hex

80 hex + node ID = COB ID_{EMCY}

In the free PDO mapping *)

In the free PDO mapping *)

- COB ID_{NMT} = 0
- COB ID_{SYNC} = free
- COB ID_{EMCY} = free
- COB ID_{TPDO} = free
- COB ID_{RPDO} = free
- COB ID_{TSDO} = 580 hex + node ID
- $COB-ID_{RSDO} = 600 \text{ hex} + \text{node ID}$
- COB ID_{Node Guarding/Heartbeat} = 700 hex + node ID
- *) Predefined connection set (Page 172)

6.1 Network management (NMT service)

Network management (NMT) is node-oriented and has a manager-device topology.

A node is a manager or a device.

The converter is an NMT device, and can adopt the following states:

- Boot-up service COB-ID = 700 hex + Node-ID
- Node Control Service COB ID = 0 (see CANopen state diagram) The transition between two states is realized using NMT services. You can find details on the NMT services on the Internet:
 CiA 301 (Application Layer and Communication Profile) (<u>http://www.can-cia.org/</u> index.php?id=specifications).
- Error Control Service COB-ID = 700 hex + Node-ID

6.1 Network management (NMT service)

CANopen state diagram

NMT states

The converter state is displayed in p8685.

You can either change the converter state via the control with an NMT telegram, using one of the command specifiers listed below, or in the converter itself using p8685.

- Initialization: p8685 = 0, Command specifier = 0
 The converter initializes itself after power on. In the factory setting, the converter then enters
 the "Pre-Operational" state, which also corresponds to the CANopen standard.
 Using p8684, you can set that after the bus has booted, the converter does not go into the
 "Pre-Operational" state, but instead into the "Stopped" or "Operational" state.
- Pre-Operational, p8685 = 127 (factory setting), Command specifier = 128 In this state, the node cannot process any process data (PDO). However, the controller can use SDO parameters to change or operate the converter, which means that you can also enter setpoints via SDO.
- Operational, p8685 = 5; Command specifier = 1 In this state, the nodes can process SDO as well as also PDO.
- Stopped, p8685 = 4; Command specifier = 2 In this state, the nodes can neither process PDO nor SDO. The "Stopped" state terminates one of the following commands:
 - Enter Pre-Operational, p8685 = 127 (factory setting), Command specifier = 128
 - Start Remote Node
 - Reset Node, p8685 = 128, Command specifier = 129
 - Reset Communication, p8685 = 129, Command specifier = 130

6.1 Network management (NMT service)

Note

Sending an incorrect NMT state

If the control sends an incorrect NMT state to the converter, the converter goes into the "Stopped" state.

Request sent by the manager to one or several devices

The NMT manager can simultaneously direct a request to one or more devices. The following is applicable:

- Requirement of a device: The controller accesses the device with its node ID (1 - 127).
- Requirement for all devices: Node ID = 0

Boot-up Service

The boot-up protocol indicates the state of the NMT device after it has booted (factory setting "Pre-operational").

Bootup protocol COB ID = 700 hex + node ID 1 data byte with the value 0 is transmitted.

NMT state after power up

Use parameter p8684 to set the state that the converter goes into after powering up:

- p8684 = 4 Stopped
- p8684 = 5 Operational
- p8684 = 127 Pre-Operational (factory setting)

Node Control Service

The Node Control Services control state transitions

- Start Remote Node: Command for switching from the "Pre-Operational" communication state to "Operational". The drive can only transmit and receive process data (PDO) in "Operational" state.
- Stop Remote Node: Command for switching from "Pre-Operational" or "Operational" to "Stopped". The node only processes NMT commands in the "Stopped" state.
- Enter Pre-Operational: Command for switching from "Operational" or "Stopped" to "Pre-Operational". In this state, the node cannot process any process data (PDO). However, the controller can use SDO parameters to change or operate the converter, which means that you can also enter setpoints via SDO.

6.2 SDO services

• Reset Node:

Command for switching from "Operational", "Pre-Operational" or "Stopped" to "Initialization". When the Reset Node command is issued, the converter resets all the objects (1000 hex - 9FFF hex) to the state that was present after "Power On".

 Reset Communication: Command for switching from "Operational", "Pre-Operational" or "Stopped" to "Initialization". When the Reset Communication command is issued, the converter resets all the communication objects (1000 hex - 1FFF hex) to the state that was present after "Power On".

Command specifier and node_ID indicate the transition states and addressed nodes.

Error Control Service

"Node Guarding / Life Guarding" or "Heartbeat" monitor communication.

Setting options and default settings.

Setting the monitoring of the communication (Page 197)

6.2 SDO services

You can access the object directory of the connected drive unit using the SDO services. An SDO connection is a peer-to-peer coupling between an SDO client and a server.

The drive unit with its object directory is an SDO server.

The identifiers for the SDO channel of a drive unit are defined according to CANopen as follows.

Receiving:	Server \leftarrow client:	COB ID = 600 hex + node ID
Transmitting:	Server \Rightarrow client:	COB ID = 580 hex + node ID

Properties

The SDOs have the following properties:

- An SDO connection exists only in the Pre-Operational and Operational states
- Transmission is confirmed
- Asynchronous transmission (matches the acyclical communication via PROFIBUS DB)
- Transmission of values > 4 bytes (normal transfer)
- Transmission of values ≤ 4 bytes (expedited transfer)
- All drive unit parameters can be addressed via SDO

6.2.1 Access to SINAMICS parameters via SDO

You access SINAMICS parameters using the SDO service. To do this, you use objects 2000 hex ... 470F hex of the manufacturer-specific area of the object directory.

Because you cannot directly address all of the parameters using this area, you require for an SDO job always the parameter number itself and the offset dependent on the parameter number.

Selection of parameter range and the associated offset

Offset	Offset value
p8630[2] = 0	0
p8630[2] = 1	10000
p8630[2] = 2	20000
p8630[2] = 3	30000
	Offset p8630[2] = 0 p8630[2] = 1 p8630[2] = 2 p8630[2] = 3

Calculate object number for an SDO job

The object number for the SDO job is calculated as follows: object number hex = (number of the converter parameter - offset value) hex + 2000 hex

Examples of object numbers

Parameter	Number of tl ue	ne converter parameter - c	offset val- Object number
	Decimal	Hexadecimal	
• p0010:	10 dec	A hex	\Rightarrow 200A hex
• p11000:	1000 dec	3E8 hex	\Rightarrow 23E8 hex
• r20001:	1 dec	1 hex	\Rightarrow 2001 hex
• p31020:	1020 dec	3FC hex	\Rightarrow 23FC hex

Selection, index range

A CANopen object can contain a maximum of 255 indexes. For parameters with more than 255 indexes, you must create additional CANopen objects via p8630[1]. Overall, 1024 indexes are possible.

- p8630[1] = 0: 0 ... 255
- p8630[1] = 1: 256 ... 511
- p8630[1] = 2: 512 ... 767
- p8630[1] = 3:768 ... 1023

Switch-on access to objects of the converter parameters

Access to objects of the converter parameters is activated via p8630[0], where:

- p8630[0] = 0: only access to CANopen objects
- p8630[0] = 1: access to virtual CANopen objects (converter parameters)
- p8630[0] = 2: not relevant for G120 converters

A selection of important manufacturer-specific objects is included in the EDS file.

6.2 SDO services

6.2.2 Access PZD objects via SDO

Access to mapped PZD objects

When you access objects mapped via transmit or receive telegrams, you can access the process data without additional settings.

Overview

Figure 6-1 Access to mapped PZD setpoint objects

Figure 6-2 Access to mapped PZD actual value objects

Example, access to object 6042 hex

Figure 6-3 Access to the process data

Access to non-mapped PZD objects

When you access objects that are not interconnected via the receive or transmit telegram, you must also establish the interconnection with the corresponding CANopen parameters.

Overview

Figure 6-6 Access to non-mapped standardized PZD actual value objects

Example for interconnecting the control word with CANopen parameters:

ON/OFF1	p840[0] = r8795.0
No coast down activated	p0844[0] = r8795.1
No fast stop activated	p0848[0] = r8795.2
Enable operation	p0852[0] = r8795.3
Enable ramp-function genera- tor	p1140[0] = r8795.4
Continue ramp-function gen- erator	p1141[0] = r8795.5
Enable speed setpoint	p1142[0] = r8795.6
Acknowledge fault	p2103[0] = r8795.7
Stop	p8791 = r8795.8

6.3 **PDO services**

Process data objects (PDO)

CANopen transfers the process data using "Process Data Objects" (PDO). There are send PDOs (TDPO) and receive PDOs (RPDO). CAN controller and converter each exchange up to eight TPDOs and RPDOs.

PDO communication parameters and PDO mapping parameters define a PDO.

Link the PDO with the elements of the object directory that contain the process data.

Free PDO mapping (Page 174)

Predefined connection set (Page 172).

Parameter area for PDO	RPDO		TPDO	
	In the converter	In CANopen	In the converter	In CANopen
Communication parameters	p8700 p8707	1400 hex 1407 hex	p8720 p8727	1800 hex 1807 hex
Mapping parameters	p8710 p8717	1600 hex 1607 hex	p8730 p8737	1A00 hex1A07 hex

Structure of the PDO

A PDO consists of communication and mapping parameters. Examples for the structure of the TPDO and RPDO follow.

Values for communication parameters:

Tables in the Section Object directories (Page 183)

Structure of the RPDO using RPDO1 as example

p8700[0] = COB-ID	p8700[1] = Trans-Type	p8710.0_xx_yy	p8710.1_xx_yy	p8710.2_xx_yy	p8710.3_xx_yy
Sub-Ind 01	Sub-Ind 02	Object 1	Object 2	Object 3	Object 4
Communicatio	n parameters		Mapping p	arameters	_

Structure of the TPDO using TPDO1 as example

p8720[0] = COB-ID	p8720[1] = Trans-Type	p8720[2] = Inhibit time	p8720[4] = Event timer	p8730.0_xx_yy	p8730.1_xx_yy	p8730.2_xx_yy	p8730.3_xx_yy
Sub-Ind 01	Sub-Ind 02	Sub-Ind 03	Sub-Ind 05	Object 1	Object 2	Object 3	Object 4
	Communicati	on parameters			Mapping p	parameters	

Structure of the mapping parameter using the first mapped object as example

0|0|1|0

Object length (hex, two positions), 10 for 16-bit values, 20 for 32-bit values

Sub index (two positions), for G120 always 00

OV index (four positions), value of p8710.0 for RPDO, of p8730.0 for TPDO

Figure 6-7 Structure of the RPDO and TPDO communication objects

COB ID

Overview: Communication over CANopen (Page 159).

Calculating the COB IDs: Predefined connection set (Page 172)

Transmission type

For process data objects, the following transmission types are available, which you set in index 1 of the communication parameter (p8700[1] ... p8707[1] / p8720[1] ... p8727[1]) in the converter:

- Synchronous cyclic (value range: 1 ... 240)
 - TPDO after each n-th SYNC
 - RPDO after each n-th SYNC
- Acyclic synchronous (value: 0)
 - TPDO when a SYNC is received and a process data has changed in the telegram.
- Cyclic asynchronous (values: 254, 255 + event time)
 - TPDO when a process data has changed in the telegram.

