

Equipment Manual

SINAMICS

S120

Control Units and Supplementary System Components

Edition

06/2020

www.siemens.com/drives

SIEMENS

SINAMICS

S120 Control Units and additional system components

Equipment Manual

Introduction

Option boards 5 Terminal Modules 6 Hub Modules 7 Voltage Sensing Module 8 Encoder system connection 9 Cabinet design and electromagnetic compatibility (EMC) 10		
Instructions 3 System overview 3 Control Units and operating elements 4 Option boards 5 Terminal Modules 6 Hub Modules 7 Voltage Sensing Module 8 Encoder system connection 9 Cabinet design and electromagnetic compatibility (EMC) 10	Fundamental safety	ſ
System overview 2 Control Units and operating elements 4 Option boards 5 Terminal Modules 6 Hub Modules 7 Voltage Sensing Module 8 Encoder system connection 9 Cabinet design and electromagnetic compatibility (EMC) 10	instructions	Ζ
System overview 2 Control Units and operating elements 4 Option boards 5 Terminal Modules 6 Hub Modules 7 Voltage Sensing Module 8 Encoder system connection 9 Cabinet design and electromagnetic compatibility (EMC) 10		
System overview 2 Control Units and operating elements 4 Option boards 5 Terminal Modules 6 Hub Modules 7 Voltage Sensing Module 8 Encoder system connection 9 Cabinet design and electromagnetic compatibility (EMC) 10		З
elements 4 Option boards 5 Terminal Modules 6 Hub Modules 7 Voltage Sensing Module 8 Encoder system connection 9 Cabinet design and electromagnetic compatibility (EMC) 10	System overview	5
elements 4 Option boards 5 Terminal Modules 6 Hub Modules 7 Voltage Sensing Module 8 Encoder system connection 9 Cabinet design and electromagnetic compatibility (EMC) 10		
Option boards5Terminal Modules6Hub Modules7Voltage Sensing Module VSM108Encoder system connection9Cabinet design and electromagnetic compatibility (EMC)10		4
Terminal Modules 6 Hub Modules 7 Voltage Sensing Module 8 Encoder system connection 9 Cabinet design and electromagnetic compatibility (EMC) 10	elements	-
Terminal Modules 6 Hub Modules 7 Voltage Sensing Module 8 Encoder system connection 9 Cabinet design and electromagnetic compatibility (EMC) 10		_
Terminal Modules6Hub Modules7Voltage Sensing Module VSM108Encoder system connection9Cabinet design and electromagnetic compatibility (EMC)10	Option boards	5
Hub Modules 7 Voltage Sensing Module 8 VSM10 9 Encoder system connection 9 Cabinet design and electromagnetic compatibility (EMC) 10	<u></u>	
Hub Modules 7 Voltage Sensing Module 8 VSM10 9 Encoder system connection 9 Cabinet design and electromagnetic compatibility (EMC) 10		C
Voltage Sensing Module VSM108Encoder system connection9Cabinet design and electromagnetic compatibility (EMC)10	Terminal Modules	0
Voltage Sensing Module VSM108Encoder system connection9Cabinet design and electromagnetic compatibility (EMC)10		
Voltage Sensing Module VSM108Encoder system connection9Cabinet design and electromagnetic compatibility (EMC)10		7
VSM10 8 Encoder system connection 9 Cabinet design and electromagnetic compatibility (EMC)	Hub Modules	
VSM10 8 Encoder system connection 9 Cabinet design and electromagnetic compatibility (EMC)		
Encoder system connection 9 Cabinet design and electromagnetic compatibility (EMC)		8
Cabinet design and electromagnetic compatibility (EMC)	VSIVITU	
Cabinet design and electromagnetic compatibility (EMC)		-
Cabinet design and electromagnetic compatibility (EMC)	Encoder system connection	9
electromagnetic compatibility (EMC)		_
electromagnetic compatibility (EMC)	Cabinet design and	
		10
Appendix A	compatibility (EMC)	
Appendix A		
Appendix 7		Δ
	Appendix	

Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.

\land DANGER

indicates that death or severe personal injury will result if proper precautions are not taken.

\land warning

indicates that death or severe personal injury may result if proper precautions are not taken.

indicates that minor personal injury can result if proper precautions are not taken.

NOTICE

indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified Personnel

The product/system described in this documentation may be operated only by **personnel qualified** for the specific task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

Proper use of Siemens products

Note the following:

M WARNING

Siemens products may only be used for the applications described in the catalog and in the relevant technical documentation. If products and components from other manufacturers are used, these must be recommended or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and maintenance are required to ensure that the products operate safely and without any problems. The permissible ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks

All names identified by [®] are registered trademarks of Siemens AG. The remaining trademarks in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.

Table of contents

1	Introductio	n	. 13
	1.1	The SINAMICS converter family	. 13
	1.2	General information about SINAMICS documentation	. 13
	1.3	Usage phases and their documents/tools	. 15
	1.4	Where can the various topics be found?	. 17
	1.5	Training and support	. 18
	1.6	Directives, standards, certificates	. 18
	1.7	Additional information	. 20
	1.8	General Data Protection Regulation	. 21
2	Fundament	tal safety instructions	. 23
	2.1	General safety instructions	. 23
	2.2	Equipment damage due to electric fields or electrostatic discharge	. 26
	2.3	Warranty and liability for application examples	. 27
	2.4	Security information	. 27
	2.5	Residual risks of power drive systems	. 28
3	System ove	erview	. 31
	3.1	Field of application	. 31
	3.2	Platform Concept and Totally Integrated Automation	. 32
	3.3	Introduction	. 34
	3.4	SINAMICS S120 components	. 36
	3.5	Power units	. 38
	3.6	System data	. 39
	3.7	Recycling and disposal	. 41
4	Control Uni	its and operating elements	. 43
	4.1	Introduction	. 43
	4.2	Safety instructions for Control Units	. 46
	4.3 4.3.1 4.3.2 4.3.2.1 4.3.2.2 4.3.2.3	Control Unit CU320-2 PN (PROFINET) Description Interface description Overview X100-X103 DRIVE-CLiQ interfaces X122 digital inputs/outputs	. 47 . 49 . 49 . 51 . 52
	4.3.2.4	X132 digital inputs/outputs	. 54

4.3.2.5	X124 electronics power supply	55
4.3.2.6	X127 LAN (Ethernet)	56
4.3.2.7	X140 serial interface (RS 232)	57
4.3.2.8	X150 P1/P2 PROFINET	58
4.3.2.9	Measuring socket	58
4.3.2.10	Buttons	59
4.3.2.11	Slot for memory card	59
4.3.3	Connection example	61
4.3.4	Meaning of LEDs	62
4.3.4.1	Description of the LED statuses	62
4.3.4.2	Behavior of the LEDs during booting	
4.3.4.3	Behavior of the LEDs in the operating state	63
4.3.5	Dimension drawing	65
4.3.6	Technical data	65
4.4	Control Unit CU320-2 DP (PROFIBUS)	66
4.4	Description	
4.4.1	Interface description	
4.4.2	I	
4.4.2.1	Overview X100-X103 DRIVE-CLiQ interfaces	
4.4.2.2		
	X122 digital inputs/outputs X132 digital inputs/outputs	
4.4.2.4 4.4.2.5	X124 electronics power supply	
4.4.2.5	X124 PROFIBUS	
4.4.2.0	Setting the PROFIBUS address	
	X127 LAN (Ethernet)	
4.4.2.8	X127 LAN (Ethemet) X140 serial interface (RS 232)	
4.4.2.9 4.4.2.10	Measuring socket	
4.4.2.10	5	
	Buttons	
4.4.2.12	Slot for memory card	
4.4.3	Connection example	
4.4.4	Meaning of the LEDs	
4.4.4.1	Description of the LED statuses	
4.4.4.2	Behavior of the LEDs during booting.	
4.4.4.3	Behavior of the LEDs in the operating state	
4.4.5	Dimension drawing	
4.4.6	Technical data	85
4.5	Mounting Control Units	86
4.5.1	Mounting to a Line Module	86
4.5.2	Mounting on the mounting surface	88
4.5.3	Opening and removing the cover	89
4.6	Basic Operator Panel BOP20	00
4.6.1	Description	
4.6.2 4.6.3	Interface description Mounting at the Control Unit	
4.6.4	Removal	
Option boa	rds	95
5.1	Description	95
5.2	Safety instructions for option boards	95
5.3	CAN Communication Board CBC10	95
5.5	char communication board cocho minimum m	20

5.3.1 5.3.2	Description Interface description	
5.3.2.1	Overview	
5.3.2.1	X451 CAN bus interface	
5.3.2.3	X452 CAN bus interface	
5.3.2.4	2-pin SMD DIL switch	
5.3.3	Meaning of the OPT LED on the Control Unit	
5.3.4	Installation	
5.3.5	Technical data	
5.4	Communication Board Ethernet CBE20	
5.4.1	Description	
5.4.2	Interface description	
5.4.2.1	Overview	
5.4.2.2	X1400 Ethernet interface	
5.4.3	Meaning of the LEDs	
5.4.4	Installation	
5.4.5	Technical data	
5.5	Terminal Board TB30	. 105
5.5.1	Description	
5.5.2	Interface description	
5.5.2.1	Overview	
5.5.2.2	X424 power supply, digital outputs	
5.5.2.3	X481 digital inputs/outputs	
5.5.2.4	X482 analog inputs/outputs	
5.5.3	Meaning of the OPT LED on the Control Unit	
5.5.4	Connection example	
5.5.5	Installation	
5.5.6	Shield support	. 112
5.5.7	Technical data	
Terminal	Modules	. 115
6.1	Description	. 115
6.2	Safety instructions for Terminal Modules	. 116
6.3	Terminal Module TM15	117
6.3.1	Description	
6.3.2	Interface description	
6.3.2.1	Overview	
6.3.2.2	X500/X501 DRIVE-CLiQ interfaces	
6.3.2.3	X520 bidirectional digital inputs/outputs	
6.3.2.4	X521 bidirectional digital inputs/outputs	
6.3.2.5	X522 bidirectional digital inputs/outputs	
6.3.2.6	X524 Electronics power supply	
6.3.3	Connection example	
6.3.4	Meaning of the LED	
6.3.5	Dimension drawing	
6.3.6	Mounting	
6.3.7	Protective conductor connection and shield support	
6.3.8	Connector coding	
6.3.9	Technical data	
6.4	Terminal Module TM31	. 129

6.4.1	Description	129
6.4.2	Interface description	130
6.4.2.1	Overview	130
6.4.2.2	X500/X501 DRIVE-CLiQ interfaces	131
6.4.2.3	X520 digital inputs	131
6.4.2.4	X521 analog inputs	
6.4.2.5	S5 current/voltage changeover switch for analog inputs	133
6.4.2.6	X522 analog outputs/temperature sensor	133
6.4.2.7	X524 Electronics power supply	134
6.4.2.8	X530 digital inputs	135
6.4.2.9	X540 auxiliary voltage for the digital inputs	135
6.4.2.10	X541 bidirectional digital inputs/outputs	137
6.4.2.11	X542 relay outputs	138
6.4.3	Connection example	139
6.4.4	Meaning of the LED	140
6.4.5	Dimension drawing	141
6.4.6	Installation	
6.4.7	Protective conductor connection and shield support	142
6.4.8	Connector coding	
6.4.9	Technical data	
6 F		
6.5	Terminal Module TM41	
6.5.1	Description	
6.5.2	Interface description	
6.5.2.1	Overview	
6.5.2.2	X500/X501 DRIVE-CLiQ interfaces	
6.5.2.3	X520 encoder interface	
6.5.2.4	X521 bidirectional digital inputs/outputs	
6.5.2.5	X522 isolated digital inputs	
6.5.2.6	X523 analog input	
6.5.2.7	X524 electronics power supply	
6.5.3	Connection example	
6.5.4	Meaning of the LEDs	
6.5.5	Dimension drawing	
6.5.6	Installation	
6.5.7	Protective conductor connection and shield support	
6.5.8	Technical data	157
6.6	Terminal Module TM54F	157
6.6.1	Description	
6.6.2	Interface description	
6.6.2.1	Overview	
6.6.2.2	X500/X501 DRIVE-CLiQ interfaces	
6.6.2.3	X514 power supply for digital outputs and sensors	
6.6.2.4	X520 sensor power supply	
6.6.2.5	X520 fail-safe digital inputs and dynamically adjustable power supply	
6.6.2.6	X522 fail-safe digital inputs	
6.6.2.7	X522 fail-safe digital output	
6.6.2.8	X525 fair-safe digital output X524 electronics power supply	
6.6.2.9	X524 electronics power supply X525 fail-safe digital output	
6.6.2.10	X525 fail-safe digital inputs and dynamically adjustable power supply	
6.6.2.11	X532 fail-safe digital inputs	
6.6.2.12	X532 fail-safe digital output	
0.0.2.12	יוו־sare ulyitai output	109

6.6.2.13	X535 fail-safe digital output	170
6.6.3	Connection example	171
6.6.4	Meaning of the LEDs	172
6.6.5	Dimension drawing	174
6.6.6	Installation	
6.6.7	Protective conductor connection and shield support	176
6.6.8	Technical data	
6.7	Terminal Module TM120	177
6.7.1	Description	
6.7.2	Interface description	
6.7.2.1	Overview	
6.7.2.1	X500/X501 DRIVE-CLiQ interfaces	
6.7.2.2	X500/X501 DRIVE-CEIQ Interfaces	
6.7.2.3	X524 Electronics power supply	
6.7.3	Connection examples	
6.7.4	Meaning of the LED	
6.7.5	Dimension drawing	
6.7.6	Installation	
6.7.7	Protective conductor connection and shield support	
6.7.8	Technical data	
0.7.8		
6.8	Terminal Module TM150	187
6.8.1	Description	187
6.8.2	Interface description	
6.8.2.1	Overview	
6.8.2.2	X500/X501 DRIVE-CLiQ interfaces	189
6.8.2.3	X524 Electronics power supply	189
6.8.2.4	X531-X536 temperature sensor inputs	190
6.8.3	Connection examples	192
6.8.4	Meaning of the LED	194
6.8.5	Dimension drawing	195
6.8.6	Installation	
6.8.7	Protective conductor connection and shield support	197
6.8.8	Technical data	
Hub Mod	ules	199
7.1	Description	
7.2	Safety instructions for Hub Modules	199
7.3	DRIVE-CLiQ Hub Module DMC20	200
7.3.1	Description	
7.3.2	Interface description	
7.3.2.1	Overview	
7.3.2.1	X500-X505 DRIVE-CLiQ interfaces	
7.3.2.3	X524 Electronics power supply	
7.3.3	Meaning of the LED	
7.3.4	Dimension drawing	
7.3.5	Installation	
7.3.6	Protective conductor connection and shield support	
7.3.7	Technical data	
7.4	DRIVE-CLiQ Hub Module External DME20	
7.4.1	Description	206

	7.4.2	Interface description	207
	7.4.2.1	Overview	
	7.4.2.2	X500-X505 DRIVE-CLiQ interfaces	
	7.4.2.3	X524 Electronics power supply	
	7.4.3	Dimension drawing	
	7.4.4 7.4.5	Installation Technical data	
	7.4.5	Specifications for use with UL approval	
8		ensing Module VSM10	
0	8.1	Description	
	8.2	Safety instructions for the Voltage Sensing Module (VSM10)	
	8.3	Interface description	
	8.3.1	Overview	
	8.3.2	X500 DRIVE-CLiQ interface	
	8.3.3 8.3.4	X520 analog inputs/temperature sensor X521 three-phase voltage sensing up to 100 V 3-ph. AC	
	8.3.4 8.3.5	X522 three-phase voltage sensing up to 690 V 3-ph. AC	
	8.3.6	X522 three-phase voltage sensing up to 090 v 3-ph. AC	
	8.3.7	X524 Electronics power supply	
	8.4	Connection example	
	8.5	Meaning of the LED	
	8.6	Dimension drawing	
	8.7	Installation	
	8.8	Protective conductor connection and shield support	
	8.9	Operation on an isolated-neutral system (IT system)	
	8.10	Technical data	
	8.11	Service and maintenance	
9		ystem connection	
5	9.1	Introduction	
	9.2	Overview of Sensor Modules	
	9.3	Safety instructions for Sensor Modules and encoders	
	9.4	Sensor Module Cabinet-Mounted SMC10	
	9.4 9.4.1	Description	
	9.4.2	Interface description	
	9.4.2.1	Overview	
	9.4.2.2	X500 DRIVE-CLiQ interface	
	9.4.2.3	X520 encoder system interface	
	9.4.2.4	X524 Electronics power supply	
	9.4.3	Connection example	
	9.4.4	Meaning of the LED	238
	9.4.5	Dimension drawing	
	9.4.6	Mounting	
	9.4.7	Technical specifications	

9.5 9.5.1 9.5.2 9.5.2.1 9.5.2.2 9.5.2.3 9.5.2.4 9.5.3 9.5.4 9.5.5 9.5.6 9.5.6 9.5.7	Sensor Module Cabinet-Mounted SMC20 Description Interface description Overview X500 DRIVE-CLiQ interface X520 encoder system interface X524 Electronics power supply Connection example Meaning of the LED Dimension drawing Mounting Technical data	242 243 244 245 246 247 247 247 248 248
9.6 9.6.1 9.6.2 9.6.2.1 9.6.2.2 9.6.2.3 9.6.2.4 9.6.2.5 9.6.3 9.6.4 9.6.5 9.6.6 9.6.7 9.6.8	Sensor Module Cabinet-Mounted SMC30 Description Interface description Overview X500 DRIVE-CLiQ interface X520 encoder system interface X521 / X531 alternative encoder system interface X524 Electronics power supply Connection examples Meaning of the LEDs Dimension drawing Mounting Protective conductor connection and shield support Technical specifications	250 251 252 252 254 255 256 258 258 259 260 261
9.7 9.7.1 9.7.2 9.7.2.1 9.7.2.2 9.7.2.3 9.7.2.4 9.7.3 9.7.4 9.7.5 9.7.6 9.7.7		266 267 268 269 270 271 272 273 273
9.8 9.8.1 9.8.2 9.8.2.1 9.8.2.2 9.8.2.3 9.8.3 9.8.3 9.8.4 9.8.5 9.8.6 9.9	Interface description Overview DRIVE-CLiQ interface Encoder system interface Connection example Dimension drawing Installation Technical data Sensor Module External SME25	275 276 276 277 278 279 279 280 281
9.9.1	Description	281

9.9.2	Interface description	282
9.9.2.1	Overview	
9.9.2.2	DRIVE-CLiQ interface	
9.9.2.3	Encoder system interface	
9.9.3	Connection example	
9.9.4	Dimension drawing	
9.9.5	Installation	285
9.9.6	Technical data	285
9.10	Sensor Module External SME120	
9.10.1	Description	
9.10.2	Safety instructions for Sensor Modules External	
9.10.3	Interface description	
9.10.3.1	Overview	
9.10.3.2	X100 encoder system interface	
9.10.3.3	X200 thermistor sensor input	
9.10.3.4	X300 hall sensor input	
9.10.3.5	X500 DRIVE-CLiQ interface	
9.10.4	Connection examples	
9.10.5	Dimension drawing	
9.10.6	Installation	
9.10.7	Technical data	
0.44		
9.11	Sensor Module External SME125	
9.11.1	Description	
9.11.2	Safety instructions for Sensor Modules External	
9.11.3	Interface description	
9.11.3.1	Overview	
9.11.3.2	X100 encoder system interface	
9.11.3.3	X200 thermistor sensor input	
9.11.3.4	X500 DRIVE-CLiQ interface	
9.11.4	Connection examples	
9.11.5	Dimension drawing	
9.11.6	Installation	
9.11.7	Technical data	309
9.12	DRIVE-CLiQ encoder	311
9.12.1	Description	311
9.12.2	Interface description	312
9.12.2.1	Overview	312
9.12.2.2	DRIVE-CLiQ interface	313
9.12.3	Dimension drawings	313
9.12.4	Installation	314
9.12.4.1	Mounting accessories	316
9.12.5	Technical specifications	317
Cabinet d	esign and electromagnetic compatibility (EMC)	
10.1	Information on control cabinet installation and EMC	
10.2	Electromagnetic fields in the workplace	
10.3	Overvoltage protection for 24 V cables	319
10.4	Connection systems	320
10.4.1	Spring-loaded terminals	320

		Screw terminals	
Α	Appendix.		25
	A.1	List of abbreviations	25
	A.2	Documentation overview	37
	Index		39

1.1 The SINAMICS converter family

With the SINAMICS converter family, you can solve any individual drive task in the low-voltage, medium-voltage and DC voltage range. From converters to motors and controllers, all Siemens drive components are perfectly matched to each other and can be easily integrated into your existing automation system. With SINAMICS you are prepared for digitization. You benefit from highly efficient engineering with a variety of tools for the entire product development and production process. And you also save space in the control cabinet – thanks to the integrated safety technology.