- Acyclic asynchronous (values: 254, 255)
 - TPDO sent in the Event Time interval.
 - The controller accepts the RPDO immediately.
- Synchronous data transmission
 A periodic synchronization object (SYNC object) ensures that the devices on the CANopen
 bus remain synchronized during transmission.
 Each PDO transferred as synchronization object must include a "transmission type" 1 ... n:
 - Transmission type 1: PDO in each SYNC cycle
 - Transmission type n: PDO in every n-th SYNC cycle

The following diagram shows the principle of synchronous and asynchronous transmission:

Figure 6-8 Principle of synchronous and asynchronous transmission

For synchronous TPDOs, the transmission mode also identifies the transmission rate as a factor of the SYNC object transmission intervals.

The CAN controller transfers data from synchronous RPDOs that it received after a SYNC signal only after the next SYNC signal to the converter.

Note

The SYNC signal synchronizes only the communication on the CANopen bus and not functions in the converter, e.g. the clock times of the speed control.

Inhibit time

The inhibit time defines the minimum interval between two transmissions.

PDO services

The following services are available for CANopen:

- PDO Write protocol
- PDO Read protocol

SINAMICS converters support the PDO Write protocol

Write PDO

The "PDO Write protocol" service is based on the push model. The PDO has exactly one producer. There can be no consumer, one consumer, or multiple consumers.

Via Write PDO, the producer of the PDO sends the data of the mapped application object to the individual consumer.

6.3.1 Predefined connection set

If you integrate the converter using the factory setting in CANopen, the converter receives the control word and the speed setpoint from the controller. The converter returns the status word and the actual speed value to the controller. These are the settings stipulated in the Predefined Connection Set.

Structure of the communication parameter using the control word in the predefined connections set as example

RPDO1: Communication parameter

- p8700[0] = COB-ID

- p8700[1] = transmission type

Structure of the mapping parameter using the control word in the predefined connections set as example

60400010

Figure 6-9 RPDO mapping with the Predefined Connection Set

Structure of the communication parameter using the status word in the predefined connections set as example

TPDO1: Communication parameter

- p8720[0] = COB-ID - p8700[1] = transmission type

- p8700[2] = inhibit time

- p8700[3] = event timer

Structure of the mapping parameter using the control word in the predefined connections set as example

60410010

- Object length (positions 7 ... 8 of p8730[0])
- Sub index (positions 5 ... 6 of p8730[0], for G120 always = 0)
- OV index (positions 1 ... 4 of p8730[0]

Figure 6-10 TPDO mapping with the Predefined Connection Set

6.3.2 Free PDO mapping

Using the free PDO mapping, you configure and interconnect any process data as required as follows:

- as free objects (Page 192) or
- as objects of drive profile CiA 402, corresponding to the requirements of your system for the PDO service

The precondition is that the converter is set for free PDO mapping (p8744 = 2) (factory setting).

Configuring and mapping process data using free PDO mapping

Procedure

- 1. Specify the process data. Examples:
 - Send current actual value (r0068) from the converter to the controller (TPDO Transmit Process Data Object)
 - Send additional speed setpoint from the controller to the converter (RPDO Receive Process Data Object) and write in p1075
- 2. Specify objects for transmission of the process data
 - TPDO1 for the current actual value
 - RPDO1 for additional speed setpoint
- 3. Define the communication parameters for RPDO and TPDO
 - Define communication parameters for RPDO.
 RPDO communication parameters (Page 185)
 - Define communication parameters for TPDO.
 See TPDO communication parameters (Page 188)
- 4. Select the OV index for the mapping parameters
 - Mapping parameters for RPDO.
 RPDO mapping parameters (Page 186)
 - Mapping parameters for TPDO.
 TPDO mapping parameters (Page 190)
- 5. Write OV index into the SINAMICS mapping parameters
 - p8710 ... p8717 for RPDO
 - p8730 ... p8737 for TPDO

Note

Precondition for changing the OD indexes of the SINAMICS mapping parameters

To allow you to change the values of the mapping parameters, you must set the COB ID of the corresponding parameter to invalid. To do this, add a value of 80000000 hex to the COB-ID. You must reset the COB-ID to a valid value once you changed the mapping parameters.

OV index:

Free objects (Page 192)

Cbjects of the drive profile CiA 402 (Page 193)

You have now configured and mapped the process data.

Free RPDO mapping - Overview

Interconnection options: > bit-by-bit with r2090 ... r2093

► word-by-word with r2050[0 ... 15]

► double word-by-double word with r2060[0 ... 14]

Free TPDO mapping - Overview

6.3.3 Interconnect objects from the receive and transmit buffers

To interconnect process data, proceed as follows:

Procedure

1. Create a telegram:

create PDO (parameterize the PDO Com. Parameters and PDO mapping parameters).

Free PDO mapping (Page 174)

2. Interconnect parameters:

Interconnect the parameters of the PZD buffer (r2050/r2060, p2051/p2061) corresponding to the mapping of point "Create telegram" using the mapping table r8750/r8760 or r8751/ r8761. The mapping table indicates the position of a mapped CANopen object in the PZD buffer.

You have now interconnected the process data.

Interconnecting the receive buffer

The converter writes the received data to the receive buffer:

- PZD receive word 1 ... PZD receive word 12 double word in r2060[0] ... r2060[10].
- PZD receive word 1 ... PZD receive word 12 word in r2050[0] ... r2050[11].
- PZD 1 ... PZD 4 bit-by-bit in r2090.0 ... r2090.15 to r2093.0 ... r2093.15

The position of the mapped objects in the receive buffer is displayed in:

- r8760 for double word switching
- r8750 for word switching

Examples

Object	Mapped receive ob- jects	Receive word r2050	
Control word	r8750[0] = 6040 hex (PZD1)	Interconnect r2050[0] (PZD1) in control word ¹⁾	p0840.0 = 2090.0 p0844.0 = 2090.1 p08484.0 = 2090. 2 p0852.0 = 2090.3 p2130.0 = 2090.7
Torque limit	r8750[1] = 5800 hex (PZD2)	Interconnect r2050[1] (PZD2) in the torque limit:	p1522 = 2050[1]
Speed setpoint	r8750[2] = 6042 hex (PZD3)	Interconnect r2050[2] (PZD3) in the speed setpoint:	p1070 = 2050[2]

1) see also p8790, "Automatic CAN control word interconnection"

Interconnecting the send buffer

The converter transmits the data from the send buffer as follows:

- p2051[0] ... p2051[13] in PZD 1 ... PZD 14 (indication of the actual values in r2053[0 ... 13])
- p2061[0] ... p2061[12] in PZD 1 ... PZD 14 (indication of the actual values in r2063[0 ... 12])

Examples

Object	Mapped send objects	Send word p2051	
Status word	r8751[0] = 6041 hex (PZD1)	Interconnect p2051[0] in PZD1	p2051[0] = r8784
Current actual	r8751[1] = 5810 hex	Interconnect PZD2 in the current ac-	p2051[1] = r68[
value	(PZD2)	tual value	1]
Actual speed val-	r8751[2] = 6044 hex	Interconnect PZD3 in the speed ac-	p2051[2] = r63[
ue	(PZD3)	tual value	0]
6.3.4 Free PDO mapping for example of the actual current value and torque limit

You integrate the actual current value and torque limit into the communication via the free PDO mapping.

The actual current value and the torque setpoint are transferred in TPDO1 and RPDO1, respectively. TPDO1 and RPDO1 have already been specified by the Predefined Connection Set.

Mapping the actual current value (r0068) with TPDO1

Proceed as follows to accept the current actual value as send object in the communication:

Procedure

- 1. Set the OV index for the actual current value: first free OV index from the send data from the "Free objects" 5810 table
- 2. Map the OV index for the actual current value with PZD2:
 - Set the COB-ID of TPDO1 to "invalid": p8720[0] = 800001B2 hex
 - Link the mapping parameter object 2 of TPDO1 (p8730.1) with the OV index for the actual current value:
 - p8730.1 = 58100010 hex (5810 = OV index, 00 = fixed value, 10 \u00e1 16 bit value)
 - Set the COB-ID of TPDO1 to "valid": p8720[0] = 400001B2 hex

r8751 shows which object is matched to which PZD: PZD2 (r8751[1]) = 5810 (actual current value)

3. link the PZD send word 2 in the send word (p2051) with the actual current value: p2051[1] = r0086[0]

You have now transferred the actual current value into the communication as the send object.

Mapping the torque limit (p1520) with RPDO1

Proceed as follows to accept the torque limit value in the communication:

6.4 CANopen operating modes

Procedure

- 1. Set the OV index for the torque limit: first free OV index from the receive data from the "Free objects" 5800 table
- 2. Map the OV index for the torque limit with PZD2
 - Set the COB-ID of RPDO1 to "invalid": p8700[0] = 80000232 hex
 - Link the mapping parameter object 2 of RPDO1 (p8710.1) with the OV index for the torque limit:
 p8710.1 = 58000010 hex (5800 = OV index, 00 = fixed value)
 - Set the COB-ID of RPDO1 to "valid": p8700[0] = 40000232 hex

r8750 shows which object is mapped to which PZD: PZD2 (r8750[1]) = 5800 (torque limit)

3. Link the PZD receive word 2 in the receive word (p2050) with the torque limit: p2050[1] = p1520[0]

You have now transferred the value for the torque limit into the communication. $\ensuremath{\square}$

6.4 CANopen operating modes

The converter has the following CANopen operating modes

CANopen operatin	ig mode		SINAMICS				
Active operating mode	Setting in	6502 h: Display	Open-loop/closed-loop con- trol mode	Control Unit / converter			Value in
	6060 h: Value	the ac- tive op- erating mode in		CU230P-2 CAN	G120C CAN	CU250S-2 CAN	p1300
Velocity Mode	2	Bit1	U/f control with linear charac- teristic		x	x	0
Manufacturer-spe- cific operating mode 1	-1	Bit16	U/f control with linear charac- teristic and FCC	x	x	x	1
Manufacturer-spe- cific operating mode 2	-2	Bit17	U/f control with parabolic characteristic	x	x	x	2
Manufacturer-spe- cific operating mode 3	-3	Bit18	U/f control with parameteriz- able characteristic		X	x	3
Manufacturer-spe- cific operating mode 4	-4	Bit19	U/f control with linear charac- teristic and ECO	x	x	x	4
Manufacturer-spe- cific operating mode 5	-5	Bit20	U/f control for drive requiring a precise frequency (e.g. tex- tiles)		X	x	5

6.4 CANopen operating modes

Manufacturer-spe- cific operating mode 6	-6	Bit21	U/f control for drive requiring a precise frequency and FCC		X	x	6
Manufacturer-spe- cific operating mode 7	-7	Bit22	U/f control with parabolic characteristic and ECO	х	x	x	7
Manufacturer-spe- cific operating mode 8	-15	Bit23	Operation with braking resis- tor			х	15
Manufacturer-spe- cific operating mode 10	-19	Bit25	U/f control with independent voltage setpoint		x	x	19
Manufacturer-spe- cific operating mode 11	-20	Bit26	Speed control (without en- coder)	х	x	x	20
Profile Velocity Mode	3	Bit2	Speed control (with encoder)			x	21
Manufacturer-spe- cific operating mode 12	-22	Bit27	Torque control (without en- coder)			x	22
Profile Torque Mode	4	Bit3	Closed-loop torque control (with encoder)			х	23

Switching the CANopen operating modes

		Switching from				
		Velocity mode	Profile velocity mode	Profile torque mode		
	Velocity mode		p1300 < 20 V/f control	p1300 < 20 V/f control		
þ	Profile velocity mode	p1300 = 20 / 21 Speed control		p1500 = 0 (via BiCo), speed control		
	Profile torque mode	p1300 = 22 / 23 Speed control	p1500 = 1 (via BiCo), torque control			
P	arameter access via SD0	Para	ameter change via PDO			

You can also use parameters from other CANopen operating modes, independently from the current effective CANopen operating mode.

6.5 RAM to ROM via the CANopen object 1010

6.5 RAM to ROM via the CANopen object 1010

Save the parameters of the converter EEPROM using CANopen object 1010.

The following options are available:

- 1010.1: Save all parameters identical with p0971 = 1, or back them up so they are not lost if the power fails.
- 1010.2: Save communication parameters not possible via parameter settings!
- 1010.3: Save application parameters not possible via parameter settings!

If a memory card is inserted, write the parameter settings via the control with object 1010.1 into the EEPROM and to the memory card. You can carry out series commissioning with the memory card.

For additional information, please refer to the operating instructions, Chapter "Backing up data and series commissioning"

 \square Overview of the manuals (Page 217),

Note

Save data using objects 1010.2 and 1010.3

Although you can write the communication and/or application parameters to the EEPROM using objects 1010.2 and 1010.3, you cannot write them to the memory card. This also means that it is not possible to load the communication data or only the application data from one converter into the next via the memory card.

Note

With the USB cable inserted, save the data in the converter via the control.

If the converter is connected with a computer via USB but Startdrive cannot access the converter online, then you cannot save data in the converter using CANopen object 1010.

Withdraw the USB cable from the converter if you wish to save the parameter setting with object 1010.1 in the converter via the control.

6.6.1 General objects from the CiA 301 communication profile

Overview

The following table lists the drive-independent communication objects. The "SINAMICS parameters" column shows the parameter numbers assigned in the converter.

OD in- dex (hex)	Subindex (hex)	Object name	SINAMICS parame- ters	Transmis- sion	Data type	Default values	Can be read/ written
1000		Device type	r8600	SDO	U32	-	r
1001		Error register	r8601	SDO	U8	-	r
1003	052 hex	Predefined error field	p8611[082]	SDO	U32	0	r/w
	0	Number of errors	p8611.0	SDO	U32	0	rw
	1	Number of module	p8611.1	SDO	U32	0	r
	2	Number of errors: module 1	p8611.2	SDO	U32	0	r
	3-A	Standard error field: mod- ule 1	p8611.3- p8611.10	SDO	U32	0	r
	В	Number of errors: module 2	p8611.11	SDO	U32	0	r
	C-13	Standard error field: mod- ule 2	p8611.12- p8611.19	SDO	U32	0	r
	14	Number of errors: module 3	p8611.20	SDO	U32	0	r
	15-1C	Standard error field: mod- ule 3	p8611.21- p8611.28	SDO	U32	0	r
	1D	Number of errors: module 4	p8611.29	SDO	U32	0	r
	1E-25	Standard error field: mod- ule 4	p8611.30- p8611.37	SDO	U32	0	r
	26	Number of errors: module 5	p8611.38	SDO	U32	0	r
	27-2E	Standard error field: mod- ule 5	p8611.39- p8611.46	SDO	U32	0	r
	2F	Number of errors: module 6	p8611.47	SDO	U32	0	r
	30-37	Standard error field: mod- ule 6	p8611.48- p8611.55	SDO	U32	0	r
	38	Number of errors: module 7	p8611.56	SDO	U32	0	r
	39-40	Standard error field: mod- ule 7	p8611.57- p8611.64	SDO	U32	0	r

 Table 6-2
 Drive-independent communication objects

OD in- dex (hex)	Subindex (hex)	Object name	SINAMICS parame- ters	Transmis- sion	Data type	Default values	Can be read/ written
	41	Number of errors: module 8	p8611.65	SDO	U32	0	r
	42-49	Standard error field: mod- ule 8	p8611.66- p8611.73	SDO	U32	0	r
	4A	Number of Control Unit faults	p8611.74	SDO	U32	0	r
	4B-52	Field Control Unit stand- ard error	p8611.75- p8611.82	SDO	U32	0	r
1005		SYNCH COB ID	p8602	SDO	U32	128	rw
1008		Manufacturer device name		SDO			
100A		Manufacturer software version	r0018	SDO	U32	-	r
100C		Guard time	p8604.0	SDO	U16	0	rw
100D		Lifetime factor	p8604.1	SDO	U16	0	rw
1010		Store parameters	p0971	SDO	U16	0	rw
	0	Largest subindex suppor- ted		SDO			
	1	Save all parameters	p0971	SDO	U16	0	rw
	2	Save communication pa- rameters (0x1000-0x1fff)	p0971	SDO	U16	0	rw
	3	Save application-related parameters (0x6000-0x9fff)	p0971	SDO	U16	0	rw
1011		Restore default parame- ters	p0970	SDO	U16	0	rw
	0	Largest subindex suppor- ted		SDO			
	1	Restore all default param- eters	p0970	SDO	U16	0	rw
	2	Restore communication default parameters (0x1000-0x1fff)	p0970	SDO	U16	0	rw
	3	Restore application de- fault parameters (0x6000-0x9fff)	p0970	SDO	U16	0	rw
1014		COB ID emergency	p8603	SDO	U32	0	rw
1017		Producer heartbeat time	p8606	SDO	U16	0	rw
1018		Identy Object	r8607[03]		U32	-	r
	0	Number of entries		SDO			
	1	Vendor ID	r8607.0	SDO	U32	-	r
	2	Product code	r8607.1	SDO	U32	-	r
	3	Revision number	r8607.2	SDO	U32	-	r
	4	Serial number	r8607.3	SDO	U32	0	r
1027		Module list					

OD in- dex (hex)	Subindex (hex)	Object name	SINAMICS parame- ters	Transmis- sion	Data type	Default values	Can be read/ written
	0	Number of entries	r0102	SDO	U16	-	r
	1-8	Module ID	p0107[015]	SDO	116	0	rw
1029		Error behavior					
	0	Number of error classes		SDO			
	1	Communication Error	p8609.0	SDO	U32	1	rw
	2	Device profile or manufac- turer-specific error	p8609.1	SDO	U32	1	rw
1200		1st server SDO parameter					
	0	Number of entries		SDO			
	1	COB ID client -> server (rx)	r8610.0	SDO	U32	-	r
	2	COB ID server -> client (tx)	r8610.1	SDO	U32	-	r

RPDO configuration objects

The following tables list the communication and mapping parameters together with the indexes for the individual RPDO configuration objects. The configuration objects are established via SDO. The "SINAMICS parameters" column shows the parameter numbers assigned in the converter.

 Table 6-3
 RPDO configuration objects - communication parameters

OD Index (hex)	Sub- in- dex (hex)	Name of the object	SINAMICS parame- ters	Data type	Predefined connec- tion set	Can be read/ written to
1400		Receive PDO 1 communication parameter				
	0	Largest subindex supported		U8	2	r
	1	COB ID used by PDO	p8700.0	U32	200 hex + node ID	r/w
	2	Transmission type	p8700.1	U8	FE hex	r/w
1401		Receive PDO 2 communication parameter	•			
	0	Largest subindex supported		U8	2	r
	1	COB ID used by PDO	p8701.0	U32	300 hex + node ID	r/w
	2	Transmission type	p8701.1	U8	FE hex	r/w
1402		Receive PDO 3 communication parameter		•		
	0	Largest subindex supported		U8	2	r
	1	COB ID used by PDO	p8702.0	U32	8000 06DF hex	r/w
	2	Transmission type	p8702.1	U8	FE hex	r/w
1403		Receive PDO 4 communication parameter		•		
	0	Largest subindex supported		U8	2	r
	1	COB ID used by PDO	p8703.0	U32	8000 06DF hex	r/w
	2	Transmission type	p8703.1	U8	FE hex	r/w
1404		Receive PDO 5 communication parameter				
	0	Largest subindex supported		U8	2	r
	1	COB ID used by PDO	p8704.0	U32	8000 06DF hex	r/w

OD Index (hex)	Sub- in- dex (hex)	Name of the object	SINAMICS parame- ters	Data type	Predefined connec- tion set	Can be read/ written to
	2	Transmission type	p8704.1	U8	FE hex	r/w
1405		Receive PDO 6 communication parameter			•	•
	0	Largest subindex supported		U8	2	r
	1	COB ID used by PDO	p8705.0	U32	8000 06DF hex	r/w
	2	Transmission type	p8705.1	U8	FE hex	r/w
1406		Receive PDO 7 communication parameter				
	0	Largest subindex supported		U8	2	r
	1	COB ID used by PDO	p8706.0	U32	8000 06DF hex	r/w
	2	Transmission type	p8706.1	U8	FE hex	r/w
1407		Receive PDO 8 communication parameter				
	0	Largest subindex supported		U8	2	r
	1	COB ID used by PDO	p8707.0	U32	8000 06DF hex	r/w
	2	Transmission type	p8707.1	U8	FE hex	r/w

Table 6-4 RPDO configuration objects - mapping parameters

OD index (hex)	Sub- in- dex (hex)	Name of the object	SINAMICS parame- ters	Data type	Predefined con- nection set	Can be read/ written to				
1600		Receive PDO 1 mapping parameter								
	0	Number of mapped application objects in PDO		U8	1	r				
	1	PDO mapping for the first application object to be mapped	p8710.0	U32	6040 hex	r/w				
	2	PDO mapping for the second application object to be mapped	p8710.1	U32	0	r/w				
	3	PDO mapping for the third application object to be mapped	p8710.2	U32	0	r/w				
	4	PDO mapping for the fourth application object to be mapped	p8710.3	U32	0	r/w				
1601		Receive PDO 2 mapping parameter								
	0	Number of mapped application objects in PDO		U8	2	r				
	1	PDO mapping for the first application object to be mapped	p8711.0	U32	6040 hex	r/w				
	2	PDO mapping for the second application object to be mapped	p8711.1	U32	6042 hex	r/w				
	3	PDO mapping for the third application object to be mapped	p8711.2	U32	0	r/w				
	4	PDO mapping for the fourth application object to be mapped	p8711.3	U32	0	r/w				
1602		Receive PDO 3 mapping parameter								
	0	Number of mapped application objects in PDO		U8	0	r				

OD index	Sub- in-	Name of the object	SINAMICS	Data type	Predefined con- nection set	Can be read/
(hex)	dex (hex)		ters	-51		written to
	1	PDO mapping for the first application object to be mapped	p8712.0	U32	0	r/w
	2	PDO mapping for the second application object to be mapped	p8712.1	U32	0	r/w
	3	PDO mapping for the third application object to be mapped	p8712.2	U32	0	r/w
	4	PDO mapping for the fourth application object to be mapped	p8712.3	U32	0	r/w
1603		Receive PDO 4 mapping parameter				
	0	Number of mapped application objects in PDO		U8	0	r
	1	PDO mapping for the first application object to be mapped	p8713.0	U32	0	r/w
	2	PDO mapping for the second application object to be mapped	p8713.1	U32	0	r/w
	3	PDO mapping for the third application object to be mapped	p8713.2	U32	0	r/w
	4	PDO mapping for the fourth application object to be mapped	p8713.3	U32	0	r/w
1604		Receive PDO 5 mapping parameter				
	0	Number of mapped application objects in PDO		U8	0	r
	1	PDO mapping for the first application object to be mapped	p8714.0	U32	0	r/w
	2	PDO mapping for the second application object to be mapped	p8714.1	U32	0	r/w
	3	PDO mapping for the third application object to be mapped	p8714.2	U32	0	r/w
	4	PDO mapping for the fourth application object to be mapped	p8714.3	U32	0	r/w
1605		Receive PDO 6 mapping parameter				
	0	Number of mapped application objects in PDO		U8	0	r
	1	PDO mapping for the first application object to be mapped	p8715.0	U32	0	r/w
	2	PDO mapping for the second application object to be mapped	p8715.1	U32	0	r/w
	3	PDO mapping for the third application object to be mapped	p8715.2	U32	0	r/w
	4	PDO mapping for the fourth application object to be mapped	p8715.3	U32	0	r/w
1606		Receive PDO 7 mapping parameter				
	0	Number of mapped application objects in PDO		U8	0	r
	1	PDO mapping for the first application object to be mapped	p8716.0	U32	0	r/w
	2	PDO mapping for the second application object to be mapped	p8716.1	U32	0	r/w

OD index (hex)	Sub- in- dex (hex)	Name of the object	SINAMICS parame- ters	Data type	Predefined con- nection set	Can be read/ written to
	3	PDO mapping for the third application object to be mapped	p8716.2	U32	0	r/w
	4	PDO mapping for the fourth application object to be mapped	p8716.3	U32	0	r/w
1607		Receive PDO 8 mapping parameter				
	0	Number of mapped application objects in PDO		U8	0	r
	1	PDO mapping for the first application object to be mapped	p8717.0	U32	0	r/w
	2	PDO mapping for the second application object to be mapped	p8717.1	U32	0	r/w
	3	PDO mapping for the third application object to be mapped	p8717.2	U32	0	r/w
	4	PDO mapping for the fourth application object to be mapped	p8717.3	U32	0	r/w

TPDO configuration objects

The following tables list the communication and mapping parameters together with the indexes for the individual TPDO configuration objects. The configuration objects are established via SDO. The "SINAMICS parameters" column shows the parameter numbers assigned in the converter.