You can find additional information about SINAMICS at the following address (<u>http://www.siemens.com/sinamics</u>).

1.2 General information about SINAMICS documentation

SINAMICS documentation

The SINAMICS documentation is organized in the following categories:

- General documentation/catalogs
- User documentation
- Manufacturer/service documentation

Standard scope

The scope of the functionality described in this document can differ from that of the drive system that is actually supplied.

- Other functions not described in this documentation might be able to be executed in the drive system. However, no claim can be made regarding the availability of these functions when the equipment is first supplied or in the event of service.
- The documentation can also contain descriptions of functions that are not available in a particular product version of the drive system. Please refer to the ordering documentation only for the functionality of the supplied drive system.
- Extensions or changes made by the machine manufacturer must be documented by the machine manufacturer.

For reasons of clarity, this documentation does not contain all of the detailed information on all of the product types, and cannot take into consideration every conceivable type of installation, operation and service/maintenance.

Introduction

1.2 General information about SINAMICS documentation

Target group

This documentation is intended for machine manufacturers, commissioning engineers, and service personnel who use the SINAMICS drive system.

Benefits

This manual provides all of the information, procedures and operator actions required for the particular usage phase.

Siemens MySupport/Documentation

You can find information on how to create your own individual documentation based on Siemens content and adapt it for your own machine documentation at the following address (https://support.industry.siemens.com/My/ww/en/documentation).

Additional information

You can find information on the topics below at the following address (<u>https://support.industry.siemens.com/cs/de/en/view/108993276</u>):

- Ordering documentation/overview of documentation
- Additional links to download documents
- Using documentation online (find and search in manuals/information)

Questions relating to the technical documentation

Please send any questions about the technical documentation (e.g. suggestions for improvement, corrections) to the following email address (mailto:docu.motioncontrol@siemens.com).

FAQs

You can find Frequently Asked Questions about SINAMICS under Product Support (<u>https://support.industry.siemens.com/cs/de/en/ps/faq</u>).

Siemens Support while on the move

With the "Siemens Industry Online Support" app, you can access more than 300,000 documents for Siemens Industry products – any time and from anywhere. The app supports you in the following areas, for example:

- Resolving problems when executing a project
- Troubleshooting when faults develop
- Expanding a system or planning a new system

Furthermore, you have access to the Technical Forum and other articles that our experts have drawn up:

- FAQs
- Application examples
- Manuals
- Certificates
- Product announcements and much more

The "Siemens Industry Online Support" app is available for Apple iOS and Android.

Data matrix code on the rating plate

The data matrix code on the rating plate contains the specific device data. This code can be readin with any smartphone and technical information for the appropriate device can be displayed via the "Industry Online Support" mobile app.

Websites of third-party companies

This document includes hyperlinks to websites of third-party companies. Siemens is not responsible for and shall not be liable for these websites or their content, as Siemens has not checked the information contained in the websites and is not responsible for the content or information they provide. The use of such websites is at the user's own risk.

1.3 Usage phases and their documents/tools

Usage phase	Document/tool
Orientation	SINAMICS S Sales Documentation
Planning/configuration	SIZER Engineering Tool
	Configuration Manuals, Motors
Deciding/ordering	SINAMICS S120 catalogs
	SINAMICS S120 and SIMOTICS (Catalog D 21.4)
	• SINAMICS Converters for Single-Axis Drives and SIMOTICS Motors (Catalog D 31)
	• SINAMICS Converters for Single-Axis Drives – Built-In Units (D 31.1)
	• SINAMICS Converters for Single-Axis Drives – Distributed Converters (D 31.2)
	SINAMICS S210 Servo Drive System (D 32)
	SINUMERIK 840 Equipment for Machine Tools (Catalog NC 62)

1.3 Usage phases and their documents/tools

Usage phase	Document/tool
Installation/assembly	SINAMICS S120 Equipment Manual for Control Units and Supplementary System Components
	SINAMICS S120 Equipment Manual for Booksize Power Units
	SINAMICS S120 Equipment Manual for Chassis Power Units
	SINAMICS S120 Equipment Manual for Chassis Power Units, Liquid-cooled
	SINAMICS S120 Equipment Manual water-cooled chassis power units for common cooling circuits
	SINAMICS S120 Equipment Manual for Chassis Power Units, Air-cooled
	SINAMICS S120 Equipment Manual for AC Drives
	SINAMICS S120 Equipment Manual Combi
	SINAMICS S120M Equipment Manual Distributed Drive Technology
	SINAMICS HLA System Manual Hydraulic Drives
Commissioning	Startdrive Commissioning Tool
	SINAMICS S120 Getting Started with Startdrive
	SINAMICS S120 Commissioning Manual with Startdrive
	SINAMICS S120 Function Manual Drive Functions
	SINAMICS S120 Safety Integrated Function Manual
	SINAMICS S120 Function Manual Communication
	SINAMICS S120/S150 List Manual
	SINAMICS HLA System Manual Hydraulic Drives
Usage/operation	SINAMICS S120 Commissioning Manual with Startdrive
	SINAMICS S120/S150 List Manual
	SINAMICS HLA System Manual Hydraulic Drives
Maintenance/servicing	SINAMICS S120 Commissioning Manual with Startdrive
	SINAMICS S120/S150 List Manual
References	SINAMICS S120/S150 List Manual

1.4 Where can the various topics be found?

1.4 Where can the various topics be found?

Software		Manual
Alarms	Described in order of ascending numbers	SINAMICS S120/S150 List Manual
Parameters	Described in order of ascending numbers	SINAMICS S120/S150 List Manual
Function block di- agrams	Sorted according to topic	SINAMICS S120/S150 List Manual
	Described in order of ascending numbers	
Drive functions		SINAMICS S120 Function Manual Drive Functions
Communication topics		SINAMICS S120 Function Manual Communication ²⁾
Safety Integrated	Basic and Extended Functions	SINAMICS S120 Safety Integrated Function Manual
	Basic Functions	SINAMICS S120 Function Manual Drive Functions
Commissioning	Of a simple SINAMICS S120 drive with STARTER	Getting Started ¹⁾
Commissioning	With STARTER	SINAMICS S120 Commissioning Manual ¹⁾
Commissioning	Of a simple SINAMICS S120 drive with Start- drive	Getting Started with Startdrive ²⁾
Commissioning	With Startdrive	SINAMICS S120 Commissioning Manual with Startdrive ²⁾
Web server		SINAMICS S120 Function Manual Drive Functions

Hardware			Manual
Control Units and expansion components	Control UnitsOption BoardsTerminal Modules	 DRIVE-CLiQ HUB Modules VSM10 Encoder system connection 	SINAMICS S120 Equipment Manual for Control Units and Supplementary System Components
Booksize power units	Line connectionLine ModulesMotor Modules	 DC link components Braking resistors Control cabinet design 	SINAMICS S120 Equipment Manual for Booksize Power Units
Chassis power units			SINAMICS S120 Equipment Manual for Chassis Power Units, air, liquid or water cooled
AC drive components			SINAMICS S120 Equipment Manual for AC Drives
S120 Combi components			SINAMICS S120 Equipment Manual Combi
Diagnostics via LEDs	STARTER		SINAMICS S120 Commissioning Manual ¹⁾
	Startdrive		SINAMICS S120 Commissioning Manual with Startdrive ²⁾
Meaning of the LEDs			Equipment Manuals
High Frequency Drive components			SINAMICS S120 System Manual High Frequency Drives

¹⁾ Up to firmware version 5.1 SP1

²⁾ From firmware version 5.2

1.6 Directives, standards, certificates

1.5 Training and support

Training

You can find information on SITRAIN at the following address (<u>http://www.siemens.com/sitrain</u>). SITRAIN offers training courses for products, systems and solutions in drive and automation technology from Siemens.

Technical Support

To ask a technical question or create a support request, click on "Support Request" at the following address (<u>https://support.industry.siemens.com/cs/ww/en/sc</u>) and select "Create Request".

1.6 Directives, standards, certificates

Relevant directives and standards

You can obtain an up-to-date list of currently certified components on request from your local Siemens office. If you have any questions relating to certifications that have not yet been completed, please ask your Siemens contact person.

Certificates for download

The certificates can be downloaded from the Internet:

Certificates (https://support.industry.siemens.com/cs/ww/de/ps/13206/cert)

CE

EC Declaration of Conformity

You can find the EC Declaration of Conformity for the relevant directives as well as the relevant certificates, prototype test certificates, manufacturers declarations and test certificates for functions relating to functional safety ("Safety Integrated") on the Internet at the following address (<u>https://support.industry.siemens.com/cs/ww/en/ps/13231/cert</u>).

The following directives and standards are relevant for SINAMICS S devices:

• European Low Voltage Directive

SINAMICS S devices fulfil the requirements stipulated in the Low-Voltage Directive 2014/35/ EU, insofar as they are covered by the application area of this directive.

• European Machinery Directive

SINAMICS S devices fulfil the requirements stipulated in the Low-Voltage Directive 2006/42/ EU, insofar as they are covered by the application area of this directive. However, the use of the SINAMICS S devices in a typical machine application has been fully assessed for compliance with the main regulations in this directive concerning health and safety.

Directive 2011/65/EU •

SINAMICS S devices comply with the requirements of Directive 2011/65/EU on the restriction of the use of certain hazardous substances in electrical and electronic devices (RoHS II).

- **European EMC Directive** SINAMICS S devices comply with the EMC Directive 2014/30/EU.
- **EMC requirements for South Korea** SINAMICS S devices with the KC marking on the type plate satisfy the EMC requirements for South Korea.
- **Eurasian conformity** SINAMICS S comply with the requirements of the Russia/Belarus/Kazakhstan customs union (EAC).
- North American market

SINAMICS S devices provided with one of the test symbols displayed fulfill the requirements stipulated for the North American market as a component of drive applications. You can find the relevant certificates on the Internet pages of the certifier (https:// iq.ulprospector.com).

- Specification for semiconductor process equipment voltage drop immunity SINAMICS S devices meet the requirements of standard SEMI F47-0706.
- Australia and New Zealand (RCM formerly C-Tick) SINAMICS S devices showing the test symbols fulfill the EMC requirements for Australia and New Zealand.
- **Quality systems** Siemens AG employs a quality management system that meets the requirements of ISO 9001 and ISO 14001.

Not relevant standards

China Compulsory Certification

SINAMICS S devices do not fall in the area of validity of the China Compulsory Certification (CCC).

EMC limit values in South Korea

이 기기는 업무용(A급) 전자파적합기기로서 판매자 또는 사용자는 이 점을 주의하시기 바라며, 가정외의 지역에서 사용하는 것을 목적으로 합니다.

For sellers or other users, please bear in mind that this device is an A-grade electromagnetic wave device. This device is intended to be used in areas other than at home.

The EMC limit values to be observed for Korea correspond to the limit values of the EMC product standard for variable-speed electric drives EN 61800-3 of category C2 or the limit value class A, Group 1 to KN11. By implementing appropriate additional measures, the limit values according to category C2 or limit value class A, Group 1, are observed. Further, additional measures may be required, such as using an additional radio interference suppression filter (EMC filter). The measures for EMC-compliant design of the system are described in detail in this manual respectively in the EMC Installation Guideline Configuration Manual.

1.7 Additional information

The final statement regarding compliance with the standard is given by the respective label attached to the individual unit.

1.7 Additional information

Ensuring reliable operation

The manual describes a desired state which, if maintained, ensures the required level of operational reliability and compliance with EMC limit values.

Should there be any deviation from the requirements in the manual, appropriate actions (e.g. measurements) must be taken to check/prove that the required level of operational reliability and compliance with EMC limit values are ensured.

Spare parts

Spare parts are available on the Internet at the following address (<u>https://www.automation.siemens.com/sow?sap-language=EN</u>).

Product maintenance

The components are subject to continuous further development within the scope of product maintenance (improvements to robustness, discontinuations of components, etc).

These further developments are "spare parts-compatible" and do not change the article number.

In the scope of such spare parts-compatible further developments, connector/connection positions are sometimes changed slightly. This does not cause any problems with proper use of the components. Please take this fact into consideration in special installation situations (e.g. allow sufficient clearance for the cable length).

Use of third-party products

This document contains recommendations relating to third-party products. Siemens accepts the fundamental suitability of these third-party products.

You can use equivalent products from other manufacturers.

Siemens does not accept any warranty for the properties of third-party products.

Ground symbols

Table 1-1 Symbols	
lcon	Meaning
	Connection for protective conductor
	Ground (e.g. M 24 V)
	Connection for function potential bonding

1.8 General Data Protection Regulation

Compliance with the General Data Protection Regulation

Siemens respects the principles of data protection, in particular the data minimization rules (privacy by design).

For this product, this means:

The product does not process neither store any person-related data, only technical function data (e.g. time stamps). If the user links these data with other data (e.g. shift plans) or if he stores person-related data on the same data medium (e.g. hard disk), thus personalizing these data, he has to ensure compliance with the applicable data protection stipulations.

Introduction

1.8 General Data Protection Regulation

Fundamental safety instructions

2.1 General safety instructions

MARNING

Electric shock and danger to life due to other energy sources

Touching live components can result in death or severe injury.

- Only work on electrical devices when you are qualified for this job.
- Always observe the country-specific safety rules.

Generally, the following steps apply when establishing safety:

- 1. Prepare for disconnection. Notify all those who will be affected by the procedure.
- 2. Isolate the drive system from the power supply and take measures to prevent it being switched back on again.
- 3. Wait until the discharge time specified on the warning labels has elapsed.
- 4. Check that there is no voltage between any of the power connections, and between any of the power connections and the protective conductor connection.
- 5. Check whether the existing auxiliary supply circuits are de-energized.
- 6. Ensure that the motors cannot move.
- 7. Identify all other dangerous energy sources, e.g. compressed air, hydraulic systems, or water. Switch the energy sources to a safe state.
- 8. Check that the correct drive system is completely locked.

After you have completed the work, restore the operational readiness in the inverse sequence.

🔨 WARNING

Electric shock due to connection to an unsuitable power supply

When equipment is connected to an unsuitable power supply, exposed components may carry a hazardous voltage. Contact with hazardous voltage can result in severe injury or death.

• Only use power supplies that provide SELV (Safety Extra Low Voltage) or PELV- (Protective Extra Low Voltage) output voltages for all connections and terminals of the electronics modules.

2.1 General safety instructions

\Lambda warning

Electric shock due to unconnected cable shield

Hazardous touch voltages can occur through capacitive cross-coupling due to unconnected cable shields.

• As a minimum, connect cable shields and the conductors of power cables that are not used (e.g. brake cores) at one end at the grounded housing potential.

NOTICE

Damage to equipment due to unsuitable tightening tools.

Unsuitable tightening tools or fastening methods can damage the screws of the equipment.

- Be sure to only use screwdrivers which exactly match the heads of the screws.
- Tighten the screws with the torque specified in the technical documentation.
- Use a torque wrench or a mechanical precision nut runner with a dynamic torque sensor and speed limitation system.

NOTICE

Property damage due to loose power connections

Insufficient tightening torques or vibration can result in loose power connections. This can result in damage due to fire, device defects or malfunctions.

- Tighten all power connections to the prescribed torque.
- Check all power connections at regular intervals, particularly after equipment has been transported.

M WARNING

Spread of fire from built-in devices

In the event of fire outbreak, the enclosures of built-in devices cannot prevent the escape of fire and smoke. This can result in serious personal injury or property damage.

- Install built-in units in a suitable metal cabinet in such a way that personnel are protected against fire and smoke, or take other appropriate measures to protect personnel.
- Ensure that smoke can only escape via controlled and monitored paths.

2.1 General safety instructions

M WARNING

Active implant malfunctions due to electromagnetic fields

Converters generate electromagnetic fields (EMF) in operation. Electromagnetic fields may interfere with active implants, e.g. pacemakers. People with active implants in the immediate vicinity of an converter are at risk.

- As the operator of an EMF-emitting installation, assess the individual risks of persons with active implants.
- Observe the data on EMF emission provided in the product documentation.

M WARNING

Unexpected movement of machines caused by radio devices or mobile phones

Using radio devices or mobile telephones in the immediate vicinity of the components can result in equipment malfunction. Malfunctions may impair the functional safety of machines and can therefore put people in danger or lead to property damage.

- Therefore, if you move closer than 20 cm to the components, be sure to switch off radio devices or mobile telephones.
- Use the "SIEMENS Industry Online Support app" only on equipment that has already been switched off.

\Lambda warning

Fire due to inadequate ventilation clearances

Inadequate ventilation clearances can cause overheating of components with subsequent fire and smoke. This can cause severe injury or even death. This can also result in increased downtime and reduced service lives for devices/systems.

• Ensure compliance with the specified minimum clearance as ventilation clearance for the respective component.

NOTICE

Overheating due to inadmissible mounting position

The device may overheat and therefore be damaged if mounted in an inadmissible position.