Table 6-5	TPDO configuration objects - communication parameters
-----------	---

OD index (hex)	Sub- in- dex (hex)	Object name	SINAMICS parameters	Data type	Predefined con- nection set	Can be read/ written			
1800		Transmit PDO 1 communication parameter							
	0	Largest subindex supported		U8	5	r			
	1	COB ID used by PDO	p8720.0	U32	180 hex + node ID	r/w			
	2	Transmission type	p8720.1	U8	FE hex	r/w			
	3	Inhibit time	p8720.2	U16	0	r/w			
	4	Reserved	p8720.3	U8		r/w			
	5	Event timer	p8720.4	U16	0	r/w			
1801		Transmit PDO 2 communication parameter							
	0	Largest subindex supported		U8	5	r			
	1	COB ID used by PDO	p8721.0	U32	280 hex + node ID	r/w			
	2	Transmission type	p8721.1	U8	FE hex	r/w			
	3	Inhibit time	p8721.2	U16	0	r/w			
	4	Reserved	p8721.3	U8		r/w			
	5	Event timer	p8721.4	U16	0	r/w			
1802		Transmit PDO 3 communication parameter	·			·			
	0	Largest subindex supported		U8	5	r			

OD index (bex)	Sub- in-	Object name	SINAMICS parameters	Data type	Predefined con- nection set	Can be read/ written					
(IIEX)	(hex)					written					
	1	COB ID used by PDO	p8722.0	U32	C000 06DF hex	r/w					
	2	Transmission type	p8722.1	U8	FE hex	r/w					
	3	Inhibit time	p8722.2	U16	0	r/w					
	4	Reserved	p8722.3	U8		r/w					
	5	Event timer	p8722.4	U16	0	r/w					
1803		Transmit PDO 4 communication parameter	Transmit PDO 4 communication parameter								
	0	Largest subindex supported		U8	5	r					
	1	COB ID used by PDO	p8723.0	U32	C000 06DF hex	r/w					
	2	Transmission type	p8723.1	U8	FE hex	r/w					
	3	Inhibit time	p8723.2	U16	0	r/w					
	4	Reserved	p8723.3	U8		r/w					
	5	Event timer	p8723.4	U16	0	r/w					
1804		Transmit PDO 5 communication parameter				•					
	0	Largest subindex supported		U8	5	r					
	1	COB ID used by PDO	p8724.0	U32	C000 06DF hex	r/w					
	2	Transmission type	p8724.1	U8	FE hex	r/w					
	3	Inhibit time	p8724.2	U16	0	r/w					
	4	Reserved	p8724.3	U8		r/w					
	5	Event timer	p8724.4	U16	0	r/w					
1805		Transmit PDO 6 communication parameter									
	0	Largest subindex supported		U8	5	r					
	1	COB ID used by PDO	p8725.0	U32	C000 06DF hex	r/w					
	2	Transmission type	p8725.1	U8	FE hex	r/w					
	3	Inhibit time	p8725.2	U16	0	r/w					
	4	Reserved	p8725.3	U8		r/w					
	5	Event timer	p8725.4	U16	0	r/w					
1806		Transmit PDO 7 communication parameter									
	0	Largest subindex supported		U8	5	r					
	1	COB ID used by PDO	p8726.0	U32	C000 06DF hex	r/w					
	2	Transmission type	p8726.1	U8	FE hex	r/w					
	3	Inhibit time	p8726.2	U16	0	r/w					
	4	Reserved	p8726.3	U8		r/w					
	5	Event timer	p8726.4	U16	0	r/w					
1807		Transmit PDO 8 communication parameter									
	0	Largest subindex supported		U8	5	r					
	1	COB ID used by PDO	p8727.0	U32	C000 06DF hex	r/w					
	2	Transmission type	p8727.1	U8	FE hex	r/w					
	3	Inhibit time	p8727.2	U16	0	r/w					
	4	Reserved	p8727.3	U8		r/w					
	5	Event timer	p8727.4	U16	0	r/w					

Table 6-6	TPDO configuration objects	 mapping parameters
-----------	----------------------------	--

OD index	Subin-	Object name	SINAMICS	Data type	Predefined	Can be
(hex)	(hex)		ters		set	written
1A00		Transmit PDO 1 mapping parameter				
	0	Number of mapped application objects in PDO		U8	1	r/w
	1	PDO mapping for the first application object to be p8 mapped		U32	6041 hex	r/w
	2	PDO mapping for the second application object to be mapped	p8730.1	U32	0	r/w
	3	PDO mapping for the third application object to be mapped	p8730.2	U32	0	r/w
	4	PDO mapping for the fourth application object to be mapped	p8730.3	U32	0	r/w
1A01		Transmit PDO 2 mapping parameter		_		
	0	Number of mapped application objects in PDO		U8	2	r/w
	1	PDO mapping for the first application object to be mapped	p8731.0	U32	6041 hex	r/w
	2	PDO mapping for the second application object to be mapped	p8731.1	U32	6044 hex	r/w
	3	PDO mapping for the third application object to be mapped	p8731.2	U32	0	r/w
	4 PDO mapping for the fourth application of mapped		p8731.3	U32	0	r/w
1A02		Transmit PDO 3 mapping parameter				
	0	Number of mapped application objects in PDO		U8	0	r/w
	1	PDO mapping for the first application object to be mapped	p8732.0	U32	0	r/w
	2	PDO mapping for the second application object to be mapped	p8732.1	U32	0	r/w
	3	PDO mapping for the third application object to be mapped	p8732.2	U32	0	r/w
	4	PDO mapping for the fourth application object to be mapped	p8732.3	U32	0	r/w
1A03		Transmit PDO 4 mapping parameter				
	0	Number of mapped application objects in PDO		U8	0	r/w
	1	PDO mapping for the first application object to be mapped	p8733.0	U32	0	r/w
	2	PDO mapping for the second application object to be mapped	p8733.1	U32	0	r/w
	3	PDO mapping for the third application object to be mapped	p8733.2	U32	0	r/w
	4	PDO mapping for the fourth application object to be mapped	p8733.3	U32	0	r/w
1A04		Transmit PDO 5 mapping parameter	-	•		
	0	Number of mapped application objects in PDO		U8	0	r
	1	PDO mapping for the first application object to be mapped	p8734.0	U32	0	r/w

OD index (hex)	Subin- dex (hex)	in- Object name S x) PDO mapping for the second application object to p be mapped		Data type	Predefined connection set	Can be read/ written
	2			U32	0	r/w
	3	PDO mapping for the third application object to be mapped	p8734.2	U32	0	r/w
	4	PDO mapping for the fourth application object to be mapped	p8734.3	U32	0	r/w
1A05		Transmit PDO 6 mapping parameter				
	0	Number of mapped application objects in PDO		U8	0	r/w
	1	PDO mapping for the first application object to be mapped	p8735.0	U32	0	r/w
	2 PDO mapping for the second application object to per mapped		p8735.1	U32	0	r/w
	3	PDO mapping for the third application object to be mapped	p8735.2	U32	0	r/w
	4 PDO mapping for the fourth application object to be mapped		p8735.3	U32	0	r/w
1A06		Transmit PDO 7 mapping parameter				
	0	Number of mapped application objects in PDO		U8	0	r
	1	PDO mapping for the first application object to be mapped	p8736.0	U32	0	r/w
	2	PDO mapping for the second application object to be mapped	p8736.1	U32	0	r/w
	3	PDO mapping for the third application object to be mapped	p8736.2	U32	0	r/w
	4	PDO mapping for the fourth application object to be mapped	p8736.3	U32	0	r/w
1A07		Transmit PDO 8 mapping parameter			•	
	0	Number of mapped application objects in PDO		U8	0	r
	1	PDO mapping for the first application object to be mapped	p8737.0	U32	0	r/w
	2	PDO mapping for the second application object to be mapped	p8737.1	U32	0	r/w
	3	PDO mapping for the third application object to be mapped	p8737.2	U32	0	r/w
	4 PDO mapping for the fourth application object to be mapped			U32	0	r/w

6.6.2 Free objects

You can interconnect any process data objects of the receive and transmit buffer using receive and transmit double words.

- Scaling for percentage values:
 - 16-bit (word): 4000 hex ≙ 100%
 - 32-bit (doubleword) 4000000 hex ≙ 100%
- Scaling for values referred to units:
 - 16-bit (word): 4000 hex \triangleq value of the corresponding reference parameter for p200x
 - 32-bit (double word) 4000000 hex ≜ Value of the corresponding reference parameter for p200x

Example:

- For temperature values: 16-bit (word): 4000 hex ≜ p2006
- For temperature values: 32-bit (doubleword): 4000000 hex ≜ p2006

The "SINAMICS parameters" column shows the parameter numbers assigned in the converter. The assignment applies to the case in which an object which is not mapped in any PDO is to be accessed via SDO.

OD index (hex)	Description	Data type per PZD	Default set- ting	Can be writ- ten to-/ read	SINAMICS pa- rameters
5800 580F	16 freely-interconnectable receive process data	116	0	r/w	r8745[0 15]
5810 581F	16 freely-interconnectable transmit process da- ta	116	0	r	r8746[0 15]
5820 5827	8 freely-interconnectable receive process data	132	0	r/w	r8747[0 7]
5828 582F	Reserved				
5830 5837	8 freely-interconnectable transmit process data	132	0	r	r8748[0 7]
5828 582F	Reserved				

6.6.3 Objects from the CiA 402 drive profile

The following table lists the object directory with the index of the individual objects for the drives. The "SINAMICS parameters" column shows the parameter numbers assigned in the converter.

OD in- dex (hex)	Sub- in- dex (hex)	Name of the object	SINAMICS pa- rameters	Transmission	Data type	Default setting	Can be read/ written
Predefinit	ions						
67FF		Single device type		SDO	U32		r
Common	entries	in the object dictionary					
6007		Abort connection option code	p8641	SDO	116	3	r/w
6502		Supported drive modes		SDO	132		r
6504		Drive manufacturer		SDO	String	SIEMENS	r
Device co	ntrol						
6040		Control word	r8795	PDO/SDO	U16	-	r/w
6041		Status word	r8784	PDO/SDO	U16	-	r
605D		Halt option code	p8791	PDO/SDO	116	-	r/w
6060		Modes of operation	p1300	SDO	18	-	r/w
6061		Modes of operation display	r8762	SDO	18	-	r
Factor gro	oup			•			
6094		Velocity encoder factor		SDO	U8	-	r
	01	velocity encoder factor numerator	p8798[1]	SDO	U32	1	r/w
	02	velocity encoder factor denumerator	p8798[2]	SDO	U32	1	r/w
Profile ve	locity m	node					
6063		Actual position value	r0482	SDO/PDO	132	-	r
6069		Velocity sensor actual value	r0061	SDO/PDO	132	-	r
606B		Velocity demand value	r1170	SDO/PDO	132	-	r
606C		Velocity actual value Actual velocity	r0063	SDO/PDO	132	-	r
6083		Profile acceleration	p1082/p1120	SDO	132	-	r/w
6084		Profile deceleration	p1082/p1121	SDO	132	0	r/w
6085		Quick stop deceleration	p1082/p1135	SDO	132	0	r/w
6086		Motion profile type	p1115/p1134	SDO	132	0	r/w
60FF		Target velocity Set velocity	p1155[0] ¹⁾ p1072 ²⁾	SDO/PDO	132	0	r/w
Profile To	rque Mo	ode ³⁾	1.	1		1	
6071		Target torque torque setpoint	r8797	SDO/PDO	116	-	r/w
6072		Max. torque	p1520	SDO	0	0	
6074		Torque demand value overall torque setpoint	r0079	SDO/PDO	116	-	r
6077		Torque actual value	r0080	SDO/PDO	116	-	r

OD in- dex (hex)	Sub- in- dex (hex)	Name of the object	SINAMICS pa- rameters	Transmission	Data type	Default setting	Can be read/ written
Velocity n	node						
6042		vl target velocity	r8792	SDO/PDO	116	-	r/w
6043		vl velocity demand	r1170	SDO/PDO	116	-	r
6044		vl velocity actual value	r0063	SDO/PDO	116	-	r
6046	0	vl velocity min./max. amount		SDO	U8	-	r
	1	vl velocity min. amount	p1080	SDO	U32	-	r/w
	2	vl velocity max. amount	p1082	SDO	U32	-	r/w
6048	0	vl velocity acceleration		SDO	U8	-	r
	1	Delta speed	p1082	SDO	U32	-	r/w
	2	Delta time	p1120	SDO	U16	-	r/w

1) Without ramp-function generator

2) With ramp-function generator

3) The converter can process the objects from the Profile Torque Mode. But they cannot be set nor selected in converters.

6.7 Integrating the converter into CANopen

Commissioning

Requirement

- Startdrive is installed on the computer used to commission the system.
- The converter is connected to a CANopen manager.
- The EDS (Electronic Data Sheet) is installed on your CANopen manager.
- The converter interfaces have been set to the CANopen fieldbus during basic commissioning.
 This means that the following signals in the converter are interconnected corresponding to the Predefined Connection Sets:
 - Speed setpoint and control word
 - Speed actual value and status word

USB CANopen CANopen

You can find the EDS on the Internet:

EDS (electronic data sheet) (<u>http://support.automation.siemens.com/WW/view/en/</u>48351511)

Procedure

- 1. Connecting converter to CAN bus (Page 195)
- Set the node ID, baud rate and the communication monitoring.
 Setting the node ID and baud rate (Page 195)"
 Setting the monitoring of the communication (Page 197)"
- Interconnect additional process data
 Set p8744 = 2. You can now interconnect other process data.
 Free PDO mapping (Page 174)"
- 4. Signal interconnection of the links created in free PDO mapping. ☐ Interconnect objects from the receive and transmit buffers (Page 177).
- 5. Exit commissioning This is carried out in Startdrive in the commissioning wizard.

You have now commissioned the CANopen interface.

Further information about configuring the communication:

Dbject directories (Page 183).

6.7.1 Connecting converter to CAN bus

Connect the converter to the fieldbus via the 9-pin SUB-D pin connector.

The connections of this pin connector are short-circuit proof and isolated. If the converter forms the first or last device in the CANopen network, then you must switch-in the busterminating resistor.

For additional information, refer to the operating instructions of the Control Unit.

6.7.2 Setting the node ID and baud rate

Node ID

Valid value range: 1 ... 127

You have the following options for setting the node ID:

• Using the address switch on the Control Unit:

Figure 6-11 Address switch with example for bus address 10

The address switch has priority over the other settings.

 Using Startdrive or an operator panel via parameter p8620 (default setting: p8620 = 126) It is only possible to change p8620 if the address 0 is set in the address switch. If you are working with Startdrive, back up the settings so they are not lost if the power fails.

The position of the address switch can be found in the operating instructions for the converter.

Manuals and technical support (Page 217)

Setting the baud rate

You can set the baud rate using parameter p8622. If you are working with Startdrive, back up the settings so they are not lost if the power fails.

Setting range: 10 kbps ... 1 Mbps. The maximum permissible cable length for 1 Mbps is 40 m.

Activating node ID or baud rate

Procedure

To activate the changed node ID or baud rate, proceed as follows:

- 1. Switch off the converter supply voltage.
- 2. Wait until all LEDs on the converter are dark.
- 3. Switch the converter supply voltage on again. Your settings become effective after switching on.

You have now activated the changed settings.

6.7.3 Setting the monitoring of the communication

To monitor the communication, use one of the following methods:

- Node guarding / life guarding
- Heartbeat

Node guarding / life guarding

Principle of operation

• Node guarding:

Is always active if heartbeat is not activated (p8606 = 0). Node guarding means the manager sends monitoring queries to the converter which then answers.

The converter does not monitor the communication. Set the responses to a bus failure in the manager.

• Life guarding:

is active if you use p8604.0 and p8604.1 to set a lifetime \neq 0.

Life Guarding means that the converter monitors the manager's monitoring query and reports fault F8700 (A) with fault value 2, if a life guarding protocol (life guarding event) is not received within the lifetime. Set additional responses to a bus failure in the manager. **Calculate value for lifetime**

Life time = guard time in milliseconds (p8604.0) * life time factor (p8604.1)

Heartbeat

Principle of operation

The device periodically sends heartbeat messages. Other devices and the manager can monitor this signal. In the manager, set the responses for the case that the heartbeat does not come.

Setting value for heartbeat

Set in p8606 the cycle time for the heartbeat in milliseconds.

Converter behavior with a bus fault

With a bus fault, the CAN manager goes to the "Bus OFF" status. In the converter, set the response to the bus error using parameter p8641. Factory setting: p8641 = 3 (AUS3).

6.8 Error diagnostics

If you have resolved the bus error, then you have the following options to restart communication:

- You switch off the converter power supply, wait until all of the LEDs on the converter go dark, and then you switch on the converter power supply again. This means that you withdraw the bus state and restart communication.
- You acknowledge the bus error via DI 2 or directly via p3981 and start the communication either
 - Manually by setting p8608[0] = 1. After starting, p8608 is internally set back to 0.
 - Automatically every two seconds. To do this, you must have set p8608[1] to 1 when commissioning.

OFF command not effective as a result of a bus fault

When the bus has a fault condition, the higher-level control cannot access the converter. If, as a response to a bus fault p8641 = 0 (no response) is set, then the motor remains switched-on - even if the higher-level control sends an OFF command to the converter.

• Configure an additional OFF command via terminals.

6.8 Error diagnostics

Objects to signal and describe errors and operating states

The following options are available to display errors and operating states:

- Display of the operating state using LEDs
- Display of the operating state using the alarm object (Emergency Object)
 - Converter-specific error list (predefined error field)
 - CANopen error register (error register)

Description of the LED symbols for CANopen

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	LED is bright
	LED flashes slowly
	LED flashes quickly

6.8 Error diagnostics

	LED flashes in the "single flash" mode
	LED flashes in the "double flash" mode
- <u> </u>	LED flashes with variable frequency

Table 6-7CANopen fieldbus

BF	Explanat	ion						
	Data excl	Data exchange between the converter and control system is active ("Operational" state)						
	Fieldbus	Fieldbus is in the "Pre-operational" state						
	Fieldbus	Fieldbus is in the "Stopped" state						
244	No fieldb	us available						
	RDY	When LED RDY flashes simultaneously:						
	*	Firmware update failed						
	Alarm - li	Alarm - limit reached						
	Error eve	Error event in the higher-level control system (Error Control Event)						
*	Converte update	Converter waits until the power supply is switched off and switched on again after a firmware update						
***	Incorrect	Incorrect memory card or unsuccessful firmware update						
	Firmware	e update is active						

#### 6.8 Error diagnostics

# Display of the operating state using the alarm object (Emergency Object)

Error states are displayed using the alarm object (Emergency Object), OV index 1014 in the emergency telegram. It has the following structure:

Byte 0 1	Byte 2	Byte 3 4	Byte 5	Byte 6	Byte 7
CANopen Errorcode	CANopen Error Register	SINAMICS fault number	Drive object (always = 1)	Reserved	Reserved

- Bytes 0 and 1: CANopen error code
- Byte 2: Codes for the CANopen error register
- Byte 5: Number of the drive object. For G120 converters, this is always = 1

Errors trigger an emergency telegram and cause the drive to shut down.

You can suppress the emergency telegram by setting bit 31 in object 1014 hex to 1.

This means that shutdown is not suppressed, however the fault message is not sent to the manager.

## Converter-specific error list (predefined error field)

You can read out the converter-specific error list using the following objects:

- OV index 1003 hex
- Converter parameter p8611

It includes the alarms and faults present in the converter in the CANopen alarm number range 8700-8799.

The errors are listed in the order in which they occur using an error code and additional, device-specific information.

As soon as a fault is acknowledged or an alarm is resolved, they are deleted from the converter-specific error list.

You acknowledge all of the active converter errors by setting subindex 0 in the OV index 1003 to 0 or setting p8611[0] = 0.

Error code	Meaning	Explanation
0000 hex	No error present	Successful acknowledgement of all errors or all the alarms are cleared in the display.
1000 hex	CAN Error 1	All other SINAMICS faults/errors
1001 hex	CAN Error 2	All other CANopen alarms in the alarm number range
		F08700 to F08799
8110 hex	CAN overflow, mes- sage lost	CBC: Telegram loss (A(N)08751) [alarm]
8120 hex	CAN Error Passive	CBC: Error number for Error Passive exceeded (A08752) [alarm]
8130 hex	CAN Life Guard Error	CBC: Communications error, alarm value 2 F08700(A) [error/ alarm]

Table 6-8 CANopen error code

# CANopen error register (error register)

You can read out the error register using the following objects:

- OV index 1001 hex
- Converter parameter r8601

It indicates the error in byte 2 of the emergency telegram.

Table 6-9	CANopen	Frror	Register
	crutopen	LIIOI	negister

Error Regis- ter	Error Regis- Meaning Explanation ter	
Bit 0 Generic error Set for every alarm that CAN identifies.		Set for every alarm that CAN identifies.
Bit 4	Communication error	Is set for CAN communication alarms (alarms in the range 08700 08799).
Bit 7 Manufacturer error Is set for all alarms		Is set for all alarms outside the range 08700 08799.

## Response in the case of an error

For a CAN communication error, e.g. too many telegram failures, the converter outputs fault F(A)08700(2).

For further information, please refer to the List Manual of your converter.

Overview of the manuals (Page 217)).