• Only operate the device in admissible mounting positions.

2.2 Equipment damage due to electric fields or electrostatic discharge

M WARNING

Unexpected movement of machines caused by inactive safety functions

Inactive or non-adapted safety functions can trigger unexpected machine movements that may result in serious injury or death.

- Observe the information in the appropriate product documentation before commissioning.
- Carry out a safety inspection for functions relevant to safety on the entire system, including all safety-related components.
- Ensure that the safety functions used in your drives and automation tasks are adjusted and activated through appropriate parameterizing.
- Perform a function test.
- Only put your plant into live operation once you have guaranteed that the functions relevant to safety are running correctly.

Note

Important safety notices for Safety Integrated functions

If you want to use Safety Integrated functions, you must observe the safety notices in the Safety Integrated manuals.

2.2

Equipment damage due to electric fields or electrostatic discharge

Electrostatic sensitive devices (ESD) are individual components, integrated circuits, modules or devices that may be damaged by either electric fields or electrostatic discharge.

NOTICE

Equipment damage due to electric fields or electrostatic discharge

Electric fields or electrostatic discharge can cause malfunctions through damaged individual components, integrated circuits, modules or devices.

- Only pack, store, transport and send electronic components, modules or devices in their original packaging or in other suitable materials, e.g conductive foam rubber of aluminum foil.
- Only touch components, modules and devices when you are grounded by one of the following methods:
 - Wearing an ESD wrist strap
 - Wearing ESD shoes or ESD grounding straps in ESD areas with conductive flooring
- Only place electronic components, modules or devices on conductive surfaces (table with ESD surface, conductive ESD foam, ESD packaging, ESD transport container).

2.3 Warranty and liability for application examples

Application examples are not binding and do not claim to be complete regarding configuration, equipment or any eventuality which may arise. Application examples do not represent specific customer solutions, but are only intended to provide support for typical tasks.

As the user you yourself are responsible for ensuring that the products described are operated correctly. Application examples do not relieve you of your responsibility for safe handling when using, installing, operating and maintaining the equipment.

2.4 Security information

Siemens provides products and solutions with industrial security functions that support the secure operation of plants, systems, machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial security concept. Siemens' products and solutions constitute one element of such a concept.

Customers are responsible for preventing unauthorized access to their plants, systems, machines and networks. Such systems, machines and components should only be connected to an enterprise network or the internet if and to the extent such a connection is necessary and only when appropriate security measures (e.g. firewalls and/or network segmentation) are in place.

For additional information on industrial security measures that may be implemented, please visit

https://www.siemens.com/industrialsecurity (https://www.siemens.com/industrialsecurity).

Siemens' products and solutions undergo continuous development to make them more secure. Siemens strongly recommends that product updates are applied as soon as they are available and that the latest product versions are used. Use of product versions that are no longer supported, and failure to apply the latest updates may increase customer's exposure to cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed under

https://www.siemens.com/industrialsecurity (<u>https://new.siemens.com/global/en/products/</u> services/cert.html#Subscriptions).

Further information is provided on the Internet:

2.5 Residual risks of power drive systems

Industrial Security Configuration Manual (<u>https://support.industry.siemens.com/cs/ww/en/view/108862708</u>)

🕂 WARNING

Unsafe operating states resulting from software manipulation

Software manipulations, e.g. viruses, Trojans, or worms, can cause unsafe operating states in your system that may lead to death, serious injury, and property damage.

- Keep the software up to date.
- Incorporate the automation and drive components into a holistic, state-of-the-art industrial security concept for the installation or machine.
- Make sure that you include all installed products into the holistic industrial security concept.
- Protect files stored on exchangeable storage media from malicious software by with suitable protection measures, e.g. virus scanners.
- On completion of commissioning, check all security-related settings.

2.5 Residual risks of power drive systems

When assessing the machine- or system-related risk in accordance with the respective local regulations (e.g., EC Machinery Directive), the machine manufacturer or system installer must take into account the following residual risks emanating from the control and drive components of a drive system:

- 1. Unintentional movements of driven machine or system components during commissioning, operation, maintenance, and repairs caused by, for example,
 - Hardware and/or software errors in the sensors, control system, actuators, and cables and connections
 - Response times of the control system and of the drive
 - Operation and/or environmental conditions outside the specification
 - Condensation/conductive contamination
 - Parameterization, programming, cabling, and installation errors
 - Use of wireless devices/mobile phones in the immediate vicinity of electronic components
 - External influences/damage
 - X-ray, ionizing radiation and cosmic radiation
- 2. Unusually high temperatures, including open flames, as well as emissions of light, noise, particles, gases, etc., can occur inside and outside the components under fault conditions caused by, for example:
 - Component failure
 - Software errors
 - Operation and/or environmental conditions outside the specification
 - External influences/damage

2.5 Residual risks of power drive systems

- 3. Hazardous shock voltages caused by, for example:
 - Component failure
 - Influence during electrostatic charging
 - Induction of voltages in moving motors
 - Operation and/or environmental conditions outside the specification
 - Condensation/conductive contamination
 - External influences/damage
- 4. Electrical, magnetic and electromagnetic fields generated in operation that can pose a risk to people with a pacemaker, implants or metal replacement joints, etc., if they are too close
- 5. Release of environmental pollutants or emissions as a result of improper operation of the system and/or failure to dispose of components safely and correctly
- 6. Influence of network-connected communication systems, e.g. ripple-control transmitters or data communication via the network

For more information about the residual risks of the drive system components, see the relevant sections in the technical user documentation.

2.5 Residual risks of power drive systems

Field of application 3.1

SINAMICS is the family of drives from Siemens designed for machine and plant engineering applications. SINAMICS offers solutions for all drive tasks:

- Simple pump and fan applications in the process industry ٠
- Complex single drives in centrifuges, presses, extruders, elevators, as well as conveyor and ٠ transport systems
- Drive line-ups in textile, plastic film, and paper machines as well as in rolling mill plants •
- High-precision servo drives in the manufacture of wind turbines •

Woodworking

٠ Highly dynamic servo drives for machine tools, as well as packaging and printing machines

Mixers / mills

Pumps/fans/ compressors

Plastic

Textiles

Converting

Packaging

Renewable energies

Conveyor systems

Figure 3-1

Printing machines SINAMICS applications

3.2 Platform Concept and Totally Integrated Automation

Depending on the application, the SINAMICS range offers the ideal variant for any drive task.

- SINAMICS S handles complex drive tasks with synchronous motors and induction motors and fulfills stringent requirements regarding:
 - the dynamic performance and accuracy
 - the integration of extensive technological functions in the drive control system
- SINAMICS G is designed for standard applications with induction motors. These applications have less stringent requirements regarding the dynamic performance of the motor speed.
- SINAMICS V is designed to address applications where basic drive functions are available quickly and at a favorable cost and which are easy to handle.

3.2 Platform Concept and Totally Integrated Automation

All SINAMICS versions are based on a platform concept. Joint hardware and software components, as well as standardized tools for design, configuration, and commissioning tasks ensure high-level integration across all components. SINAMICS handles a wide variety of drive tasks with no system gaps. The different SINAMICS versions can be easily combined with each other.

Totally Integrated Automation (TIA) with SINAMICS S120

Apart from SIMATIC, SIMOTION and SINUMERIK, SINAMICS is one of the core components of TIA. It is thus possible to assign parameters, program and commission all components in the automation solution with the Startdrive or STARTER commissioning tool using a standardized engineering platform and without any system transitions (seamless engineering). The systemwide data management functions ensure consistent data and simplify archiving of the entire plant project.

From V14, the Startdrive commissioning tool is an integral element of the TIA platform.

SINAMICS S120 supports communication via PROFINET and PROFIBUS DP.

Communication via PROFINET

This Ethernet-based bus enables control data to be exchanged at high speed via PROFINET IO with IRT or RT and makes SINAMICS S120 a suitable choice for integration in high-performance multi-axis applications. At the same time, PROFINET also uses standard IT mechanisms (TCP/IP) to transport information, e.g. operating and diagnostic data, to higher-level systems. This makes it easy to integrate into an IT corporate network.

Communication via PROFIBUS DP

This bus provides a high-performance, system-wide and integrated communication network which links all automation components of the automation solution:

- HMI (operator control and monitoring)
- Control
- Drives and I/O

3.2 Platform Concept and Totally Integrated Automation

Figure 3-2 SINAMICS as part of the Siemens modular automation system

3.3 Introduction

3.3 Introduction

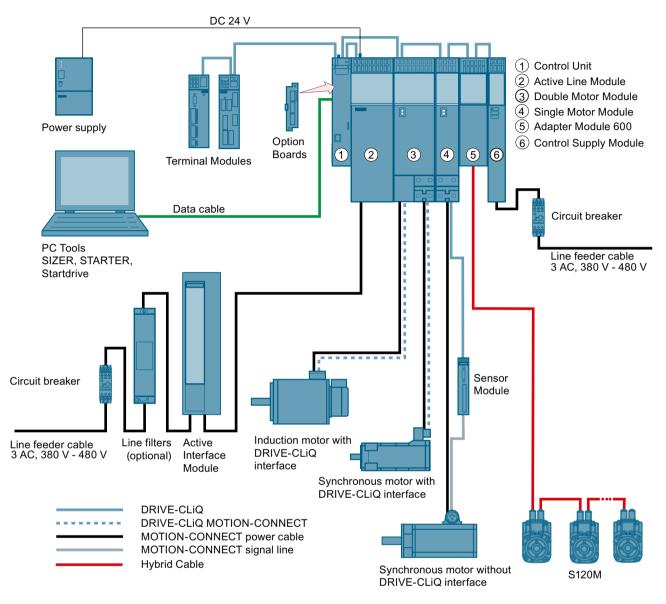


Figure 3-3 System overview, SINAMICS S120 with S120M distributed servo drive technology

Modular system for sophisticated drive tasks

SINAMICS S120 solves complex drive tasks for a wide range of industrial applications and is, therefore, designed as a modular system. Select from many different harmonized components and functions to create the combination that best meets your requirements. SIZER, a high-performance engineering tool, makes it easier to select and determine the optimum drive configuration.

SINAMICS S120 is supplemented by a wide range of motors. SINAMICS S120 optimally supports:

- SINAMICS S120M
- Synchronous and induction motors
- Linear and torque motors

System architecture with a central Control Unit

On the SINAMICS S120, the drive intelligence is combined with closed-loop control functions into Control Units. These units are capable of controlling drives in the vector, servo and V/f control modes. They also perform the speed and torque control functions plus other intelligent drive functions for all axes on the drive. Inter-axis connections can be established within a component and easily configured by mouse click in the Startdrive or STARTER commissioning tool.

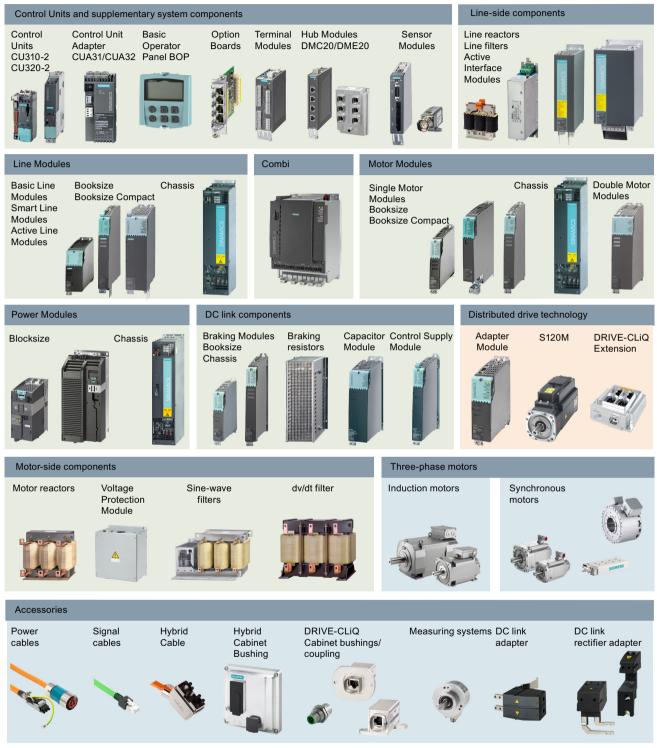
Functions for higher efficiency

- Basic functions: Speed control, torque control, positioning functions
- Intelligent starting functions for independent restart after power supply interruption
- BICO technology with interconnection of drive-related I/Os for easy adaptation of the drive system to its operating environment
- Integrated safety functions for rational implementation of safety concepts
- Regulated infeed/regenerative feedback functions for preventing undesirable reactions on the supply, allowing recovery of braking energy and ensuring greater stability against line fluctuations.

DRIVE-CLiQ – the digital interface between SINAMICS components

Most of the SINAMICS S120 components, including the motors and encoders, are connected to each other via the common DRIVE-CLiQ serial interface. The standardized cables and connectors reduce the variety of different parts and cut storage costs. Encoder evaluations for converting standard encoder signals to DRIVE-CLiQ are available for third-party motors or retrofit applications.

Electronic rating plates in all components


An important digital linkage element of the SINAMICS S120 drive system are the electronic type plates integrated in every component. They allow all drive components to be detected automatically via a DRIVE-CLiQ link. As a result, data does not have to be entered manually during commissioning or component replacement – helping to ensure that drives are commissioned more reliably.

The rating plate contains all the relevant technical data about that particular component. For motors, these are the parameters of the electrical equivalent circuit diagram and key values of the integrated motor encoder, for example.

In addition to the technical data, the type plate includes logistical data (manufacturer ID, article number and ID). Since this data can be called up electronically on site or remotely, all the components used in a machine can always be individually identified, which helps simplify servicing.

3.4 SINAMICS S120 components

3.4 SINAMICS S120 components

System components

- Line-side power components, such as fuses, contactors, reactors, and filters for switching the power supply and meeting EMC requirements.
- · Line Modules, which supply power centrally to the DC link
- DC link components (optional), which stabilize the DC link voltage.
- Motor Modules, which act as inverters, receive power from the DC link, and supply the connected motors
- Power components on the motor side, such as reactors and Voltage Protection Modules, which allow output currents and output voltages to be reduced

To carry out the required functions, SINAMICS S120 is equipped with:

- Control Units that process the drive and technological functions across all axes
- Additional system components to expand the functionality and to handle various interfaces for encoders and process signals

SINAMICS S120 components are intended for installation in cabinets. They have the following features and characteristics:

- Easy to handle, simple installation and wiring
- · Practical connection system, cable routing in accordance with EMC requirements
- · Standardized design, side-by-side mounting

Note

Mounting position in the cabinet

As a general rule, SINAMICS S120 components must be mounted vertically in the control cabinet. If components can be mounted with alternative orientations, this is stated in the technical data.

NOTICE

Overheating of components due to incorrect mounting position

Incorrectly installed components can overheat in operation. Overheating can lead to malfunctions and damage to components.

• Install the components only in the permissible mounting position in the control cabinet.

Booksize format

Units in the booksize format are optimized for multi-axis applications and are mounted adjacent to one another. The connection for the shared voltage-source DC link is an integral feature.

Booksize format offers various air cooling options:

- Internal air cooling
- External air cooling (see note)
- Cold plate cooling (see note)

Booksize Compact format

The Booksize Compact format combines all benefits of the Booksize format and provides the same performance with an even smaller overall height. The Booksize Compact format is thus particularly well suited for integration into machines with high dynamic requirements and confined installation conditions.

The Booksize Compact format offers various air cooling options:

- Internal air cooling
- Cold plate cooling (see note)

Note

Devices with external air cooling or cold plate cooling

The ongoing development of the S120 Booksize drive system concentrates on internal air cooling.

Modules with external air cooling and cold plate will no longer be innovated.

The technical documentation SINAMICS S120 "Booksize power units" Edition 06/2019 (6SL3097-5AC00-0AP2) is still valid for these modules.

3.5 Power units

Line Modules

Line Modules generate a DC voltage for the DC link from the 3-phase line voltage.

- Basic Line Modules Basic Line Modules generate an uncontrolled DC link voltage and are not capable of energy recovery.
- Smart Line Modules Smart Line Modules generate an uncontrolled DC link voltage and are capable of energy recovery.
- Active Line Modules Active Line Modules generate a controlled DC link voltage and are capable of energy recovery.

Motor Modules

Motor Modules convert energy from the DC link for the connected motors with variable voltage and variable frequency.

3.6 System data

Unless explicitly specified otherwise, the following technical data is valid for components of the SINAMICS S120 booksize drive system described in this manual.

Table 3-1 Electrical data

Line connection voltage	3 AC 380 480 V ±10 % (-15 % < 1 min)
Line frequency	47 63 Hz
Electronics power supply	24 VDC -15/+20% ¹⁾ , protective extra low voltage PELV or SELV
Radio interference suppression	Category C3 according to IEC 61800-3 (standard) Category C2 according to IEC 61800-3 (option) for implementing plants and systems corresponding to the EC Dec- laration of Conformity for EMC and the Configuration Manual "EMC installation guidelines", Article number: 6FC5297AD30-0AP.
Overvoltage category	III ²⁾ According to IEC 61800-5-1, EN 61800-5-1, UL 61800-5-1 and CSA C22.2 No 274
Pollution degree	2 ³⁾ According to IEC 61800-5-1, EN 61800-5-1, UL 61800-5-1 and CSA C22.2 No 274

¹⁾ The supply voltage may not fall below the minimum value of 20.4 V (24 V -15 %) at the last device in the line-up, as otherwise malfunctions can occur. The amplitude of the test current must be set adequately high for this. In order to prevent the maximum 24 V power supply voltage from being exceeded (= 28.8 V), the voltage can be injected at various locations in the line-up.

- ²⁾ The components are designed for connection to electric circuits of overvoltage category III. If this has not already been ensured by the installation, an upstream overvoltage protection device may have to be installed. Overvoltages must be limited to 6 kV against ground and 4 kV between phases. Overvoltage protection devices must be suitable for the line voltage and the prospective short-circuit current of the line.
- ³⁾ The components must be protected against conductive pollution, e.g. by installing them in a control cabinet with degree of protection IP54 according to IEC 60529 or Type 12 according to NEMA 250. If conductive pollution can be excluded at the installation site, a lower degree of cabinet protection may be permitted.