You set the response of the CAN node in p8609.

- p8609 = 0 Pre-operational
- p8609 = 1 No change (factory setting)
- p8609 = 2 Stopped

You set the converter response in p8641:

- p8641 = 0 No reaction (factory setting)
- p8641 = 1 OFF1
- p8641 = 2 OFF2
- p8641 = 3 OFF3

# 6.9 CAN bus sampling time

The CAN bus sampling time is 4 ms. The converter can send and receive telegrams within this time frame.

#### 6.9 CAN bus sampling time

# Receive telegrams cycle time

- For cyclic receive telegrams, the cycle time must be greater than twice the sampling time. Telegrams could be lost if the cycle time is any less than this. In this case, warning A08751 appears.
- With receive telegrams for which data does not change faster than twice the sampling time, it is possible to set a cycle time shorter than twice the sampling time if your application permits telegrams to be lost in the process.

An A08751 warning can be avoided by changing the message type to "No message" via parameters p2118 and p2119.

# Communication via AS-i – only for G115D

# **General information**

The converter operates based on the extended AS-i specification V3.0.

The signaling is made as Manchester-coded current pulses superimposed on the 28 V supply. Decouple the 28 V supply with inductances so that the receivers can decouple the transferred messages.

The Control Unit power consumption is approx. 90 mA provided you do not use any digital or analog inputs. When you use digital and analog inputs, the power requirement can be as high as 300 mA.

The converter supports the Single device and Dual device modes.

In Single device mode, the converter has an address in the AS-i network over which four bits are transferred. In Dual device mode, each converter has two AS-i addresses over each of which four bits are transferred.

In the Single device mode, communication is realized in accordance with protocol 7.F.E. In the Dual device mode, communication is realized in accordance with protocols 7.A.5 and 7.A.E.

## Default settings for commissioning

To configure the communication of the converter via AS-i, the following options are available for commissioning the converter: Using parameter p0015, select which default setting you wish to accept:

Table 7-1	p0015	(macro	drive	unit)
-----------	-------	--------	-------	-------

p0015 =	Designation	Meaning
30	Default setting 30 - single device mode, standard ad- dressing	Single device mode, where the control system specifies a fixed frequency
31	Default setting 31 - dual device mode with fixed set- points	Dual device mode, where the control system specifies a fixed frequency
32	Default setting 32 - single device mode, modified ad- dressing	Default setting 32 - Single device mode, modified ad- dressing:
34	Default setting 34 - dual device mode with "ON/OFF1", "OFF2"	Dual device mode with "ON/OFF1", "OFF2", speed set- point from the control system

Details about the default settings are provided in the operating instructions of your converter.



Overview of the manuals (Page 217)

7.1 Setting the address

# Connection

The following table shows the AS-i plug assignment.

Table 7-2	Pin assignment
-----------	----------------

X03 AS-i (M12)	Pin	Function	Description
2	1	AS-i +	AS-i plus signal
30 5 01	2	0 V	Reference potential for terminal 4
	3	AS-i -	AS-i minus signal
	4	24 V	24 V auxiliary voltage
	5	Not assigned	

# Requirement for applications in the USA and Canada

Use an external 24 V power supply with one of the following specifications:

- NEC Class 2
- Voltage/current-limited

# More information

You can find more information about connection in the AS-Interface System Manual.

Overview of the manuals (Page 217)

# 7.1 Setting the address

As factory setting, all AS-i devices have address 0. Devices with address 0 are not included in the communication.

The addresses must be unique, although they can be mixed as required.

You have the following options when making the address assignment:

- Automatic addressing via the AS-i master
- Addressing via the addressing device
- Addressing via parameters

Before you set the address, you must specify whether the converter is integrated as Single device or Dual devicein the AS-i network.

- p2013 = 0: Single device (factory setting)
- p2013 = 2: Dual device

7.1 Setting the address

If for the commissioning you select the default setting 30 or 32 (Single device or 31 or 34 (Dual device), p2013 is assigned the appropriate value.

#### Note

#### Changes made to p2012 and p2013

Changes made to the p2012 and p2013 parameters take effect immediately after the change.

If you work with Startdrive, you must back up the changes so they are not lost when the system is switched off and on again.

#### Automatic addressing via the AS-i master

#### Single device

For automatic addressing, the address is specified by the AS-i master. For a Single device, the master checks which device has address 0 and assigns it the next free address. This address is also written to parameter p2012. If more than one device has address 0, an automatic addressing is not possible.

#### **Dual device**

For automatic addressing, the address is specified by the AS-i master. If both devices have address 0, the second device is hidden and the control assigns a valid address for device 1.

device 2 then becomes visible with address 0 and can be addressed.

Automatic addressing is not always possible for older AS-i masters. In this case, use the manual addressing and set the address from an addressing device, via Startdrive or from an operator panel on the converter.

You can find more information in the AS-Interface System Manual, "Setting the AS-i address" section.

Overview of the manuals (Page 217)

#### Addressing via the addressing device (e.g. 3RK1904-2AB02)

Addressing via the addressing device is made offline.

You can find more information

- in the AS-Interface System Manual, "Setting the AS-i address" section
- G115D Operating Instructions, "Using an AS-i addressing unit" section

Overview of the manuals (Page 217)

#### Addressing via parameters

The address assignment is made with the p2012[0] and p2012[1] parameters.

#### 7.2 Single Device mode

If you assign the address via Startdrive, you must back up the settings so that they are not lost if the power fails.

- Address range for Single device converter, profile 7.F.E
  - p2012[1]: 0 ... 31, range for the A address, 0A ... 31A
- Address range for Dual device converter, profile 7.A.5 or 7.A.E
  - p2012[0]: 0 ... 31, 33 ... 63 for device 1:
  - p2012[1]: 0 ... 31, 33 ... 63 for device 2:

with

- 0 ... 31 range for the A address, 0A ... 31A
- 33 ... 63 range for B address, 1B ... 31B

# 7.2 Single Device mode

In Single Device mode, four bits are available for the communication between the AS-i master and the converter. The four bits are used to transfer process data. In parallel, the control can start a diagnostic request via AS-i.PO.

The following default settings are available; both work with profile 7.F.E.

- Default setting 30: Standard Single Device mode
- Default setting 32: Modified Single Device mode

## Default setting 30: Standard Single Device mode

In standard addressing, the control specifies the speed setpoint via the motor control bits (AS-i.DO0 ... AS-i.DO3).

#### Control -> converter

•	AS-i.DO0	->	p1020 = 2093.0	Fixed speed bit 0
•	AS-i.DO1	->	p1021 = 2093.1	Fixed speed bit 1
•	AS-i.DO2	->	p1022 = 2093.2	Fixed speed bit 2
•	AS-i.DO3	->	p1023 = 2093.3	Fixed speed bit 3

Table 7-3 Fixed speeds via the motor control bits (Page 210).

#### Converter -> control

If the control specifies the speed setpoint, the converter replies:

- p2080[0] = 53.13 -> AS-i.DI0 Operational enable for PLC
- p2080[1] = 899.11 -> AS-i.DI1 Pulses enabled
  - p2080[2] = 722.0 -> AS-i.DI2 State DI0
- p2080[3] = 722.1 -> AS-i.DI3 State DI1

If the control sends a diagnostic request via AS-i.PO, the converter replies with the currently pending fault or alarm messages.

7.3 Dual Device mode

Table 7-6 Alarm and fault messages via RPO ... RP3 from the converter to the AS-i master (Page 211).

## Default setting 32: Modified Single Device mode

In Single Device mode with modified addressing the control specifies the following:

#### Control -> converter

•	AS-i.DO0	->	p3330.0 = 2093.0	ON clockwise / OFF 1
•	AS-i.DO1	->	p3331.0 = 2093.1	ON counter-clockwise / OFF 1
•	AS-i.DO2	->	p0810 = 2093.2	Speed via potentiometer or AIO
•	AS-i.DO3	->	p2104 = 2093.3	Acknowledge errors with a positive edge
			p0852 = 2093.3	Operating enable, if p2093.3 = 1

#### Converter -> control

The converter sends as response:

٠	p2080[0] = 899.0	->	AS-i.DIO	Ready for switchin	g on
---	------------------	----	----------	--------------------	------

- p2080[1] = 807.0 -> AS-i.Dl1 Control priority
- p2080[2] = 722.0 -> AS-i.DI2 State DI0
- p2080[3] = 722.1 -> AS-i.DI3 State DI1

If an alarm or fault is pending in the converter, it sends a warning or fault message.

Table 7-6 Alarm and fault messages via RPO ... RP3 from the converter to the AS-i master (Page 211).

#### Scaling factors for the speed

The scaling factor is specified via AS-i.P0 ... AS-i.P3. A diagnostic request is also performed when AS-i.P0 is sent.

This means, if the control specifies a scaling factor and an alarm or fault is pending in the converter, it sends the current alarm or fault messages and accepts simultaneously the sent value consisting of AS-i.P0 ... AS-i.P3 as new scaling factor.

<ul> <li>AS-i.PO</li> </ul>	Scaling factor bit 0
• AS-i.P1	Scaling factor bit 1
• AS-i.P2	Scaling factor bit 2

AS-i.P3
 Scaling factor bit 3

AS-I.FS Scaling factor bi

Table 7-4 Scaling of the speed setpoint via AS-i.P0 ... AS-i.P3 (Page 210).

# 7.3 Dual Device mode

In Dual Device mode, eight bits are available for the communication between the AS-i master and the converter. The eight bits are used to transfer process data. In parallel, the control can start a diagnostic request via AS-i.PO.

## 7.3 Dual Device mode

The following default settings are possible:

- Default setting 31: Dual Device mode with fixed setpoints
- Default setting 34: Dual Device mode with setpoint via AS-i field bus

# Default setting 31: Dual Device mode with fixed setpoints

The control accesses the two devices of the converter each via four bits.

Via device 2, in accordance with profile 7.A.E, the control specifies the speed setpoint via the motor control bits (AS-i.DO0 ... AS-i.DO2).

Via device 1, the control sends data in cyclical or acyclical mode, in accordance with profile 7.A.5.

The control requires one bit per device in order to specify the device.

## Default setting 31, device 2 with profile 7.A.E: Control -> converter

•	AS-i.DO0	->	p1020.0 = 2093.0	Fixed speed bit 0
---	----------	----	------------------	-------------------

93.1 Fixed speed bit	p1021.0 = 2093.1	->	AS-i.DO1	•
93.1 Fixed speed bit	p1021.0 = 2093.1	->	AS-i.DO1	•

- AS-i.DO2 -> p1022.0 = 2093.2 Fixed speed bit 2
- AS-i.DO3 -> Select device A or device B, interconnected internally

Table 7-5 Fixed speeds via the motor control bits and response in the converter (Page 211).

If the control specifies the speed setpoint, the converter replies:

## Default setting 31, device 2 with profile 7.A.E: Converter -> control

•	p2080[0] = 53.13	PLC ready to switch on	->	AS-i.DIO
•	p2080[1] = 899.11	Pulses enabled	->	AS-i.DI1
•	p2080[2] = 722.0	State DIO	->	AS-i.DI2
•	p2080[3] = 722.1	State DI1	->	AS-i.DI3

If the control sends a diagnostic request via AS-i.PO, the converter replies with the currently pending fault or alarm messages.

Table 7-6 Alarm and fault messages via RP0 ... RP3 from the converter to the AS-i master (Page 211).