Degree of protection (with the exception of SME20/25/120/125, DME20)	IPXXB acc. to EN 60529, open type acc. to UL/CSA
Degree of protection for SME20/25/120/125 and DME20	IP67, with mounted connectors or protective caps
Protection class	I, with protective ground conductor connection

Table 3-2 Degree of protection and protection class

Chemically active substances		
Long-term storage	Class 1C2 according to IEC 60721-3-1:1997, in product packaging ¹⁾	
Transport	Class 2C2 according to IEC 60721-3-2:1997, in transport packaging ²⁾	
Operation	Class 3C2 according to IEC 60721-3-3:2002	
Biological environmental conditions		
Long-term storage	Class 1B1 according to IEC 60721-3-1:1997, in product packaging ¹⁾	
Transport	Class 2B1 according to IEC 60721-3-2:1997, in transport packaging ²⁾	
Operation	Class 3B1 according to IEC 60721-3-3:2002	

Table 3-3Environmental conditions

3.6 System data

Climatic environmental condition	s	
Long-term storage	Class 1K4 according to IEC 60721-3-1:1997, in product packaging ¹⁾ Temperature: -25 +55 $^\circ\mathrm{C}$	
Transport	Class 2K4 according to IEC 60721-3-2:1997, in transport packaging $^{\rm 2)}$ Temperature: -40 +70 $^{\circ}{\rm C}$	
Operation (with the exception of SME20/25/120/125, DME20)	Class 3K3 according to IEC 60721-3-3:2002 with an increased degree of ruggedness with respect to relative humidity	
	Temperature: 0 +55 °C Relative humidity: 5 95 % no condensation (better than class 3K3) Oil mist, salt mist, ice formation, condensation, dripping water, spraying water, splash- ing water and water jets are not permitted	
Operation for DME20	Class 3K3 according to IEC 60721-3-3:2002 with an increased degree of ruggedness with respect to relative humidity	
	Temperature: 0 +55 $^{\circ}$ C Relative humidity: 5 95 % no condensation (better than class 3K3) Formation of ice and condensation not permissible	
Operation for SME20/25/120/125	Class 3K3 acc. to IEC 60721-3-3:2002 with an increased degree of ruggedness with respect to relative humidity and temperature	
	Temperature: -20 +55 °C (better than Class 3K3) Relative humidity: 5 95% without condensation (better than class 3K3) Formation of ice and condensation not permissible	
Mechanical environmental condit	ions	
Long-term storage	Class 1M2 according to IEC 60721-3-1:1997, in product packaging ¹⁾	
Transport	Class 2M3 according to IEC 60721-3-2:1997, in transport packaging ²⁾	
Operation (with the exception of SME20/25/120/125, DME20)	Class 3M1 according to IEC 60721-3-3:2002	
Vibration test	According to IEC 60068-2-6 test Fc (sinusoidal)	
	• 10 57 Hz 0.075 mm deflection amplitude	
	• 57 150 Hz: 1g acceleration amplitude	
	10 frequency cycles per axis	
Shock test	According to IEC 60068-2-27 test Ea (half-sine)	
	• 5 g peak acceleration	
	30 ms duration	
	• 3 shocks in all three axes in both directions	
Operation for SME20/25/120/125, DME20	Class 3M3 according to IEC 60721-3-3:2002	
Vibration test	According to IEC 60068-2-6 test Fc (sinusoidal)	
	• 10 57 Hz 0.035 mm deflection amplitude	
	• 57 150 Hz: 5g acceleration amplitude	
	10 frequency cycles per axis	

3.7 Recycling and disposal

Shock test	According to IEC 60068-2-27 test Ea (half-sine)	
	• 25 g peak acceleration	
	6 ms duration	
	1000 shocks in all three axes in both directions	
Installation altitude	0 1000 m without derating	
	> 1000 4000 m	
	Reduction of the output current by 10 % per 1000 meters, or	
	Reduction in the ambient temperature by 5 °C per 1000 meters	
	> 2000 4000 m	
	Operation on line supply systems with grounded neutral point, or	
	Operation on an isolating transformer with secondary grounded neutral point	

¹⁾ A product packaging (storage packaging) is an individual packaging for storage - and does not comply with requirements for transport. As a consequence, the product packaging is not suitable for shipping.

²⁾ Transport packaging is either packaging that is directly suitable for transport, or secondary packaging, which together with the product packaging, satisfies the requirements for transport.

Table 3-4 Certificates

5	EU declaration of conformity (Low Voltage Directive, EMC, Machinery Directive, RoHS China RoHS, RCM, Morocco	
Certifications ¹⁾	cULus, cURus, KC, EAC	

¹⁾ Possible deviations are specified for the corresponding component.

3.7 Recycling and disposal

For environmentally friendly recycling and disposal of your old device, please contact a company certified for the disposal of electrical and electronic waste and dispose of the device in accordance with the regulations in your country.

System overview

3.7 Recycling and disposal

Control Units and operating elements

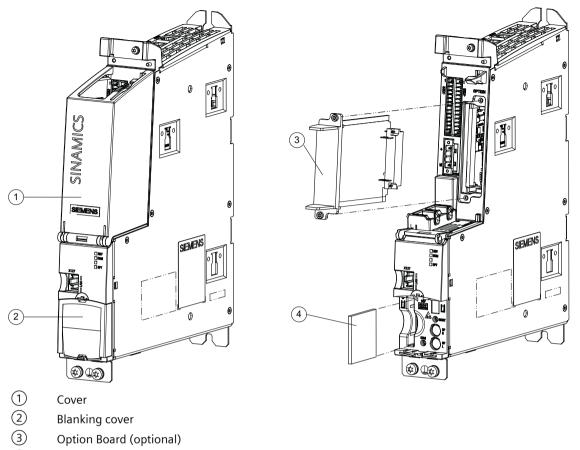
4.1 Introduction

Description

Control Units CU320-2 PN and CU320-2 DP of the SINAMICS S system are designed for use with several drives.

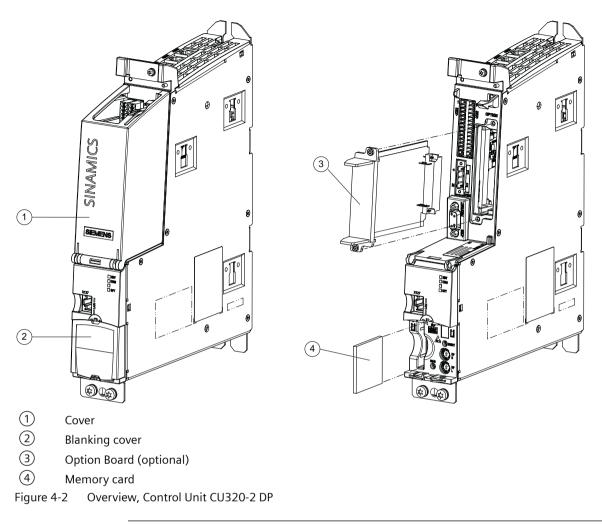
The number of variable-speed drives depends on:

- The required performance
- The required additional functions
- The desired method of open/closed loop control (servo, vector or U/f)


The software and the parameters are stored on a plug-in memory card.

The option slot is used to expand the number of terminals or adapt to other communication interfaces (to the higher-level control).

Compatible firmware versions:


- CU320-2 PN V4.4 or higher
- CU320-2 DP V4.3 or higher

4.1 Introduction

- Option Board (optional)
- (4) Memory card
- Overview, Control Unit CU320-2 PN Figure 4-1

4.1 Introduction

Note

The Control Unit, the option board, and the memory card must be ordered separately.

If your application requires more than one Control Unit, the number can be increased accordingly. The Control Units are then interconnected via PROFIBUS, for example.

A Control Unit communicates with the associated components (Motor Modules, Line Modules, Sensor Modules, Terminal Modules, and so on) via the system-internal DRIVE-CLiQ interface.

4.2 Safety instructions for Control Units

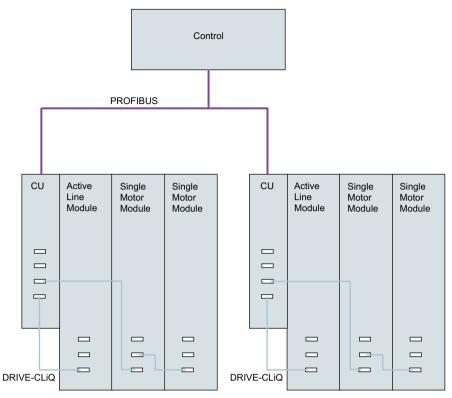


Figure 4-3 Sample configuration

4.2 Safety instructions for Control Units

NOTICE

Component destruction as a result of high leakage currents

The Control Unit or other PROFIBUS and/or PROFINET nodes can be destroyed if significant leakage currents flow via the PROFIBUS or PROFINET cable.

• A functional equipotential bonding conductor with a cross-section of at least 10 mm² must be used between components in a system of a plant that are located at a distance from each other.

NOTICE

Damage or malfunctions of the Option Board by inserting and withdrawing during operation

Withdrawing and inserting the option board in operation can damage it or cause it to malfunction.

• Only withdraw or insert the Option Board when the Control Unit is current-free.

NOTICE

Damage through use of incorrect DRIVE-CLiQ cables

The use of incorrect or unreleased DRIVE-CLiQ cables can cause damage or functional faults to devices or the system.

 Only use suitable DRIVE-CLiQ cables that have been released by Siemens for the particular application.

Note

Malfunctions due to polluted DRIVE-CLiQ interfaces

Malfunctions can occur in the system through the use of polluted DRIVE-CLiQ interfaces.

• Cover unused DRIVE-CLiQ interfaces with the supplied blanking covers.

Note

Function equipotential bonding for distributed DRIVE-CLiQ nodes

Integrate all of the components that are connected via DRIVE-CLiQ in the functional equipotential bonding concept. You make the connection by mounting on bare metallic machine and plant units that are all connected to one another.

Alternatively, you can establish equipotential bonding with a conductor (min. 6 mm²), which is routed as far as possible in parallel to the DRIVE-CLiQ cable. This involves all distributed DRIVE-CLiQ nodes, e.g. DME20, SME20, SME25, SME120, SME125.

Note

Malfunction in the switched-off state due to diagnostic currents

Unlike mechanical switching contacts, e.g. emergency stop switches, diagnostic currents can also flow when the semiconductor is in the switched-off state (logical state "0" or "OFF"). If interconnection with digital inputs is faulty, the diagnostic currents can result in incorrect switching states. Incorrect signal states of digital inputs can cause unwanted motions of machine parts and trigger malfunctions.

- Observe the conditions of digital inputs and digital outputs specified in the relevant manufacturer documentation.
- Check the conditions of the digital inputs and digital outputs with regard to currents in the "OFF" state and if necessary connect the digital inputs to suitably dimensioned, external resistors to protect against the reference potential of the digital inputs.

4.3 Control Unit CU320-2 PN (PROFINET)

4.3.1 Description

The Control Unit CU320-2 PN is a central control module in which the closed-loop and open-loop functions are implemented for one or more Line Modules and/or Motor Modules. It can be used with firmware version 4.4 or higher.

The CU320-2 PN has the following interfaces (ports):

Table 4-1	Overview of the CU320-2 PN interfaces

Туре	Quantity
Isolated digital inputs	12
Non-isolated digital inputs/outputs	8
DRIVE-CLiQ interfaces	4
PROFINET interfaces	2
LAN (Ethernet)	1
Serial interface (RS232)	1
Option slot	1
Measuring terminals	3

4.3.2 Interface description

4.3.2.1 Overview

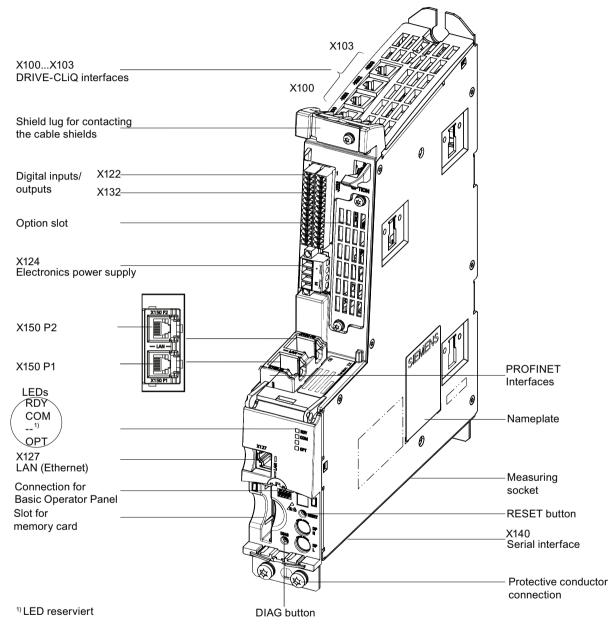


Figure 4-4 Interface overview CU320-2 PN (without cover and blanking cover)

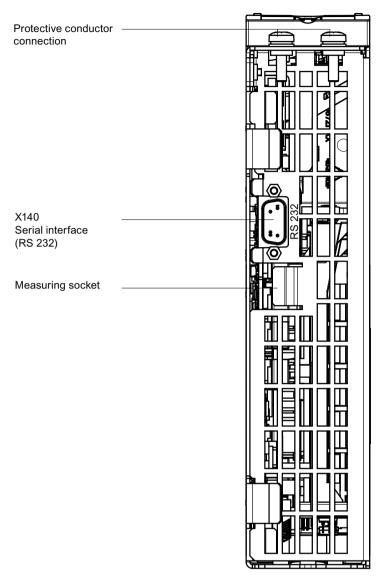


Figure 4-5 Interface X140 and measuring socket - CU320-2 PN (view from below)

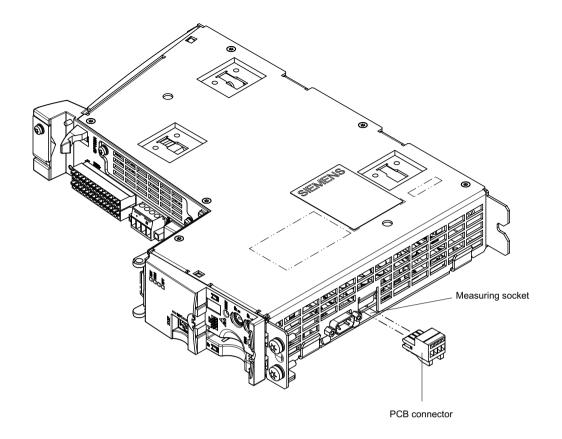


Figure 4-6 Mounting a PC board connector (Phoenix Contact) in the measuring socket

4.3.2.2 X100-X103 DRIVE-CLiQ interfaces

	Pin	Signal name	Technical data
	1	ТХР	Transmit data +
	2	TXN	Transmit data -
	3	RXP	Receive data +
	4	Reserved, do not use	-
	5	Reserved, do not use	-
	6	RXN	Receive data -
	7	Reserved, do not use	-
	8	Reserved, do not use	-
	A	+ (24 V)	Power supply
	В	M (0 V)	Electronics ground
Connector type	DRIVE-CLiQ sc	cket	

Table 4-2 X100-X103 DRIVE-CLiQ interfaces

The blanking covers for the DRIVE-CLiQ interfaces are included in the scope of delivery. Blanking covers (50 x) Article No.: 6SL3066-4CA00-0AA0

Control Units and operating elements

4.3 Control Unit CU320-2 PN (PROFINET)

4.3.2.3 X122 digital inputs/outputs

Table 4-3	X122 digital inputs/outputs
-----------	-----------------------------

	Terminal	Designation ¹⁾	Technical data
	1	DI 0	Voltage: -3 +30 V DC
	2	DI 1	Electrical isolation: Yes
	3	DI 2	Reference potential: M1
	4	DI 3	Input characteristic acc. to IEC 61131-2, type 1
	5	DI 16	Input voltage (including ripple) "1" signal: 15 30 V
	6	DI 17	"0" signal: -3 +5 V
			Input current
			at 24 V DC: typ. 3.5 mA
			at <0.5 mA: Signal "0" reliably detected
ĬŎĨ			Input delay for "0" → "1": typ. 50 µs
ĬŎĪ			for "1" \rightarrow "0": typ. 150 µs
	7	M1	Reference potential for terminals 1 6
Ō	8	M	Electronics ground
	9	DI/DO 8	As input:
	10	DI/DO 9	Voltage: -3 +30 V DC
	11	М	Electrical isolation: no Reference potential: M
	12	DI/DO 10	Input characteristic acc. to IEC 61131-2, type 1
13 DI/DO 11 Input voltage (including ripple)	Input voltage (including ripple)		
	14	М	"1" signal: 15 30 V
			"0" signal: -3 +5 V
			Input current at 24 V DC: typ. 3.5 mA
			at <0.5 mA: Signal "0" reliably detected
			Input delay
			for "0" → "1": typ. 5 μs for "1" → "0": typ. 50 μs
			DI 8, DI 9, DI 10 and DI 11 are "fast inputs" ²⁾
			As output:
			Voltage: 24 V DC
			Electrical isolation: no Reference potential: M
			Output voltage
			"1" signal, with load: > X124.+ -2 V
			Output current
			for each output: $\leq 0.5 \text{ A}$
			Sum of all four outputs: ≤ 2 A Residual current for "0" signal: < 0.5 mA
			Short-circuit protection, automatic restart after a short-
			circuit
			Load types: ohmic, capacitive, inductive
			Output delay ³⁾ for "0" \rightarrow "1": typ. 150 µs / max. 400 µs (ohmic load)
			for "1" \rightarrow "0": typ. 75 µs / max. 100 µs (ohmic load)
1			

Termir	al Designation ¹⁾	Technical data
		Switching frequency for ohmic load: Max. 100 Hz
		For inductive load: Max. 0.5 Hz
		For lamp load: max. 10 Hz
		Lamp load: max. 5 W

Type: Spring-loaded terminal 3 (Page 320)

¹⁾ DI: digital input; DI/DO: bidirectional digital input/output; M: electronics ground; M1: reference potential

- ²⁾ The rapid inputs can be used as probe inputs or as inputs for the external zero mark.
- ³⁾ Data for: $V_{cc} = 24$ V; load 48 Ω ; high ("1") = 90% V_{out} : low ("0") = 10% V_{out}

The maximum cable length that can be connected is 30 m.

Note

Ensuring the function of digital inputs

An open input is interpreted as "low".

Terminal M1 must be connected so that the digital inputs (DI) can function.

This is achieved by using one of the following measures:

- 1. Providing the ground reference of the digital inputs
- 2. A jumper to terminal M **Note:** This removes isolation for these digital inputs.

Note

If the 24 V supply is briefly interrupted, then the digital outputs are deactivated during this time.