#### Default setting 31, device 1 with profile 7.A.5: Control -> converter

- AS-i.DO0 -> Time signal for the CTT2 transfer from the AS-i master
- AS-i.DO1 -> Data bit for the CTT2 transfer, four bytes cyclically or acyclically via PIV. The reading and writing of parameters is possible via the PIV. Because data is transferred bit-by-bit, the read and write process is very slow.
- AS-i.DO2 -> p0881 = 2093.4 Override quick stop
- AS-i.DO3 -> Select device A or device B, interconnected internally

7.3 Dual Device mode

## Default setting 31, device 1 with profile 7.A.5: Converter -> control

- p2080[4] = 722.2 State DI2 -> AS-i.DI0
- p2080[5] = 722.3 State DI3 -> AS-i.DI1
- Serial data transfer CTT2, four bytes cyclically or acyclically via PIV. The -> AS-i.DI2 reading and writing of parameters is possible via the PIV. Because data is transferred bit-by-bit, the read and write process is very slow.
- Time signal for the CTT2 transfer to the AS-i master
   -> AS-i.DI3

## Default setting 34: Dual Device mode with setpoint via AS-i field bus

The control accesses the two devices of the converter each via four bits.

Via device 2, in accordance with profile 7.A.E, the control specifies the commands listed below (AS-i.DO0 ... AS-i.DO2).

Via device 1, the control sends the command for quick stop and the data in cyclical or acyclical mode.

The control requires one bit per device in order to specify the device.

#### Default setting 34, device 2 with profile 7.A.E: Control -> converter

- AS-i.DO0 -> ON / OFF 1
- AS-i.DO1 -> OFF 2
- AS-i.DO2 -> Acknowledge fault
- AS-i.DO3 -> Select device A or device B, interconnected internally

If the control specifies the speed setpoint, the converter replies:

#### Default setting 34, device 2 with profile 7.A.E: Converter -> control

•	p2080[0] = 53.13	PLC ready to switch on	->	AS-i.DI0
•	p2080[1] = 899.11	Pulses enabled	->	AS-i.DI1
•	p2080[2] = 722.0	State DI0	->	AS-i.DI2
•	p2080[3] = 722.1	State DI1	->	AS-i.DI3

If the control sends a diagnostic request via AS-i.PO, the converter replies with the currently pending fault or alarm messages.

Table 7-6 Alarm and fault messages via RPO ... RP3 from the converter to the AS-i master (Page 211).

#### Default setting 34, device 1 with profile 7.A.5: Control -> converter

- AS-i.DO0 -> Time signal for the CTT2 transfer from the AS-i master
- AS-i.DO1 -> Data bit for the CTT2 transfer, four bytes cyclically or acyclically via PIV. The reading and writing of parameters is possible via the PIV. Because data is transferred bit-by-bit, the read and write process is very slow.
- AS-i.DO2 -> p0881 = 2093.4 Override quick stop
- AS-i.DO3 -> Select device A or device B, interconnected internally

7.4 Assignment tables

## Default setting 34, device 1 with profile 7.A.5: Converter -> control

•	p2080[4] = 722.2	State DI2	->	AS-i.DIC
---	------------------	-----------	----	----------

- p2080[5] = 722.3 State DI3 -> AS-i.DI1
- Serial data transfer CTT2, four bytes cyclically or acyclically via PIV. The -> AS-i.DI2 reading and writing of parameters is possible via the PIV. Because data is transferred bit-by-bit, the read and write process is very slow.
- Time signal for the CTT2 transfer to the AS-i master -> AS-i.DI3

# 7.4 Assignment tables

# Fixed speeds - Single Device

AS-i.DO3	AS-i.DO2	AS-i.DO1	AS-i.DO0	Response in the converter
0	0	0	0	OFF1
0	0	0	1	On + fixed speed 1 (factory setting: 1500 rpm)
0	0	1	0	On + fixed speed 2 (factory setting: -1500 rpm)
0	0	1	1	On + fixed speed 3 (factory setting: 300 rpm)
0	1	0	0	On + fixed speed 4 (factory setting: 450 rpm)
0	1	0	1	On + fixed speed 5 (factory setting: 600 rpm)
0	1	1	0	On + fixed speed 6 (factory setting: 750 rpm)
0	1	1	1	On + fixed speed 7 (factory setting: 900 rpm)
1	0	0	0	On + fixed speed 8 (factory setting: 1050 rpm)
1	0	0	1	On + fixed speed 9 (factory setting: 1200 rpm)
1	0	1	0	On + fixed speed 10 (factory setting: 1350 rpm)
1	0	1	1	On + fixed speed 11 (factory setting: 1500 rpm)
1	1	0	0	On + fixed speed 12 (factory setting: 1650 rpm)
1	1	0	1	On + fixed speed 13 (factory setting: 1800 rpm)
1	1	1	0	On + fixed speed 14 (factory setting: 1950 rpm)
1	1	1	1	Acknowledge fault or OFF2

Table 7-3 Fixed speeds via the motor control bits

# **Modified addressing - scaling factors**

Table 7-4 Scaling of the speed setpoint via AS-i.P0 ... AS-i.P3

AS-i.P3	AS-i.P2	AS-i.P1	AS-i.P0	Scaling factor	Frequency (Hz)
1	1	1	1	1	50
1	1	1	0	0.9	45
1	1	0	1	0.8	40
1	1	0	0	0.7	35
1	0	1	1	0.6	30

7.4 Assignment tables

AS-i.P3	AS-i.P2	AS-i.P1	AS-i.PO	Scaling factor	Frequency (Hz)
1	0	1	0	0.5	25
1	0	0	1	0.45	22.5
1	0	0	0	0.4	20
0	1	1	1	0.35	17.5
0	1	1	0	0.3	15
0	1	0	1	0.25	12.5
0	1	0	0	0.2	10
0	0	1	1	0.15	7.5
0	0	1	0	0.1	5
0	0	0	1	0.07	3.5
0	0	0	0	0.05	2.5

# Fixed speeds - Dual Device

 Table 7-5
 Fixed speeds via the motor control bits and response in the converter

AS-i.DO2	AS-i.DO1	AS-i.DO0	Response in the converter
0	0	0	OFF1
0	0	1	On + fixed speed 1 (factory setting: 1500 rpm)
0	1	0	On + fixed speed 2 (factory setting: -1500 rpm)
0	1	1	On + fixed speed 3 (factory setting: 300 rpm)
1	0	0	On + fixed speed 4 (factory setting: 450 rpm)
1	0	1	On + fixed speed 5 (factory setting: 600 rpm)
1	1	0	On + fixed speed 6 (factory setting: 750 rpm)
1	1	1	Acknowledge fault or OFF2

# Alarm and fault messages

Table 7-6Alarm and fault messages via RP0 ... RP3 from the converter to the AS-i master

RP3	RP2	RP1	RP0	AS-i.P0 = 0 -> alarm messages	AS-i.P0 = 1 -> faults
0	0	0	0	No alarm	No fault
0	0	0	1	not used	Temperature rise F30004, F30012, F30013, F30024, F30025, F30036
0	0	1	0	not used	not used
0	0	1	1	No load (A07929)	not used
0	1	0	0	Temperature rise (A05000, A05004, A05006, A07012, A07015)	l ² t overload (F30005, F07936)
0	1	0	1	Overvoltage (A07400, A30502)	Equipment malfunction (F01000 F01257)
0	1	1	0	Keyswitch off (A03560) ¹⁾	not used
0	1	1	1	Undervoltage (A07402, A30016)	Motor-PTC sensor malfunction (F07011, F07016)

# Communication via AS-i – only for G115D

7.5 Cyclic and acyclic communication via CTT2

RP3	RP2	RP1	RP0	AS-i.P0 = 0 -> alarm messages	AS-i.P0 = 1 -> faults
1	0	0	0	l ² t overload (A07805)	Overvoltage (F30002, F30011)
1	0	0	1	not used	not used
1	0	1	0	LOCAL Mode active (A03561) ¹⁾	not used
1	0	1	1	not used	Undervoltage (F30003, F07802)
1	1	0	0	not used	Short-circuit at the output (F30001, F30017, F30021, F07801, F07807, F07900)
1	1	0	1	Motor phase loss (A30015) ²⁾	Motor phase loss (F30015, F07902)
1	1	1	0	not used	Safety fault (F016xx)
1	1	1	1	Other alarms	Other faults

¹⁾ Only for G115D

²⁾ Only if F30015 was reparameterized as an alarm

# 7.5 Cyclic and acyclic communication via CTT2

Via CTT2 (Combined Transaction Type 2), both cyclical and acyclical communication is performed via AS-i. Because only one channel is available (AS-i.DO1 master -> device or AS-i.DI3 device -> master), a concurrent cyclical and acyclical data exchange is not possible.

The communication type (cyclical or acyclical) is always coded in the first byte in accordance with the following table.

Code (hex)	Explanation/meaning	Followed by						
Cyclic co	Cyclic communication							
Access to	analog values via DS140 DS147. See CP 343–2 / CP	4 bytes: PWE1, PWE2						
343–2 P /	AS–Interface master ( <u>http://</u>	4 bytes: PWE1, PWE2						
support.a	utomation.siemens.com/WW/view/en/558165/),							
Chapter 4								
Acyclic co	ommunication - standard							
10 hex	Read request: Master -> device	2 bytes: Index, length						
50 hex	Read request OK: Device -> master	Index, data						
90 hex	Read request failed: Device -> master	1 byte: Standard error code (3 hex)						
11 hex	Write request: Master -> device	Index, length, data						
51 hex	Write request OK: Device -> master							
91 hex	Write request failed: Device -> master	1 byte: Standard error code (3 hex)						
Acyclic co	Acyclic communication - manufacturer-specific							
12 hex	Read request: Master -> device	Index, length						
52 hex	Read request OK: Device -> master	Data						
92 hex	Read request failed: Device -> master	Fault object						
13 hex	Write request: Master -> device	Index, length, data						
53 hex	Write request OK: Device -> master							

Table 7-7 CTT2 commands

#### 7.5 Cyclic and acyclic communication via CTT2

Code (hex)	Explanation/meaning	Followed by
93 hex	Write request failed: Device -> master	Fault object
1D hex	Exchange request: Master -> device	Index, read length, write length, write data
5D hex	Exchange request OK: Device -> master	PKE, index, n-2 data
9D hex	Exchange request faulty: Device -> master	Fault object

If an acyclical request cannot be executed by the converter, it replies with one of the following error messages.

Error message	Meaning
0	No fault
1	Invalid index
2	Incorrect length
3	Request not implemented
4	Busy (the request could not be processed completely within the time window, retry later)
5	Last acyclical request was not confirmed
6	Invalid subindex
7	"Selective read request" command missing

# 7.5.1 Cyclic communication

#### Converter -> master

The converter cyclically transfers the data from p2051[1] and p2051[2] in four bytes to the master. You can process these four bytes in the control as for analog data. Refer to the documentation for the AS-i master for detailed information about access to analog data.

If you selected default setting 31 or 34 during the commissioning, the two indexes are interconnected as follows:

- p2051[1] = 63: Smoothed actual speed value
- p2051[2] = 27: Absolute smoothed actual current value

The values for transfer are normalized in accordance with the Profidrive N2 data type. Using p2051[1] and p2051[2] you can interconnect any other or connector parameters and transfer to the control.

#### Master -> converter

The master transfers the data in the "Combined Transaction Type 2" (CTT2) to the converter and writes it to r2050[1] and r2050[2].

To process these values in the converter, you must appropriately interconnect r2050[1] and r2050[2] in the converter. This means, when the control sends the speed setpoint, you must

7.5 Cyclic and acyclic communication via CTT2

interconnect parameter p1070 (source for the main setpoint) with r2050 as follows: p1070[0] = 2050[1]

#### Note

#### Internal interconnection with default setting 34

If, when commissioning, you select "Default setting 34", then the main setpoint is internally interconnected with r2050[1].