Control Units and operating elements

4.3 Control Unit CU320-2 PN (PROFINET)

4.3.2.4 X132 digital inputs/outputs

Table 4-4	X132 digital inputs/outputs
-----------	-----------------------------

	Terminal	Designation ¹⁾	Technical data
1 000000000000000000000000000000000000	1 2 3 4 5	DI 4 DI 5 DI 6 DI 7	Voltage: -3 +30 V DC Electrical isolation: Yes Reference potential: M2 Input characteristic acc. to IEC 61131-2, type 1 Input voltage (including ripple)
	6	DI 20 DI 21	
	7	M2	Reference potential for terminals 1 6
	8	M	Electronics ground
	9 10	DI/DO 12 DI/DO 13	As input: Voltage: -3 +30 V DC
	11 12 13	M DI/DO 14 DI/DO 15	Electrical isolation: no Reference potential: M Input characteristic acc. to IEC 61131-2, type 1
	14	M	Input voltage (including ripple) "1" signal: 15 30 V "0" signal: -3 +5 V Input current at 24 V DC: typ. 3.5 mA at <0.5 mA: Signal "0" reliably detected Input delay for "0" \rightarrow "1": typ. 5 µs for "1" \rightarrow "0": typ. 50 µs DI 12, DI 13, DI 14 and DI 15 are "fast inputs" ²⁾ As output: Voltage: 24 V DC Electrical isolation: no Reference potential: M Output voltage "1" signal, with load: > X124.+ -2 V Output current for each output: \leq 0.5 A Sum of all four outputs: \leq 2 A Residual current for "0" signal: < 0.5 mA Short-circuit protection, automatic restart after a short- circuit Load types: ohmic, capacitive, inductive Output delay ³⁾
			for "0" \rightarrow "1": typ. 150 µs / max. 400 µs (ohmic load) for "1" \rightarrow "0": typ. 75 µs / max. 100 µs (ohmic load)

Terminal	Designation ¹⁾	Technical data	
		Switching frequency for ohmic load: Max. 100 Hz For inductive load: Max. 0.5 Hz For lamp load: max. 10 Hz Lamp load: max. 5 W	

Type: Spring-loaded terminal 3 (Page 320)

¹⁾ DI: digital input; DI/DO: bidirectional digital input/output; M: electronics ground; M2: reference potential

- ²⁾ The rapid inputs can be used as probe inputs or as inputs for the external zero mark
- ³⁾ Data for: $V_{cc} = 24$ V; load 48 Ω ; high ("1") = 90% V_{out} ; low ("0") = 10% V_{out}

The maximum cable length that can be connected is 30 m.

Note

Ensuring the function of digital inputs

An open input is interpreted as "low".

To enable the digital inputs (DI) to function, terminal M2 must be connected.

This is achieved by using one of the following measures:

- 1. Providing the ground reference of the digital inputs
- 2. A jumper to terminal M
 - Note: This removes isolation for these digital inputs.

Note

If the 24 V supply is briefly interrupted, then the digital outputs are deactivated during this time.

4.3.2.5 X124 electronics power supply

Table 4-5	X124 electronics power supply
-----------	-------------------------------

	Terminal	Designation	Technical data
	+	Electronics power supply	Voltage: 24 V DC (20.4 28.8 V)
	+	Electronics power supply	Current consumption: max. 6.5 A
	М	Electronics ground	(including DRIVE-CLiQ and digital outputs)
	Μ	Electronics ground	Max. current via jumper in connector: 20 A (15 A accord- ing to UL/CSA)
Type: Screw termi	nal 2 (Page 321)		

The maximum cable length that can be connected is 30 m.

Note

The two "+" or "M" terminals are jumpered in the connector. This ensures that the supply voltage is looped through.

Note

The terminal block must be screwed on tightly using a flat-bladed screwdriver.

4.3.2.6 X127 LAN (Ethernet)

Note

Application

Ethernet interface X127 is intended for commissioning and diagnostics, which means that it must always be accessible (e.g. for service).

Furthermore, the following restrictions apply to X127:

- Only local access is permissible
- · No networking or only local networking is permissible in a locked control cabinet

If remote access to the control cabinet is required, then additional security measures must be taken to prevent misuse through sabotage, unqualified data manipulation and intercepting confidential data (see also the Chapter "Industrial Security").

	Pin	Signal name	Technical data
	1	ТХР	Ethernet transmit data +
	2	TXN	Ethernet transmit data -
	3	RXP	Ethernet receive data +
	4	Reserved, do not use	-
	5	Reserved, do not use	-
	6	RXN	Ethernet receive data -
	7	Reserved, do not use	-
	8	Reserved, do not use	-
Connector type: RJ45 socket			

Table 4-6 X127 LAN interface (Ethernet)

Note

The LAN interface does not support auto-MDI(X). If the LAN interface of the communication partner also cannot handle auto-MDI(X), then a crossover cable must be used to establish the connection.

For diagnostic purposes, the X127 LAN interface features a green and a yellow LED. These LEDs indicate the following status information:

LED	Color	Status	Description
Link port	-	Off	Missing or faulty link
	Green	Continuous light	10 or 100 Mbit link available
Activity port	-	Off	No activity
	Yellow	Flashing light	Sending or receiving

Table 4-7 LED statuses for the X127 LAN interface

4.3.2.7 X140 serial interface (RS 232)

An external display and operator device for operator control/parameterization can be connected via the serial interface. The interface is located on the underside of the Control Unit.

	Pin	Signal name	Technical data
	1	Reserved, do not use	-
	2	RxD	Receive data
9	3	TxD	Send data
	4	Reserved, do not use	-
	5	Ground	Ground reference
	6	Reserved, do not use	-
	7	Reserved, do not use	-
\square	8	Reserved, do not use	-
	9	Reserved, do not use	-
Connector typ	pe: 9-pin SUE	D connector	

Table 4-8 X140 serial interface (RS232)

Connector type: 9-pin SUB D connector

4.3.2.8 X150 P1/P2 PROFINET

The PROFINET interfaces can be operated isochronously.

	Pin	Signal name	Technical data
	1	RXP	Receive data +
	2	RXN	Receive data -
	3	ТХР	Transmit data +
	4	Reserved, do not use	-
	5	Reserved, do not use	-
	6	TXN	Transmit data -
	7	Reserved, do not use	-
	8	Reserved, do not use	-
Connector typ Cable type: PR		ket	

Table 4-9	X150 P1	and X150 P2 PROFINET
	X15011	

Note

The PROFINET interfaces support Auto MDI(X). It is therefore possible to use both crossed and uncrossed cables to connect the devices.

For diagnostic purposes, the two PROFINET interfaces are equipped with a green and a yellow LED. These LEDs indicate the following status information:

Table 4-10	LED states at the X150 P1/P2 PROFINET interface

LED	Color	Status	Description
Link port	-	Off	Missing or faulty link
	Green	Continuous light	10 or 100 Mbit link available
Activity port	-	Off	No activity
	Yellow	Flashing light	Data is being received or sent at port x

4.3.2.9 Measuring socket

Table 4-11	Measuring socket with mounted PC board connector

	Socket	Function	Technical data
M T0 T1 T2	Μ	Ground	Voltage: 0 5 V
	ТО	Measuring terminal 0	Resolution: 8 bits
	T1	Measuring terminal 1	Load current: max. 3 mA Continuous short-circuit proof
	The reference potential is terminal M		
PCB plug connector from Phoenix Contact, type: ZEC 1.0/ 4-ST-3.5 C1 R1.4, Article number: 1893708			

Note

Cable cross section

The measuring terminals are only suitable for conductor cross-sections of 0.2 mm² up to 1 mm².

Note

Use of the measuring socket

The measuring socket supports commissioning and diagnostic functions. It must not be connected for normal operation.

4.3.2.10 Buttons

RESET button

Pressing the RESET button restarts the device, just the same as after connecting the electronics power supply (cold restart).

DIAG button

The DIAG pushbutton is reserved for service functions.

4.3.2.11 Slot for memory card

Figure 4-7 Slot for memory card

Note

Plant standstill by withdrawing or inserting the memory card during operation

If the memory card is withdrawn or inserted during operation, then data can be lost, possibly resulting in a plant standstill.

• Only withdraw and insert the memory card when the Control Unit is in a no-voltage condition.

Note

Insertion direction for the memory card

Only insert the memory card as shown in the photo above (arrow at top right).

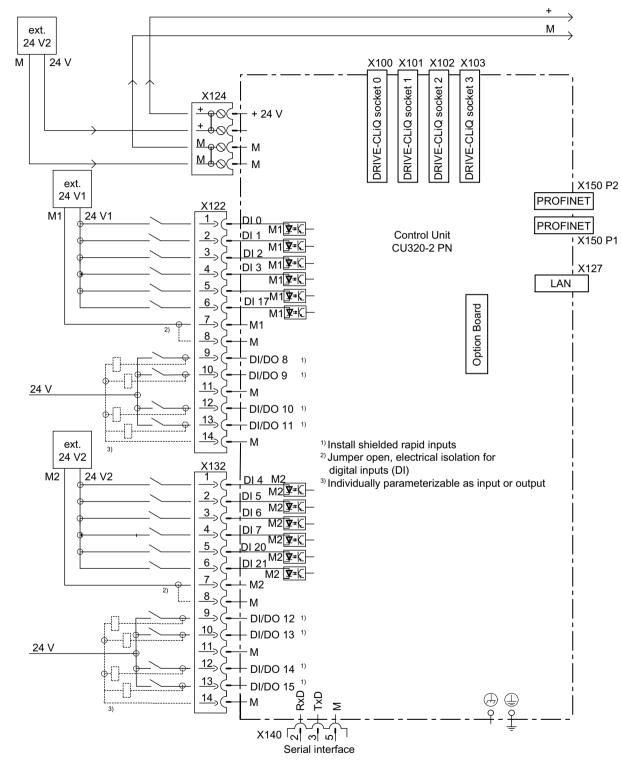
NOTICE

Memory card damage caused by electric fields or electrostatic discharge

Electric fields or electrostatic discharge may result in the memory card being damaged.

When removing and inserting the memory card, always observe the ESD regulations.

Note


Data loss when the Control Unit with memory card is returned

When returning a defective Control Unit for repair or testing, the data on the memory card (parameters, firmware, licenses, etc.) could be lost.

• Do not return the memory card as well, but keep it in a safe place so that it can be inserted in the replacement unit.

Note

Please note that only SIEMENS memory cards can be used to operate the Control Unit.

4.3.3 Connection example

Figure 4-8 Connection example of a Control Unit CU320-2 PN

4.3.4 Meaning of LEDs

4.3.4.1 Description of the LED statuses

The different states during power-up and in operation are indicated by the LEDs on the Control Unit.

- The duration of the individual statuses varies.
- If an error occurs, the booting procedure is terminated and the cause is indicated accordingly via the LEDs.
- Once the unit has successfully booted up, all the LEDs are switched off briefly.
- Once the unit has booted up, the LEDs are controlled via the loaded software.

4.3.4.2 Behavior of the LEDs during booting

LED		Status	Comment	
RDY	СОМ	OPT		
Red	Orange	Orange	Reset	Hardware reset RDY LED lights up red, all other LEDs light up orange
Red	Red	Off	BIOS loaded	-
Red flash- ing light 2 Hz	Red	Off	BIOS error	Error occurred while loading the BIOS
Red flash- ing light 2 Hz	Red flash- ing light 2 Hz	Off	File error	 Memory card not inserted or defective Software on memory card not present or corrupted
Red	Orange flashing light	Off	FW loading	RDY LED lights up red, COM LED flashes or- ange without fixed frequency
Red	Off	Off	FW loaded	-
Off	Red	Off	FW checked (no CRC error)	-
Red flash- ing light 0.5 Hz	Red flash- ing light 0.5 Hz	Off	FW checked (CRC error)	CRC invalid

Table 4-12Load software

ware

	LED			Comment
RDY	СОМ	OPT		
Orange	Orange Off Off		Initializing	-
Alternating			Running	See the table below

4.3.4.3 Behavior of the LEDs in the operating state

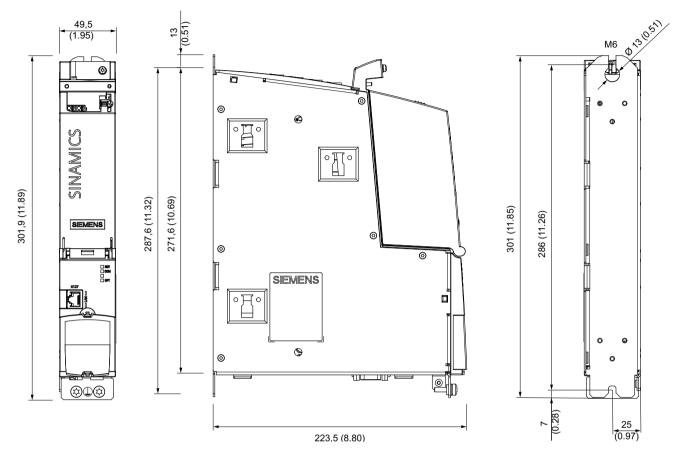

LED	Color	Status	Description, cause	Remedy
RDY (READY)	-	Off	Electronics power supply is missing or outside the permissible tolerance range.	Check power supply
	Green	Continuous light	The component is ready for operation and cyclic DRIVE-CLiQ communication is taking place.	-
		Flashing light 0.5 Hz	Commissioning/reset	-
		Flashing light 2 Hz	Writing to the memory card	-
		Flashing light 0.5 s on 3 s off	PROFlenergy energy saving mode is active For more detailed information see Function Manual "SINAMICS S120 Drive Functions".	-
	Red	Flashing light 2 Hz	General error	Check parameterization / con- figuration
	Red/ green	Flashing light 0.5 Hz	Control Unit is ready for operation. However, there are no software licenses.	Obtain licenses
	Orange	Flashing light 0.5 Hz	Updating the firmware of the DRIVE-CLiQ compo- nents	-
		Flashing light 2 Hz	DRIVE-CLiQ component firmware update complete. Wait for POWER ON for the components in question.	Turn POWER ON for the compo- nents in question
	Green/ orange or red/ orange	Flashing light 1 Hz	Component recognition by flashing DCP ¹⁾ Remark : Both options depend on the LED status when com- ponent recognition is activated via DCP.	-
	lange	Flashing light 2 Hz	Component recognition via LED is activated (p0124[0]=1). Remark : Both options depend on the LED status when com- ponent recognition is activated via p0124[0] \rightarrow 1.	-

 Table 4-14
 Control Unit CU320-2 PN – Description of the LEDs during operation

LED	Color	Status	Description, cause	Remedy
COM PROFIdrive cyclic opera-	– Off		Cyclic communication has not (yet) taken place. Remark:	-
tion			PROFIdrive is ready for communication when the Control Unit is ready (see LED RDY).	
	Green	Continuous light	Cyclic communication is taking place.	-
		Flashing light	Full cyclic communication has not yet taken place. Possible causes:	-
		0.5 Hz	• The controller is not transferring any setpoints.	
			• In isochronous operation, synchronization is not yet complete.	
	Red	Flashing light 0.5 Hz	Bus error, incorrect parameter assignment/configuration	Adapt configuration between controller and devices
		Flashing light 2 Hz	Cyclic bus communication has been interrupted or could not be established	Remove fault
OPT (OPTION)	_	Off	Electronics power supply is missing or outside the permissible tolerance range.	Check power supply and/or component
			Component is not ready.	
			Option board not installed or no associated drive object has been created.	
	Green	Continuous light	Option board is ready.	-
		Flashing light 0.5 Hz	Depends on the Option Board used ²⁾ .	-
	Red	Continuous light	Depends on the Option Board used ²⁾ .	-
		Flashing light 0.5 Hz	Depends on the Option Board used ²⁾ .	-
		Flashing light 2 Hz	At least one fault is present in this component. Op- tion board not ready (e.g. after switching on).	Remove the fault and acknowl- edge
RDY and COM	Red	Flashing light 2 Hz	Bus error - communication has been interrupted	Remove fault
RDY and OPT	Orange	Flashing light 0.5 Hz	The firmware of the connected option board is being updated.	-

¹⁾ DCP = Discovery and Configuration Protocol DCP is used by PROFINET to determine PROFINET devices and allow basic settings. Further information can be found in the SINAMICS S120 Function Manual "Communication".

²⁾ Any individual behaviors of the LED OPT are described for the respective Option Board.

4.3.5 Dimension drawing

4.3.6 Technical data

6SL3040-1MA01-0AA0	Unit	Value
Electronics power supply Voltage Current (without DRIVE-CLiQ and digital outputs)	V _{DC} A _{DC}	24 (20.4 28.8) ≤1.0
Power loss	w	≤24
The sum of the maximum permissible output currents	A	5.5
Maximum DRIVE-CLiQ cable length	m	100
Protective ground conductor connection	At the housing	with M5 screw

6SL3040-1MA01-0AA0	Unit	Value
Response time	The response time of digital inputs/outputs depends on the evaluation (refer to the function diagram).	
	More information is provided in the following reference: Reference: SINAMICS S120/S150 List Manual, Chapter "Func- tion diagrams/CU320-2 input/output terminals"	
Ventilation clearances, above/below	mm	80
Weight	kg	2.2

4.4 Control Unit CU320-2 DP (PROFIBUS)

4.4.1 Description

The Control Unit CU320-2 DP is a central control module in which the closed-loop and open-loop functions are implemented for one or more Line Modules and/or Motor Modules. It can be used with firmware version 4.3 or higher.

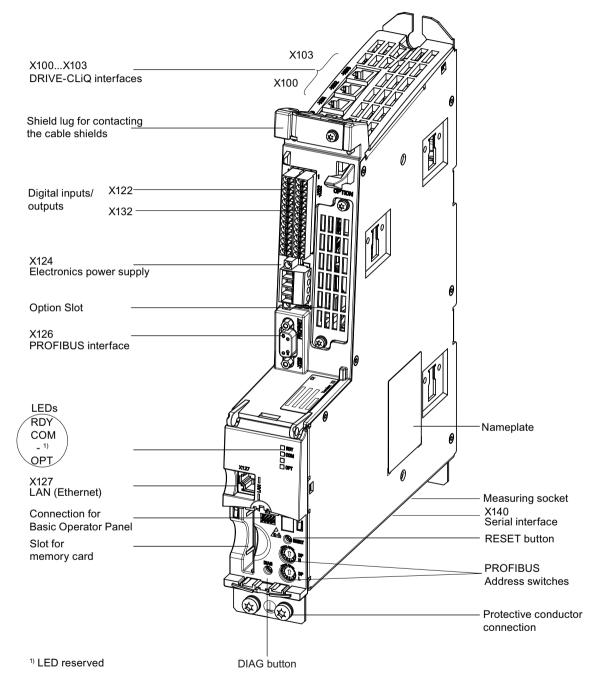

The CU320-2 DP has the following interfaces (ports):

Table 4-16	Overview of the CU320-2 DP interfaces
------------	---------------------------------------

Туре	Quantity
Isolated digital inputs	12
Non-isolated digital inputs/outputs	8
DRIVE-CLiQ interfaces	4
PROFIBUS interface	1
LAN (Ethernet)	1
Serial interface (RS232)	1
Option slot	1
Measuring terminals	3

4.4.2 Interface description

4.4.2.1 Overview

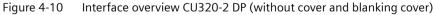


Figure 4-11 Interface X140 and measuring sockets T0 to T2 - CU320-2 DP (view from below)

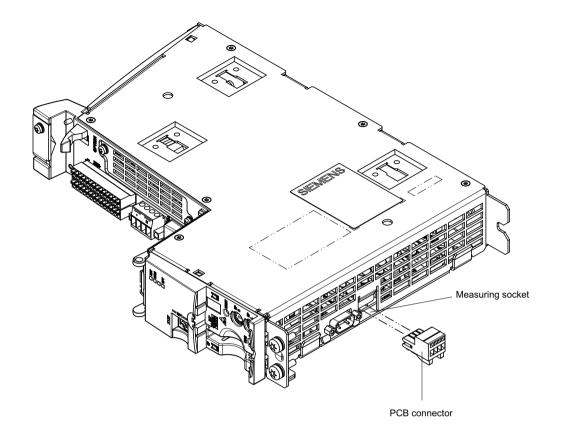


Figure 4-12 Mounting a PC board connector (Phoenix Contact) in the measuring socket

4.4.2.2 X100-X103 DRIVE-CLiQ interfaces

	Pin	Signal name	Technical data
	1	ТХР	Transmit data +
	2	TXN	Transmit data -
	3	RXP	Receive data +
	4	Reserved, do not use	-
	5	Reserved, do not use	-
	6	RXN	Receive data -
	7	Reserved, do not use	-
	8	Reserved, do not use	-
	A	+ (24 V)	Power supply
	В	M (0 V)	Electronics ground
Connector type	DRIVE-CLiQ socket		

Table 4-17 X100-X103 DRIVE-CLiQ interfaces

The blanking covers for the DRIVE-CLiQ interfaces are included in the scope of delivery. Blanking covers (50 x) Article No.: 6SL3066-4CA00-0AA0 Control Units and operating elements

4.4 Control Unit CU320-2 DP (PROFIBUS)

4.4.2.3 X122 digital inputs/outputs

Table 4-18	X122 digital inputs/outputs
------------	-----------------------------

	Terminal	Designation ¹⁾	Technical data
	1	DIO	Voltage: -3 +30 V DC
	2	DI 1	Electrical isolation: Yes Reference potential: M1
	3	DI 2	
	4	DI 3	Input characteristic acc. to IEC 61131-2, type 1
	5	DI 16	Input voltage (including ripple) "1" signal: 15 30 V
	6	DI 17	"0" signal: -3 +5 V
			Input current at 24 V DC: typ. 3.5 mA at <0.5 mA: Signal "0" reliably detected
			Input delay for "0" → "1": typ. 50 μs for "1" → "0": typ. 150 μs
	7	M1	Reference potential for terminals 1 6
	8	М	Electronics ground
	9	DI/DO 8	As input:
	10	DI/DO 9	Voltage: -3 +30 V DC Electrical isolation: no
	11	М	Reference potential: M
	12	DI/DO 10	Input characteristic acc. to IEC 61131-2, type 1
	13	DI/DO 11	Input voltage (including ripple)
	14	М	"1" signal: 15 30 V "0" signal: -3 +5 V
			Input current at 24 V DC: typ. 3.5 mA at <0.5 mA: Signal "0" reliably detected Input delay for "0" \rightarrow "1": typ. 5 μ s for "1" \rightarrow "0": typ. 50 μ s DI 8, DI 9, DI 10 and DI 11 are "fast inputs" ²⁾
			As output: Voltage: 24 V DC Electrical isolation: no Reference potential: M
			Output voltage "1" signal, with load: > X124.+ -2 V
			Output current for each output: \leq 0.5 A Sum of all four outputs: \leq 2 A Residual current for "0" signal: $<$ 0.5 mA Short-circuit protection, automatic restart after a short- circuit
			Load types: ohmic, capacitive, inductive Output delay ³⁾ for "0" \rightarrow "1": typ. 150 µs / max. 400 µs (ohmic load) for "1" \rightarrow "0": typ. 75 µs / max. 100 µs (ohmic load)

Terminal	Designation ¹⁾	Technical data	
		Switching frequency for ohmic load: Max. 100 Hz For inductive load: Max. 0.5 Hz For lamp load: max. 10 Hz Lamp load: max. 5 W	

Type: Spring-loaded terminal 3 (Page 320)

¹⁾ DI: digital input; DI/DO: bidirectional digital input/output; M: electronics ground; M1: reference potential

- ²⁾ The rapid inputs can be used as probe inputs or as inputs for the external zero mark.
- ³⁾ Data for: $V_{cc} = 24$ V; load 48 Ω ; high ("1") = 90% V_{out} : low ("0") = 10% V_{out}

The maximum cable length that can be connected is 30 m.

Note

Ensuring the function of digital inputs

An open input is interpreted as "low".

Terminal M1 must be connected so that the digital inputs (DI) can function.

This is achieved by using one of the following measures:

- 1. Providing the ground reference of the digital inputs
- 2. A jumper to terminal M **Note:** This removes isolation for these digital inputs.

Note

If the 24 V supply is briefly interrupted, then the digital outputs are deactivated during this time.

Control Units and operating elements

4.4 Control Unit CU320-2 DP (PROFIBUS)

4.4.2.4 X132 digital inputs/outputs

Table 4-19	X132 digital inputs/outputs
------------	-----------------------------

	Terminal	Designation ¹⁾	Technical data
	1	DI 4	Voltage: -3 +30 V DC
	2	DI 5	Electrical isolation: Yes
	3	DI 6	Reference potential: M2
	4	DI 7	Input characteristic acc. to IEC 61131-2, type 1
	5	DI 20	Input voltage (including ripple) "1" signal: 15 30 V
	6	DI 21	"0" signal: -3 +5 V
			Input current
			at 24 V DC: typ. 3.5 mA
			at <0.5 mA: Signal "0" reliably detected
			Input delay for "0" → "1": typ. 50 µs
			for "1" \rightarrow "0": typ. 150 µs
	7	M2	Reference potential for terminals 1 6
	8	М	Electronics ground
	9	DI/DO 12	As input:
	10	DI/DO 13	Voltage: -3 +30 V DC Electrical isolation: no
	11	М	Reference potential: M
	12	DI/DO 14	Input characteristic acc. to IEC 61131-2, type 1
	13	DI/DO 15	Input voltage (including ripple)
	14	М	"1" signal: 15 30 V
			"0" signal: -3 +5 V Input current
			at 24 V DC: typ. 3.5 mA
			at <0.5 mA: Signal "0" reliably detected
			Input delay
			for "0" → "1": typ. 5 μs for "1" → "0": typ. 50 μs
			DI 12, DI 13, DI 14 and DI 15 are "fast inputs" ²⁾
			As output:
			Voltage: 24 V DC
			Electrical isolation: no Reference potential: M
			Output voltage
			"1" signal, with load: > X124.+ -2 V
			Output current
			for each output: $\leq 0.5 \text{ A}$
			Sum of all four outputs: ≤ 2 A Residual current for "0" signal: < 0.5 mA
			Short-circuit protection, automatic restart after a short-
			circuit
			Load types: ohmic, capacitive, inductive
			Output delay ³⁾ for "0" \rightarrow "1": typ. 150 µs / max. 400 µs (ohmic load)
			for "1" \rightarrow "0": typ. 75 µs / max. 100 µs (ohmic load)
1			

Terminal	Designation ¹⁾	Technical data	
		Switching frequency for ohmic load: Max. 100 Hz For inductive load: Max. 0.5 Hz For lamp load: max. 10 Hz Lamp load: max. 5 W	

Type: Spring-loaded terminal 3 (Page 320)

¹⁾ DI: digital input; DI/DO: bidirectional digital input/output; M: electronics ground; M2: reference potential

- ²⁾ The rapid inputs can be used as probe inputs or as inputs for the external zero mark
- ³⁾ Data for: $V_{cc} = 24$ V; load 48 Ω ; high ("1") = 90% V_{out} : low ("0") = 10% V_{out}

The maximum cable length that can be connected is 30 m.

Note

Ensuring the function of digital inputs

An open input is interpreted as "low".

To enable the digital inputs (DI) to function, terminal M2 must be connected.

This is achieved by using one of the following measures:

- 1. Providing the ground reference of the digital inputs
- 2. A jumper to terminal M
 - Note: This removes isolation for these digital inputs.

Note

If the 24 V supply is briefly interrupted, then the digital outputs are deactivated during this time.

4.4.2.5 X124 electronics power supply

Table 4-20	X124 electronics power supply
------------	-------------------------------

	Terminal	Designation	Technical data
	+	Electronics power supply	Voltage: 24 V DC (20.4 28.8 V)
	+	Electronics power supply	Current consumption: max. 6.5 A
	М	Electronics ground	(including DRIVE-CLiQ and digital outputs)
	Μ	Electronics ground	Max. current via jumper in connector: 20 A (15 A accord- ing to UL/CSA)
Type: Screw termi	nal 2 (Page 321)		

The maximum cable length that can be connected is 30 m.

Note

The two "+" or "M" terminals are jumpered in the connector. This ensures that the supply voltage is looped through.

Note

The terminal block must be screwed on tightly using a flat-bladed screwdriver.

4.4.2.6 **X126 PROFIBUS**

The PROFIBUS interface can be operated isochronously.

X126 PROFIBUS interface Table 4-21

	Pin	Signal name	Meaning	Range
	1	-	Not assigned	-
	2	M24_SERV	Teleservice supply, ground	0 V
	3	RxD / TxD–P	Receive/transmit data P (B)	RS485
	4	CNTR-P	Control signal	TTL
	5	DGND	PROFIBUS data reference potential	-
	6	VP	Supply voltage plus	5 V ± 10%
	7	P24_SERV	Teleservice supply, + (24 V)	24 V (20.4 28.8 V)
	8	RxD / TxD–N	Receive/transmit data N (A)	RS485
	9	-	Not assigned	-
Connector tv	pe: 9-pin Su	b-D socket		·

onnector type: 9-pin Sub-D socket

A teleservice adapter can be connected to the PROFIBUS interface for remote diagnostics. The power supply for the teleservice (terminals 2 and 7) can have a load of up to 150 mA.

NOTICE

Damage to components due to connecting a CAN bus cable

If a CAN bus cable is connected to the X126 interface, this can damage the Control Unit or other CAN bus nodes.

Do not connect any CAN bus cables to the X126 interface.

PROFIBUS connectors

The first and last nodes in a bus must contain terminating resistors. Otherwise, data transmission will not function correctly.

The bus terminating resistors are activated in the connector.

The cable shield must be connected at both ends and over a large surface area.

4.4.2.7 Setting the PROFIBUS address

On the CU320-2 DP, the PROFIBUS address is set as a hexadecimal value via two rotary coding switches. You can set values from $O_{dec}(OO_{hex})$ to $127_{dec}(7F_{hex})$. At the upper rotary coding switch (H) you set the hexadecimal value for 16^1 and at the lower rotary coding switch (L) you set the hexadecimal value for 16^0 .

Table 4-22 PROFIBUS address switch

Rotary coding	Significance	Examples		
switches		21 _{dec}	35 _{dec}	126 _{dec}
		15 _{hex}	23 _{hex}	7E _{hex}
СО СО СО СО СО СО СО СО СО СО	16 ¹ = 16	1	2	7
C 8 2 0 7 3 DP C 4 6 8 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0	16 ⁰ = 1	5	3	E

Setting the PROFIBUS address

Observe the properties of the rotary coding switch:

- The rotary coding switches used to set the PROFIBUS addresses are located beneath the cover.
- The factory setting for the rotary coding switches is 0_{dec} (00_{hex}).
- Address 126 is used for commissioning. Permitted PROFIBUS addresses are 1 ... 126.
- The currently set address of the rotary coding switch is displayed in parameter r2057.
- When several Control Units are connected to a PROFIBUS line, set the addresses differently than for the factory setting. Each PROFIBUS address in a PROFIBUS line can only be assigned once. Either set the PROFIBUS address in absolute terms using the rotary coding switches or selectively in parameter p0918. Each change made to the bus address is not effective until POWER ON.

Note

Only values from 1 to 126 ($7E_{hex}$) are valid for PROFIBUS addressing. If values above 127 are set, then the set value is interpreted as "0". If a value "0" or "127" is set, the value in parameter p0918 defines the PROFIBUS address.

There are two ways to set the PROFIBUS address:

- 1. Using the STARTER commissioning tool (parameter p0918)
 - To set the bus address for a PROFIBUS node using STARTER, first set the rotary code switches to 0_{dec} (00_{hex}) and/or 127_{dec} ($7F_{hex}$).
 - Then set the address to a value from 1 to 126 using parameter p0918.
- 2. Using the PROFIBUS address switches on the Control Unit
 - The address is set manually to values from 1 to 126 using the rotary coding switches. In this case, parameter p0918 is only used to read the address.

More information

Further information for setting the PROFIBUS address is available in the SINAMICS S120 Function Manual "Drive Functions".

4.4.2.8 X127 LAN (Ethernet)

Note

Application

Ethernet interface X127 is intended for commissioning and diagnostics, which means that it must always be accessible (e.g. for service).

Furthermore, the following restrictions apply to X127:

- Only local access is permissible
- · No networking or only local networking is permissible in a locked control cabinet

If remote access to the control cabinet is required, then additional security measures must be taken to prevent misuse through sabotage, unqualified data manipulation and intercepting confidential data (see also the Chapter "Industrial Security").

Table 4-23 X127 LAN interface (Ethernet)

	Pin	Signal name	Technical data
	1	ТХР	Ethernet transmit data +
	2	TXN	Ethernet transmit data -
	3	RXP	Ethernet receive data +
	4	Reserved, do not use	-
	5	Reserved, do not use	-
	6	RXN	Ethernet receive data -
	7	Reserved, do not use	-
	8	Reserved, do not use	-
Connector type:	RJ45 socke	et	

Note

The LAN interface does not support auto-MDI(X). If the LAN interface of the communication partner also cannot handle auto-MDI(X), then a crossover cable must be used to establish the connection.

For diagnostic purposes, the X127 LAN interface features a green and a yellow LED. These LEDs indicate the following status information:

Table 4-24 LED statuses for the X127 LAN interface

LED	Color	Status	Description
Link port	-	Off	Missing or faulty link
	Green	Continuous light	10 or 100 Mbit link available
Activity port	-	Off	No activity
	Yellow	Flashing light	Sending or receiving

4.4.2.9 X140 serial interface (RS 232)

The X140 serial interface is located on the underside of the Control Unit. An external display and operator device for operator control/parameterization can be connected via this interface. It also supports the USS protocol.

	Pin	Signal name	Technical data
	1	Reserved, do not use	-
	2	RxD	Receive data
9	3	TxD	Transmit data
	4	Reserved, do not use	-
	5	Ground	Ground reference
	6	Reserved, do not use	-
	7	Reserved, do not use	-
	8	Reserved, do not use	-
	9	Reserved, do not use	-
Connector type	e: 9-pin SUB D co	onnector	•

Table 4-25 X140 serial interface (RS232)

4.4.2.10 Measuring socket

Table 4-26	Measuring socket with mounted PC board co	nnector
	Medsaring socket with mounted reboard co	miccioi

	Socket	Function	Technical data	
M T0 T1 T2	М	Ground	Voltage: 0 5 V	
	ТО	Measuring terminal 0	Resolution: 8 bits	
	T1	Measuring terminal 1	Load current: max. 3 mA Continuous short-circuit proof	
	Т2	Measuring terminal 2	Continuous short-circuit proof The reference potential is terminal M	
PCB plug connector from Phoenix Contact, type: ZEC 1.0/ 4-ST-3.5 C1 R1.4, Article number: 1893708				

Note

Cable cross section

The measuring terminals are only suitable for conductor cross-sections of 0.2 mm² up to 1 mm².

Note

Use of the measuring socket

The measuring socket supports commissioning and diagnostic functions. It must not be connected for normal operation.

4.4.2.11 Buttons

RESET button

Pressing the RESET button restarts the device, just the same as after connecting the electronics power supply (cold restart).

DIAG button

The DIAG pushbutton is reserved for service functions.

4.4.2.12 Slot for memory card

Figure 4-13 Slot for memory card

Note

Plant standstill by withdrawing or inserting the memory card during operation

If the memory card is withdrawn or inserted during operation, then data can be lost, possibly resulting in a plant standstill.

• Only withdraw and insert the memory card when the Control Unit is in a no-voltage condition.

Note

Insertion direction for the memory card

Only insert the memory card as shown in the photo above (arrow at top right).

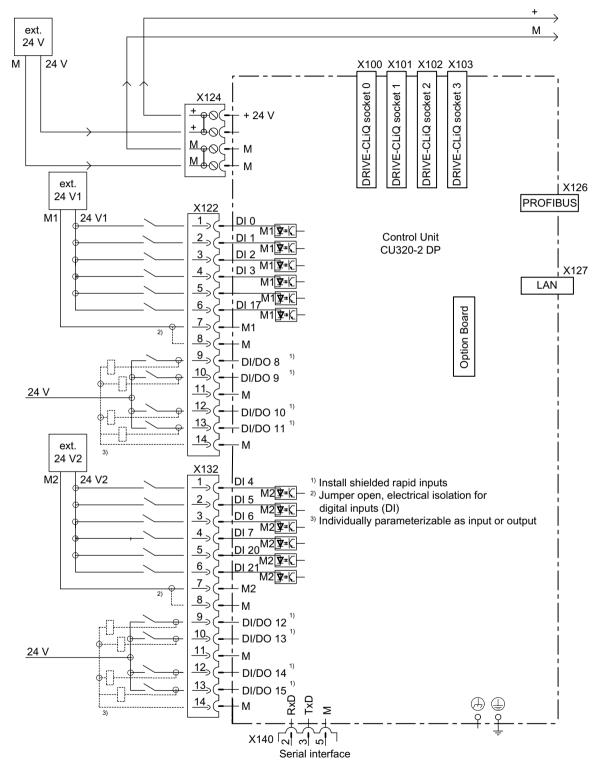
NOTICE

Memory card damage caused by electric fields or electrostatic discharge

Electrical fields or electrostatic discharge may result in the memory card being damaged.

• When removing and inserting the memory card, always observe the ESD regulations.

Note


Data loss when the Control Unit with memory card is returned

When returning a defective Control Unit for repair or testing, the data on the memory card (parameters, firmware, licenses, etc.) could be lost.

• Do not return the memory card as well, but keep it in a safe place so that it can be inserted in the replacement unit.

Note

Please note that only SIEMENS memory cards can be used to operate the Control Unit.

4.4.3 Connection example

Figure 4-14 Connection example of CU320-2 DP

4.4.4 Meaning of the LEDs

4.4.4.1 Description of the LED statuses

The different states during power-up and in operation are indicated by the LEDs on the Control Unit.

- The duration of the individual statuses varies.
- If an error occurs, the booting procedure is terminated and the cause is indicated accordingly via the LEDs.
- Once the unit has successfully booted up, all the LEDs are switched off briefly.
- Once the unit has booted up, the LEDs are controlled via the loaded software.