Once a setpoint has been transferred completely, the setpoint present in the control will be transferred as next setpoint. Any setpoint changes made during the transfer are not considered.

# 7.5.2 Acyclic communication - standard

This type of acyclical communication supports the ID read request and the diagnostic read request. All other requests receive the "request not implemented" message response.

- ID request:
  - Master -> device 10 hex 00 hex nn hex
  - Device -> master 50 hex 00 hex Manufacturer's ID Product ID BB hex
- Diagnostic request:
  - Master -> device 10 hex 01 hex nn hex
  - Device -> master no error 50 hex 01 hex 00 hex;
     Device -> master general error 50 hex 01 hex 99 hex

The following repsonse is issued for all other write or read requests:

- Read requests 90 hex 03 hex
- Write requests 91 hex 03 hex

# 7.5.3 Acyclic communication - manufacturer-specific

The manufacturer-specific acyclical communication is performed via data record 47 in PIV format. The PIV format structure is identical with that for the USS parameter channel.

USS parameter channel (Page 108).
#### 7.5 Cyclic and acyclic communication via CTT2

To reduce the transfer volume, there is not only the "normal" "data exchange" PIV mechanism, but also the "Read data" and "Write data" commands.

- Data exchange:
  - Control -> converter request
  - Converter -> control response
- Read data:

The converter sends a read command, and the data of the last exchange request or write request is transferred from the converter to the control.

• Write data Write OK: -> 53 hex.

Because the PIV transfer protocol specifies the transfer direction independently, all parameters can be transferred as data exchange request/response. Requests for reading and writing data are included primarily to reduce the transferred data volume for the repeated reading or writing of parameters.

### Data exchange

	Manufacturer-specific exchange request	
	Index	
	Write length	
	Read length	
	<u>PIV share</u>	
Request master-slave	ID hex         2F hex         08 hex         08 hex         PKE         IND         PWE1         PWE2	_
Answer slave-master	5D hex     PKE     IND     PWE1     PWE2             PIV share	
	Manufacturer-specific exchange request OK!	

#### **Reading data**

#### The data for the last write or exchange request is read



Manufacturer-specific read request OK!

7.5 Cyclic and acyclic communication via CTT2

# Writing data

	Manufacturer	-specific write r	equest				
	Index	Write length	share				
Request master-slave	13 hex 2F he	x 08 hex	PKE	IND	PWE1	PWE2	
Answer slave-master	53 hex Manufacturer	-specific write r	equest Ok	<u></u>			
In the event of 93 hex 00 hex	of a fault, the PWE1	e converter s	ends the	following tele	egram as resp	oonse to the r	naster:

Value for PWE: Fault table from USS parameter channel (Page 108).

# Appendix

# A.1 Application examples for communication with STEP7

Application examples for communication with STEP 7 can be found in the following manual: "Fieldbuses" function manual, edition 09/2017 (<u>https://</u> <u>support.industry.siemens.com/cs/ww/en/view/109751350</u>)

# A.2 Manuals and technical support

### A.2.1 Overview of the manuals

You can find manuals here with additional information for downloading

 CU250S-2 operating instructions (<u>https://support.industry.siemens.com/cs/ww/en/</u> view/109782994)

Installing, commissioning and maintaining the converter. Advanced commissioning

CU240B/E-2 operating instructions (<u>https://support.industry.siemens.com/cs/ww/en/view/109782865</u>)

Installing, commissioning and maintaining the converter. Advanced commissioning

 CU230P-2 operating instructions (<u>https://support.industry.siemens.com/cs/ww/en/</u> view/109782866)

Installing, commissioning and maintaining the converter. Advanced commissioning

- SINAMICS G120C operating instructions. (<u>https://</u> <u>support.industry.siemens.com/cs/ww/en/view/109482993</u>) Installing, commissioning and maintaining the converter. Advanced commissioning
- SINAMICS G115D Operating Instructions
  Installing, commissioning and maintaining the converter. Advanced commissioning
- Operating instructions SINAMICS G120D with CU240D-2 (<u>https://support.industry.siemens.com/cs/ww/en/view/109477366</u>)
  Installing, commissioning and maintaining the converter. Advanced commissioning
- Operating instructions SINAMICS G120D with CU250D-2 (<u>https://support.industry.siemens.com/cs/ww/en/view/109477365</u>)
  Installing, commissioning and maintaining the converter. Advanced commissioning

"Safety Integrated" function manual (https://support.industry.siemens.com/cs/ww/en/ view/109751320) Configuring PROFIsafe. Installing, commissioning and operating failsafe functions of the converter. Fieldbus" function manual (<u>https://support.industry.siemens.com/cs/ww/en/view/</u> 109751350) Configuring fieldbuses (this manual) "Basic positioner" function manual (https://support.industry.siemens.com/cs/ww/en/ view/109477922) Commissioning the basic positioner CU250S-2 List Manual (https://support.industry.siemens.com/cs/ww/en/view/ 109782287) List of all parameters, alarms and faults, graphic function diagrams. CU240B/E-2 List Manual (https://support.industry.siemens.com/cs/ww/en/view/ 109782301) List of all parameters, alarms and faults, graphic function diagrams. CU230P-2 List Manual (https://support.industry.siemens.com/cs/ww/en/view/ 109782303) List of all parameters, alarms and faults, graphic function diagrams. List manual SINAMICS G120D (https://support.industry.siemens.com/cs/ww/en/view/ 109477255) List of all parameters, alarms and faults, graphic function diagrams. SINAMICS G120C List Manual (https://support.industry.siemens.com/cs/ww/en/view/ 109482977) List of all parameters, alarms and faults, graphic function diagrams. AS-Interface system manual (https://support.industry.siemens.com/cs/ww/en/view/ 26250840) 

### Finding the most recent edition of a manual

If there a multiple editions of a manual, select the latest edition:

 > Manual Fieldbus systems: PROFINET, PROFIBUS, EtherNet/IP, CANopen, USS, Bacnet, Modbus, P1
 08/11/2014

 04/2014
 04/2014

 04/2014
 04/2014

 Image: Second system and s

### Configuring a manual

Further information about the configurability of manuals is available in the Internet:

MyDocumentationManager (<u>https://www.industry.siemens.com/topics/global/en/</u>planning-efficiency/documentation/Pages/default.aspx).

Select "Display and configure" and add the manual to your "mySupport-documentation":



Not all manuals can be configured.

The configured manual can be exported in RTF, PDF or XML format.

### A.2.2 Configuring support

#### Catalog

Ordering data and technical information for the converters SINAMICS G.

# 

Catalogs for download or online catalog (Industry Mall):

Everything about SINAMICS G120 (<u>www.siemens.en/sinamics-g120</u>)

#### SIZER

The configuration tool for SINAMICS, MICROMASTER and DYNAVERT T drives, motor starters, as well as SINUMERIK, SIMOTION controllers and SIMATIC technology



SIZER on DVD:

Article number: 6SL3070-0AA00-0AG0

Download SIZER (<u>https://support.industry.siemens.com/cs/ww/en/view/54992004</u>)

### EMC (electromagnetic compatibility) technical overview

Standards and guidelines, EMC-compliant control cabinet design



EMC overview (<u>https://support.industry.siemens.com/cs/ww/en/view/103704610</u>)

### **EMC Guidelines configuration manual**

EMC-compliant control cabinet design, potential equalization and cable routing



EMC installation guideline (<u>http://support.automation.siemens.com/WW/view/en/</u>60612658)

#### See also

Safety Integrated for novices (<u>https://support.industry.siemens.com/cs/ww/en/view/80561520</u>)

### A.2.3 Product Support

#### Overview

You can find additional information about the product on the Internet:

Product support (<u>https://support.industry.siemens.com/cs/ww/en/</u>)

This URL provides the following:

- Up-to-date product information (product announcements)
- FAQs
- Downloads
- The Newsletter contains the latest information on the products you use.
- The Knowledge Manager (Intelligent Search) helps you find the documents you need.
- Users and specialists from around the world share their experience and knowledge in the Forum.

- You can find your local representative for Automation & Drives via our contact database under "Contact & Partner".
- Information about local service, repair, spare parts and much more can be found under "Services".

If you have any technical questions, use the online form in the "Support Request" menu:

States	Contact Help	<ul> <li>Support Request</li> </ul>	▶ 3	Site E
rmation rrent information from our your specific product	Web Based Trainin training on highlig	Create Request Use our online form for solutions or send youn griedly to a product so Support: > Create support requ Status of your request Track the status of online. A noverview so found here: > Status of your request	or specific proposed technical question pecialist at Technical uest ort request request can be ests	× 

## Appendix

A.2 Manuals and technical support

# Index

### Α

Acyclic communication, 42 Application example, 41, 74, 138 Reading and writing parameters cyclically via PROFIBUS, 41

# С

CAN COB, 160 COB ID, 161 Device profile, 160 EMCY, 160 NMT, 160 SDO, 160 SYNC, 160 CANopen communication profile, 160 Catalog, 219 Checklist **PROFINET**, 62, 81 COB, 160 COB ID, 161 Communication Acyclic, 42 Cyclically, 13 Configuring support, 219 Control word Control word 1, 17 Control word 2, 20 Control word 3, 21 Control word 1, 115 Control word 2 (STW2), 20 Control word 3 (STW3), 21 Cyclic communication, 16, 28

# D

Data set 47 (DS), 42 DC braking, 21 Device profile, 160 Direct data exchange, 42 Drive-independent communication objects, 183 DS 47, 43

# Ε

EMCY, 160 Extending the telegram, 29

## F

Function Manual, 217

### G

GSD (Generic Station Description), 75 GSDML (Generic Station Description Markup Language), 63

## Н

Hotline, 220

# I

IND (page index), 34, 38, 39, 110, 112 Industry Mall, 219

### L

List Manual, 217

### Μ

Maximum cable length Modbus, 119 PROFIBUS, 75 PROFINET, 62 USS, 103 MELD_NAMUR (fault word according to the VIK-Namur definition), 23

### Ν

Network management (NMT service), 161 NMT, 160

# 0

Operating instruction, 3 Operating Instructions, 217

# Ρ

Page index, 112 Parameter channel, 31, 108 IND, 34, 38, 39, 110, 112 Parameter index, 34, 38, 39, 110, 112 Parameter number, 34, 38, 39, 110 Parameter value, 43 PDO, 167 Procedure, 3 PROFIBUS, 74 PROFIenergy, 65 Pulse cancellation, 18, 115 Pulse enable, 18, 115

# Q

Questions, 220

# R

RS485 interface, 103

# S

SDO, 160, 164 SDO services, 164 SIZER, 219 Status word Status word 1, 19, 116 Status word 2, 20 Status word 3, 22 Status word 1 (ZSW2), 20 STW1 (control word 1), 17, 115 Subindex, 34, 38, 39, 110, 112 Support, 220 Switching on inhibited, 18, 115 Symbols, 3 SYNC, 160

# Т

Technology controller, 21

# U

USS (universal serial interface), 103, 108

# Ζ

ZSW1 (status word 1), 19 ZSW3 (status word 3), 22 ZWST1 (status word 1), 116

# **Further information**

SINAMICS converters: www.siemens.com/sinamics

Safety Integrated www.siemens.com/safety-integrated

PROFINET www.siemens.com/profinet

Siemens AG Digital Factory Motion Control Postfach 3180 91050 ERLANGEN Germany