4.4.4.2 Behavior of the LEDs during booting

	LED		Status	Comment
RDY	СОМ	OPT		
Red	Orange	Orange	Reset	Hardware reset RDY LED lights up red, all other LEDs light up orange
Red	Red	Off	BIOS loaded	-
Red flash- ing light 2 Hz	Red	Off	BIOS error	Error occurred while loading the BIOS
Red flash- ing light 2 Hz	Red flash- ing light 2 Hz	Off	File error	 Memory card not inserted or defective Software on memory card not present or corrupted
Red	Orange Flashing light	Off	FW loading	RDY LED lights up red, COM LED flashes or- ange without fixed frequency
Red	Off	Off	FW loaded	-
Off	Red	Off	FW checked (no CRC error)	-
Red flash- ing light 0.5 Hz	Red flash- ing light 0.5 Hz	Off	FW checked (CRC error)	CRC invalid

Table 4-27Load software

	LED			Comment
RDY	RDY COM OPT			
Orange	Orange Off Off		Initializing	-
Alternating			Running	See the table below

4.4.4.3 Behavior of the LEDs in the operating state

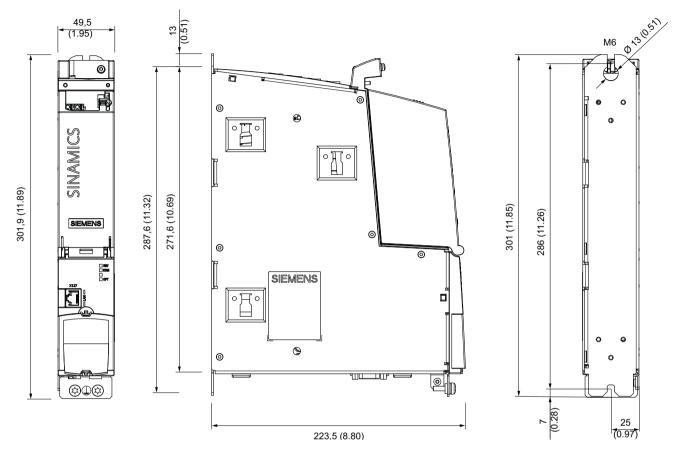

LED	Color	Status	Description, cause	Remedy
RDY (READY)	-	Off	Electronics power supply is missing or outside the permissible tolerance range.	Check power supply
	Green	Continuous light	The component is ready for operation and cyclic DRIVE-CLiQ communication is taking place.	-
		Flashing light 0.5 Hz	Commissioning/reset	_
		Flashing light 2 Hz	Writing to the memory card	-
		Flashing light 0.5 s on 3 s off	Only active if a CBE20 Communication Board is in- serted: PROFlenergy energy saving mode is active For more detailed information see Function Manual "SINAMICS S120 Drive Functions".	_
	Red	Flashing light 2 Hz	General error	Check parameterization / con- figuration data
	Red/ green	Flashing light 0.5 Hz	Control Unit is ready for operation. However, there are no software licenses.	Obtain licenses
	Orange	Flashing light 0.5 Hz	Updating the firmware of the DRIVE-CLiQ compo- nents	-
		Flashing light 2 Hz	DRIVE-CLiQ component firmware update complete. Wait for POWER ON for the components in question.	Turn POWER ON for the compo- nents in question
	Green/ orange or red/	Flashing light 1 Hz	Component recognition by flashing DCP ¹⁾ Note: Both options depend on the LED status when com- ponent recognition is activated via DCP.	_
	orange	Flashing light 2 Hz	Component recognition via LED is activated (p0124[0]=1). Note: Both options depend on the LED status when com- ponent recognition is activated via p0124[0] \rightarrow 1.	_

 Table 4-29
 Control Unit CU320-2 DP – Description of the LEDs during operation


LED	Color	Status	Description, cause	Remedy
COM PROFIdrive cyclic opera- tion	_	Off	Cyclic communication has not (yet) taken place. Comment: PROFIdrive is ready for communication if the Con- trol Unit is ready (see LED RDY).	-
	Green	Continuous light	Cyclic communication is taking place.	-
		Flashing light 0.5 Hz	 Full cyclic communication has not yet taken place. Possible causes: The controller is not transferring any setpoints. During isochronous operation no global control 	_
			• During isochronous operation, no global control (GC) or a faulty global control (GC) is transferred by the controller.	
	Red	Flashing light 0.5 Hz	PROFIBUS master is sending wrong parameteriza- tion/configuration data	Adapt configuration between master/controller and CU
		Flashing light 2 Hz	Cyclic bus communication has been interrupted or could not be established	Remove fault
OPT (OPTION)	-	Off	Electronics power supply is missing or outside the permissible tolerance range. Component is not ready. Option board not installed or no associated drive object has been created.	Check power supply and/or component
	Green	Continuous light	Option board is ready.	-
		Flashing light 0.5 Hz	Depends on the Option Board used ²⁾ .	-
	Red	Continuous light	Depends on the Option Board used ²⁾ .	-
		Flashing light 0.5 Hz	Depends on the Option Board used ²⁾ .	-
		Flashing light 2 Hz	At least one fault is present in this component. Op- tion board not ready (e.g. after switching on).	Remove the fault and acknowl- edge
RDY and COM	Red	Flashing light 2 Hz	Bus error - communication has been interrupted	Remove fault
RDY and OPT	Orange	Flashing light 0.5 Hz	The firmware of the connected option board is being updated.	-

¹⁾ DCP = Discovery and Configuration Protocol DCP is used by PROFINET to determine PROFINET devices and allow basic settings. Therefore this function is only available on the CU320-2 DP if the CBE20 Option Board is inserted. Further information can be found in the SINAMICS S120 Function Manual "Communication".

²⁾ Any individual behaviors of the LED OPT are described for the respective Option Board.

4.4.6 Technical data

Table 4-30 Technical data

6SL3040-1MA00-0AA0	Unit	Value
Electronics power supply Voltage Current (without DRIVE-CLiQ and digital outputs)	V _{DC} A _{DC}	24 (20.4 28.8) ≤1.0
Power loss	w	≤24
The sum of the maximum permissible output currents	A	5.5
Maximum DRIVE-CLiQ cable length	m	100
Protective ground conductor connection	At the housing with M5 screw	

4.5 Mounting Control Units

6SL3040-1MA00-0AA0	Unit Value	
Response time	The response time of digital inputs/outputs depends on the evaluation (refer to the function diagram).	
		ion is provided in the following reference: AMICS S120/S150 List Manual, Chapter "Func- CU320-2 input/output terminals"
Ventilation clearances, above/below	mm 80	
Weight	kg 2.2	

4.5 Mounting Control Units

4.5.1 Mounting to a Line Module

Mounting a CU320-2 Control Unit directly on a Line Module, booksize or chassis format

You must attach three support brackets to a Line Module in order to mount a Control Unit directly on it. The support brackets are supplied in the Line Module accessories kit.

I. Insert the first support bracket
into the mounting opening pro-
vided at the Line Module.2. Insert the support bracket up
to the end stop using a suitable
tool (screwdriver).3. Mount the additional support
brackets as described under
Points 1 and 2.

 Table 4-31
 Mounting support brackets for a Control Unit onto a Line Module

Then mount the Control Unit onto the Line Module as shown below.

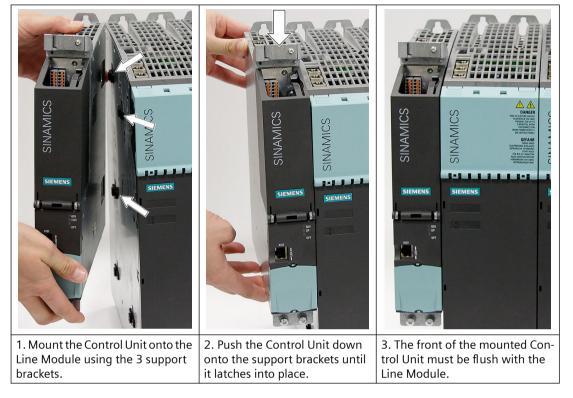
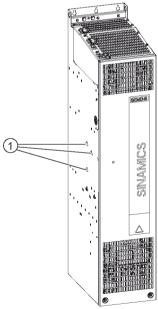



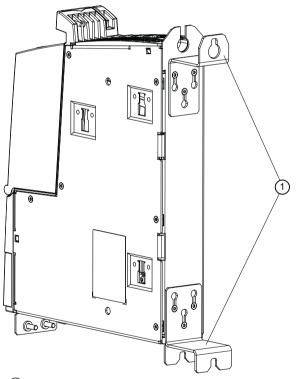
Table 4-32Installing the Control Unit on a Line Module using the CU320-2 DP as an example

① Opening on the Line Module Chassis for fastening the Control Unit Figure 4-16 Mounting a Control Unit on a Line Module, chassis format 4.5 Mounting Control Units

4.5.2 Mounting on the mounting surface

Mounting a CU320-2 Control Unit directly onto a mounting surface

Mount the fixing lug of the Control Unit on the mounting surface using M6 screws.


Tightening torque: 6 Nm (53.1 lbf in)

Mounting a CU320-2 Control Unit to a mounting surface using spacers

To increase the overall depth of the Control Unit to the 270 mm overall depth of a booksize Line Module, mount the spacers (2 spacers: 6SL3064-1BB00-0AA0) as shown below to the Control Unit.

Tools required:

• Torx screwdriver T10 for the screws (M3) of the spacer

(1) Spacer Figure 4-17 CU320-2 with spacers for mounting on a mounting surface

4.5.3 Opening and removing the cover

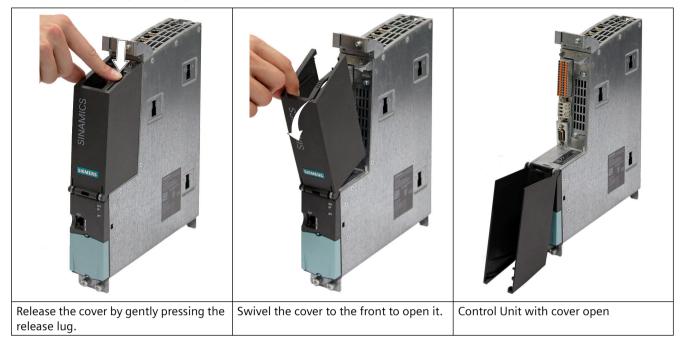
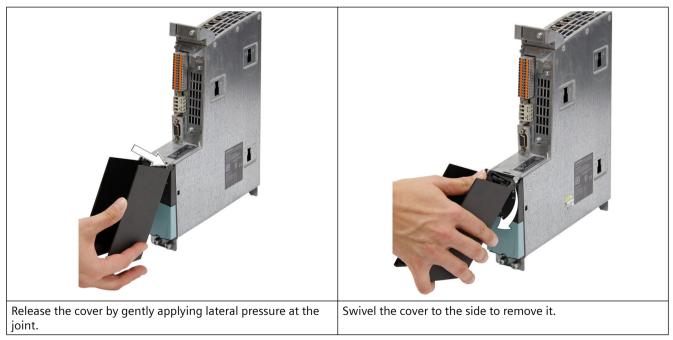



 Table 4-33
 Opening and lifting the cover using the CU320-2 DP as an example

Table 4-34Removing the cover using a CU320-2 DP as an example

4.6 Basic Operator Panel BOP20

4.6 Basic Operator Panel BOP20

4.6.1 Description

The Basic Operator Panel BOP20 contains 6 keys and a backlit display unit. The BOP20 can be plugged onto a SINAMICS Control Unit and operated.

The following functions are possible with the BOP:

- Input of parameters and activation of functions
- Display of operating modes, parameters, alarms and faults

To reorder a missing or defective Basic Operator Panel, use the article number 6SL3055-0AA00-4BA0.

4.6.2 Interface description

Figure 4-18 Basic Operator Panel BOP20

Overview of displays and keys

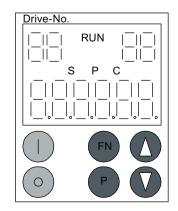


Figure 4-19 Overview of displays and keys

4.6 Basic Operator Panel BOP20

Display	Meaning
Top left 2 positions	The active drive object of the BOP is displayed here. The displays and key operations always refer to this drive object.
RUN	Is lit (bright) if the displayed drive is in the RUN state (in operation).
Top right	The following is displayed in this field:
2 positions	 More than 6 digits: Characters that are present but cannot be seen (e.g. "r2" → 2 characters to the right are invisible, "L1" → 1 character to the left is invisible)
	Faults: Selects/displays other drives with faults
	Designation of BICO inputs (bi, ci)
	Designation of BICO outputs (bo, co)
	Source object of a BICO interconnection to a drive object other than the active one.
S	Is (bright) if at least one parameter was changed and the value was not transferred into the non-volatile memory.
Р	Is lit (bright) if, for a parameter, the value only becomes effective after pressing the P key.
С	Is light (bright) if at least one parameter was changed and the calculation for consis- tent data management has still not been initiated.
Below, 6 digit	Displays, e.g. parameters, indices, faults and alarms.

Table 4-35	Displays
------------	----------

BOP20 keyboard

Table 4-36	Assignment of the l	BOP20 keyboard
------------	---------------------	----------------

Кеу	Name	Meaning
	ON	Powering-up the drives for which the command "ON/OFF1", "OFF2" or "OFF3" should come from the BOP.
0	OFF	Power-down the drives for which the "ON/OFF1," "OFF2," or "OFF3" commands should come from the BOP.
		Note:
		The effectiveness of these keys can be defined using the appropriate BICO param- eterization (e.g. using these keys, it is possible to simultaneously control all of the axes that have been configured.)
		The structure of the BOP control word corresponds to the structure of the PROFIBUS control word.
FN	Functions	The meaning of these keys depends on the actual display.
		Note:
		The effectiveness of this key to acknowledge faults can be defined using the appropriate BICO parameterization.
Р	Parameter	The meaning of these keys depends on the actual display.

4.6 Basic Operator Panel BOP20

Кеу	Name	Meaning
\triangle	Raise	The keys are dependent on the actual display and are used to raise or lower values.
$\mathbf{\nabla}$	Lower	

Display and operator controls of the BOP20

Additional information on the displays and operator controls of the BOP20 is available in the SINAMICS S120 Function Manual "Drive Functions".

4.6.3 Mounting at the Control Unit

NOTICE

Damage to the BOP20 interface caused by skewed insertion or withdrawal

If the BOP20 is skewed when it is inserted or withdrawn, damage can occur to the interface on the Control Unit.

• Make sure that you insert and withdraw the BOP20 straight into or out of the Control Unit and that it is not tilted up or down.

1. Press the latching cams together and remove the blanking cover. 2. Insert the memory card in the slot provided.

Table 4-37 Mounting a Basic Operator Panel BOP20 using the CU320-2 DP as an example

4.6.4 Removal

Please note the following information when removing the BOP20 from the Control Unit:

- 1. Simultaneously press the latching cams on the BOP20.
- 2. Always withdraw the BOP20 straight out (without skewing it). Never withdraw the BOP20 by pulling it at its lower edge, as this could damage the interface at the rear.

Figure 4-20 Incorrect removal of the BOP20 from a CU320-2 DP (example)

Control Units and operating elements

4.6 Basic Operator Panel BOP20

5.1 Description

Using Option Boards, you can extend the Control Unit to include additional communications interfaces or inputs/outputs. The corresponding Option Board is a plug-in module which you insert in the option slot of the Control Unit.

Designation	Article number	Function
CBC10	6SL3055-0AA00-2CA.	Connection of the Control Unit to the CAN bus
CBE20	6SL3055-0AA00-2EB.	Interface to the Ethernet communication
		Used primarily for the CU320-2 DP
ТВ30	3SL3055-0AA00-2TA.	Extends the Control Unit to include additional digital in- puts and outputs as well as 2 analog inputs and 2 analog outputs

Table 5-1 Option Boards for the CU320-2

5.2 Safety instructions for option boards

NOTICE

Damage to or malfunctioning of the Option Boards by inserting and withdrawing during operation

Withdrawing and inserting Option Boards during operation can damage them or cause the Option Boards to malfunction.

• Only withdraw or insert Option Boards when the Control Unit is in a current-free state.

5.3 CAN Communication Board CBC10

5.3.1 Description

The Communication Board CAN CBC10 is a communication module for linking to the CAN bus. The Communication Board is inserted into the option slot on a Control Unit.

Were precise information on the function of the CBC10 can be taken from the following reference:

References: SINAMICS S120 Commissioning Manual CANopen Interface

Option boards

5.3 CAN Communication Board CBC10

5.3.2 Interface description

5.3.2.1 Overview

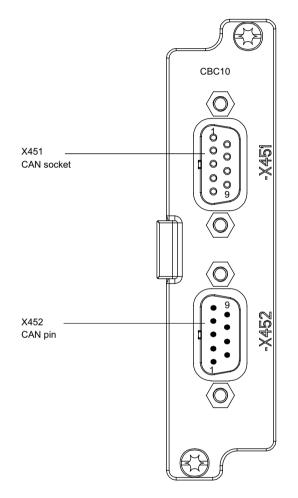


Figure 5-1 Interface overview of the CBC10

5.3 CAN Communication Board CBC10

5.3.2.2 X451 CAN bus interface

	Pin	Designation	Technical data
\bigcirc	1	Reserved, do not use	-
\bigcirc	2	CAN_L	CAN signal (dominant low)
	3	CAN_GND	CAN ground
\tilde{o}	4	Reserved, do not use	-
	5	CAN_SHLD	Optional shield
	6	GND	CAN ground
	7	CAN_H	CAN signal
	8	Reserved, do not use	-
	9	Reserved, do not use	-

Table 5-2 X451: CAN bus interface

Type: 9-pin SUB D socket

NOTICE

Destruction of the CAN bus interface as a result of an incorrect connector

If PROFIBUS connectors are connected to CAN bus interfaces during operation, this may lead to the CAN bus interfaces being destroyed.

• Do not connect PROFIBUS connectors to CAN bus interfaces.

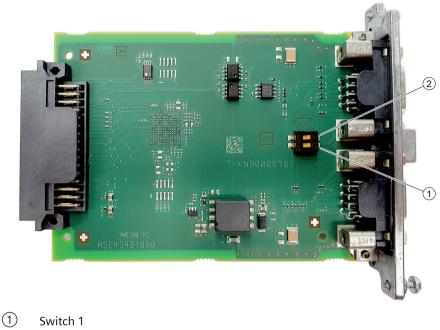

5.3.2.3 X452 CAN bus interface

Table 5-3 X452: CAN bus interface

	Pin	Designation	Technical data		
	1	Reserved, do not use	-		
	2	CAN_L	CAN signal (dominant low)		
9	3	CAN_GND	CAN ground		
	4	Reserved, do not use	-		
	5	CAN_SHLD	Optional shield		
	6	GND	CAN ground		
	7	CAN_H	CAN signal		
	8	Reserved, do not use	-		
	9	Reserved, do not use	-		
Type: 9-pin Sl	Type: 9-pin SUB-D male				

5.3 CAN Communication Board CBC10

5.3.2.4 2-pin SMD DIL switch

Switch 2
 Figure 5-2 2-pin SMD DIL switch 1 and 2 on the CBC10

Table 5-4 2-pin SMD DIL switch

ID on the component	Switch	Function	Switch position	Meaning	Default
	2	Bus terminating re-	OFF	Inactive	OFF
		sistor 120 Ω	ON	Active	
	1	Operation with/ without ground	OFF	Ungrounded oper- ation	OFF
			ON	Operation with ground	

5.3.3 Meaning of the OPT LED on the Control Unit

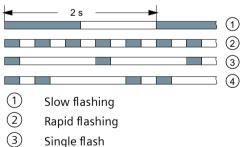

LED	Color	Status	Description, cause ³⁾	Remedy
OPT at the Con-	-	Off	Electronics power supply is missing or outside the per- missible tolerance range.	-
trol Unit			Communication Board either defective or not inserted.	
	Green	Continuous light	OPERATIONAL	-
		2.5 Hz flash-	PREOPERATIONAL	-
		ing light	No PDO communication possible	
		Single flash ¹⁾	STOPPED	-
			Only NMT communication possible	
	Red	Continuous	BUS OFF	Check baud rate
		light		Check cabling
		Single flash ¹⁾	ERROR PASSIVE MODE	Check baud rate
			The error counter for "error passive" has reached the value 127. After the SINAMICS drive system had powered up, no additional active CAN components were connected to the bus	Check cabling
		Double flash ²⁾	Error Control Event, a Life-Guard Event has occurred	Check connection to CANopen master

 Table 5-5
 Meaning of the OPT LED on the Communication Board CAN CBC10

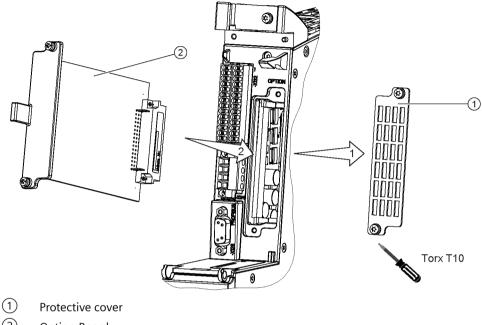
¹⁾ Single flash: The OPT LED OPT goes through the following states "on" (200 ms) and "off" (1000 ms) in one cycle.

²⁾ Double flash: The OPT LED OPT goes through the following states "on" (200 ms) – "off" (200 ms) – "on" (200 ms) – "off" (1000 ms) in one cycle.

³⁾ You will find more detailed information on the function of the CBC10 in the following reference: SINAMICS S120 CANopen Commissioning Manual.

④ Double flash

Figure 5-3 OPT LED flash cycles


5.3.4 Installation

- 1. Release the appropriate screws to remove the cover plate from the option slot.
- 2. Insert the module into the option slot of the Control Unit and fix it in place using the screws.

Option boards

5.4 Communication Board Ethernet CBE20

Screws: M3 Tool: Torx T10 screwdriver Tightening torque: 0.8 Nm (7.1 lbf in)

2 Option Board

Figure 5-4 Installing an Option Board using a CU320-2 DP as an example

5.3.5 Technical data

Table 5-6 Technical data

CAN CBC10 Communication Board 6SL3055-0AA00-2CA.	Unit	Value
Max. current requirement (at 24 V DC)	A _{DC}	0.1
Power loss	W	<10
Weight	kg	0.1

5.4 Communication Board Ethernet CBE20

5.4.1 Description

The SINAMICS S120 system can be connected to PROFINET via the Ethernet CBE20 Communication Board. The CBE20 supports PROFINET IO with Isochronous Realtime Ethernet (IRT) and PROFINET IO with RT.

The Communication Board has an Ethernet interface with 4 ports for communication. It is inserted into the option slot on a Control Unit.

Note

Only one communication interface can be used in isochronous operation when operating the Communication Board CBE20 in a Control Unit CU320-2.

- For the CU320-2 DP, this is either the DP interface of the Control Unit, or the PN interfaces of the CBE20.
- For the CU320-2 PN, they are either the internal PN interfaces or the external PN interfaces of the CBE20.

5.4.2 Interface description

5.4.2.1 Overview

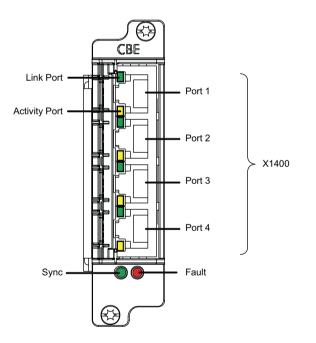


Figure 5-5 Interface overview CBE20

5.4 Communication Board Ethernet CBE20

5.4.2.2 X1400 Ethernet interface

Table 5-7 X1400: Ethernet, ports 1-4

	Pin	Signal name	Technical data
	1	RXP	Receive data +
	2	RXN	Receive data -
	3	ТХР	Transmit data +
	4	Reserved, do not use	-
	5	Reserved, do not use	-
	6	TXN	Transmit data -
	7	Reserved, do not use	-
	8	Reserved, do not use	-
	Screened back- shell	M_EXT	Screen, permanently connec- ted
Connector type	RJ45 socket	·	

Note

The Ethernet interfaces support Auto MDI(X). It is therefore possible to use both crossover and 1:1 cables to connect the devices.

For diagnostic purposes, each port has one green and one yellow LED. You will find a detailed description in the Chapter "Meaning of LEDs (Page 102)"

Cable type: Max. cable length: Industrial Ethernet 100 m

5.4.3 Meaning of the LEDs

Meaning of the LEDs on the CBE20 Communication Board Ethernet

LED	Color	Status	Description
Link port	-	Off	The electronics power supply is missing or outside the permissible tolerance range (link missing or defective).
	Green	Continu- ous light	A different device is connected to port x and a physical connection exists.
Activity port	-	Off	The electronics power supply is missing or outside the permissible tolerance range (no activity).
	Yellow	Flashing light	Data is being received or sent at port x.

Table 5-8Meaning of the LEDs at ports 1 to 4 of the X1400 interface

5.4 Communication Board Ethernet CBE20

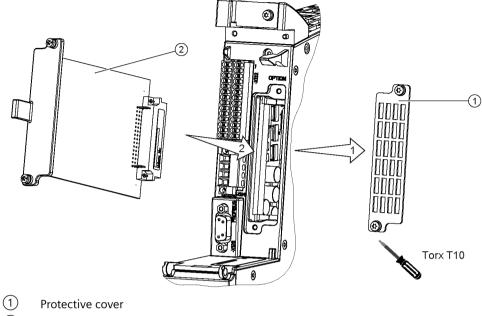
LED	Color	Status	Description
Fault	-	Off	If the link port LED is green: The CBE20 is operating error-free. Data is being exchanged with the configured IO con- troller.
	Red	Flashing	Possible cause:
		light	The response monitoring interval has elapsed.
			Communications is interrupted.
			• The IP address is incorrect.
			Incorrect or no configuration.
			Incorrect parameter settings.
			Incorrect or missing device name.
			• IO Controller not connected/switched off, although an Ethernet connection has been established.
			Other CBE20 faults
		Continu- ous light	CBE20 fault error
			No physical connection to a subnet/switch.
			Incorrect transmission rate
			Full duplex transmission is not activated.
Sync	-	Off	If the link port LED is green: The Control Unit task system is not synchronized with the IRT clock. An internal substi- tute clock is generated.
	Green	Green Flashing light	The Control Unit task system has synchronized with the IRT clock and data is being exchanged.
		Continu- ous light	The Task system and the MC-PLL have synchronized with the IRT clock.

Table 5-9Meaning of the Sync and Fault LEDs on the CBE20

Option boards

5.4 Communication Board Ethernet CBE20

LED	Color	Status	Description, cause	Remedy
OPT	-	OFF	The electronics power supply is missing or outside the permis- sible tolerance range.	-
			CBE20 either defective or not inserted.	
	Green	Continu- ous light	CBE20 is ready and cyclic communication is taking place.	-
		Flashing light 0.5 Hz	CBE20 is ready but cyclic communication is not running. Possible causes:	-
			Communication is being established.	
			• At least one fault is present.	
	Red	Continu- ous light	Cyclic communication via PROFINET has not yet been estab- lished. However, non-cyclic communications are possible. SI- NAMICS is waiting for a parameterization/configuration tele- gram.	_
		Flashing light 0.5 Hz	The firmware update into the CBE20 has been completed with an error. Possible causes:	Replace the memory card or the CBE20.
			• The memory card for the control unit is defective.	
			• The CBE20 is defective.	
			In this state CBE20 cannot be used.	
		Flashing light 2 Hz	There is a communications error between the Control Unit and the CBE20. Possible causes:	Correctly insert the board, if required, replace.
			• The CBE20 was withdrawn after booting.	
			• The CBE20 is defective.	
	Orange	Flashing light 0.5 Hz	Firmware of the CBE20 currently being updated.	-


Table 5-10Meaning of the OPT LED on the Control Unit

5.4.4 Installation

- 1. Release the appropriate screws to remove the cover plate from the option slot.
- 2. Insert the module into the option slot of the Control Unit and fix it in place using the screws.

Screws: M3 Tool: Torx T10 screwdriver Tightening torque: 0.8 Nm (7.1 lbf in)

5.5 Terminal Board TB30

2 Option Board

Figure 5-6 Installing the Option Board using a CU320-2 DP as an example

5.4.5 Technical data

Table 5-11 Technical data

Communication Board CBE20	Unit	Value
6SL3055-0AA00-2EB.		
Max. current requirements (at 24 V DC)	A _{DC}	0.1
Power loss	W	2.4
Weight	kg	<0.1

5.5 Terminal Board TB30

5.5.1 Description

The TB30 Terminal Board is a terminal expansion module that is inserted in the option slot of the Control Unit.

5.5 Terminal Board TB30

The TB30 Terminal Board has the following terminals:

Table 5-12 Interface overview	
-------------------------------	--

Туре	Quantity
Digital inputs	4
Digital outputs	4
Analog inputs	2
Analog outputs	2

5.5.2 Interface description

5.5.2.1 Overview

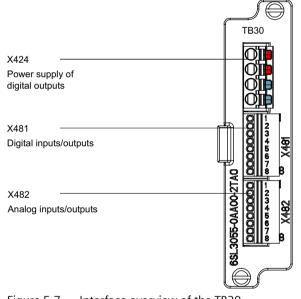


Figure 5-7 Interface overview of the TB30

5.5.2.2 X424 power supply, digital outputs

Table 5-13	X424: Power supply
10010 0 10	/ · · · · · · · · · · · · · · · · · · ·

	Terminal	Designation	Technical data	
blue red	+ + M M	Power supply (24 V) Power supply (24 V) Ground (0 V) Ground (0 V)	Voltage: 24 V DC (20.4 28.8 V) Current consumption: Max. 4 A (per digital output max. 0.5 A) Max. current via jumper in connector: 20 A (15 A according to UL/CSA)	
Type: Spring-loaded terminal 6 (Page 320)				

5.5 Terminal Board TB30

The maximum cable length is 30 m.

Note

The two "+" or "M" terminals are jumpered in the connector. This ensures that the supply voltage is looped through.

This power supply is required for the digital outputs only. The electronics power supply and the power supply for the analog inputs/outputs are taken from the option slot of the Control Unit.

Note

The power supply of the digital outputs and the electronics power supply of the Control Unit are isolated.

Note

If the 24 V supply is briefly interrupted, then the digital outputs are deactivated during this time.

5.5 Terminal Board TB30

5.5.2.3 X481 digital inputs/outputs

	Terminal	Designation ¹⁾	Technical data
	1	DIO	Voltage: -3 30 V DC
	2	DI 1	Electrical isolation: Yes
	3	DI 2	Reference potential: X424.M
	4	DI 3	Input characteristic acc. to IEC 61131-2, type 1
			Input voltage (including ripple) "1" signal: 15 30 V "0" signal: -3 +5 V
			Input current at 24 V DC: typ. 3.5 mA at <0.5 mA: Signal "0" reliably detected
			Input delay for "0" \rightarrow "1": typ. 20 µs for "1" \rightarrow "0": typ. 100 µs
	5	DO 0	Voltage: 24 V DC
	6	DO 1	Electrical isolation: Yes
	7	DO 2	Reference potential: X424.M
	8	DO 3	Output voltage "1" signal, with load: > X424.+ -2 V
			Output current for each output: $\leq 0.5 \text{ A}$ Sum of all four outputs: $\leq 2 \text{ A}$ Residual current for "0" signal: $< 0.5 \text{ mA}$ Short-circuit protection, automatic restart after a short- circuit
			Load types: ohmic, capacitive, inductive Output delay ³⁾ for "0" \rightarrow "1": typ. 150 µs / max. 500 µs (ohmic load) for "1" \rightarrow "0": typ. 50 µs (ohmic load)
			Switching frequency for ohmic load: Max. 100 Hz For inductive load: Max. 0.5 Hz For lamp load: max. 10 Hz
			Lamp load: max. 5 W
Type: Spring-lo	aded terminal 1 (Page 320)	

Table 5-14 X481: Digital inputs/outputs

¹⁾ DI: digital input, DO: digital output

Note

An open input is interpreted as "low".

The power supply and the digital inputs/outputs are isolated with respect to the Control Unit.

Note

If the 24 V supply is briefly interrupted, then the digital outputs are deactivated during this time.

Note

Malfunction in the switched-off state due to diagnostic currents

Unlike mechanical switching contacts, e.g. emergency stop switches, diagnostic currents can also flow when the semiconductor is in the switched-off state (logical state "0" or "OFF"). If interconnection with digital inputs is faulty, the diagnostic currents can result in incorrect switching states. Incorrect signal states of digital inputs can cause unwanted motions of machine parts and trigger malfunctions.

- Observe the conditions of digital inputs and digital outputs specified in the relevant manufacturer documentation.
- Check the conditions of the digital inputs and digital outputs with regard to currents in the "OFF" state and if necessary connect the digital inputs to suitably dimensioned, external resistors to protect against the reference potential of the digital inputs.

5.5.2.4 X482 analog inputs/outputs

	Terminal	Designation ¹⁾	Technical data
	1	AI 0+	Analog inputs (AI)
	2	AI 0-	Voltage : -10 +10 V; R _i : 65 kΩ
	3	AI 1+	Common mode range: ±30 V
	4	AI 1-	Resolution: 13 bits + sign
	5	AO 0+	Analog outputs (AO)
	6	AO 0-	Voltage range: -10 +10 V
	7	AO 1+	Load current: max3 +3 mA
	8	AO 1-	Resolution : 11 bit + signed
			Continuous short-circuit proof
Type: Spring-load	ed terminal 1 (Pa	age 320)	

Table 5-15 X482: Analog inputs/outputs

¹⁾ AI: analog input, AO: analog output

Note

Permissible voltage values

In order to avoid incorrect results of the analog-digital conversion, the analog differential voltage signals can have a maximum offset voltage of ± 30 V with respect to ground potential.

Note

An open input is interpreted as approximately "0 V".

The power supply of the analog inputs/outputs is taken from the option slot of the Control Unit and not from X424.

The shield is placed on the Control Unit (see Chapter "Shield support (Page 112)").

Connecting the analog inputs

You can find more information about the analog inputs in the SINAMICS S120 Drive Functions Function Manual.

5.5.3 Meaning of the OPT LED on the Control Unit

With inserted TB30 option board, the OPT LED has the standard meanings as described in the relevant chapters for the CU320-2 PN (PROFINET) (Page 63) or CU320-2 DP (PROFIBUS) (Page 83)Control Units.

5.5 Terminal Board TB30

5.5.4 Connection example

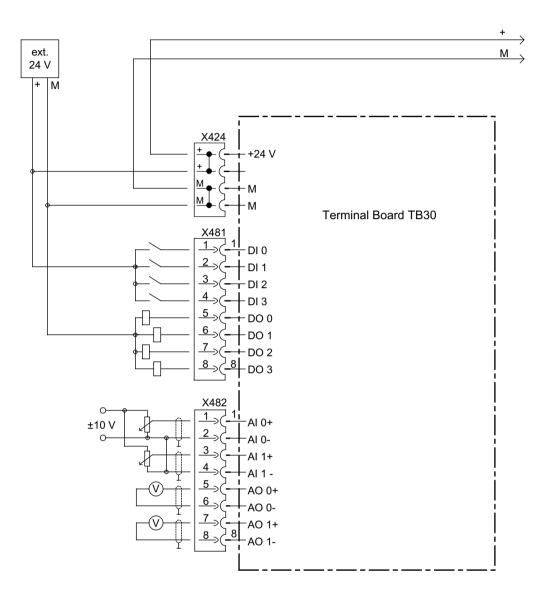
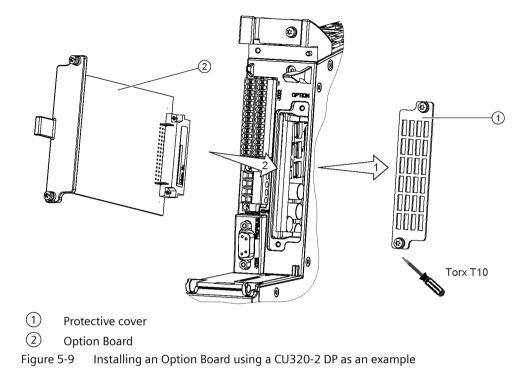



Figure 5-8 Connection example for TB30

5.5.5 Installation

- 1. Release the screws and remove the protective cover from the Control Unit.
- 2. Place the Option Board into the slot on the Control Unit and fix it in place using the screws.

Screws: M3 Tool: Torx T10 screwdriver Tightening torque: 0.8 Nm (7.1 lbf in) 5.5 Terminal Board TB30

5.5.6 Shield support

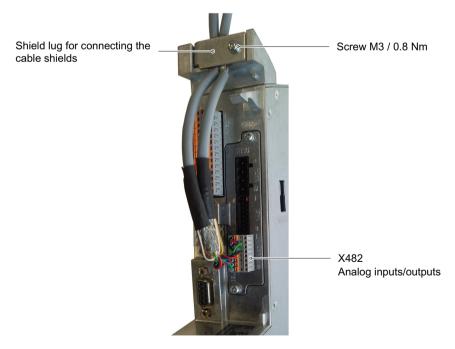


Figure 5-10 Shield support for TB30 on the CU320-2 DP

The permissible bending radii for the cables must not be exceeded when the cables are being installed.

5.5.7 Technical data

Table 5-16	Technical data
	reennear aata

Terminal Board TB30	Unit	Value
3SL3055-0AA00-2TA.		
Electronics power supply		
Voltage Current via the option slot of the CU (without digital outputs) Power loss	V _{DC} A _{DC}	24 (20.4 28.8) 0.05 <3
Max. cable length	m	30
Response time	The response time of the digital input/outputs and th inputs/outputs depends on the evaluation on the Cor (see function diagram).	
	Additional information is available in the SINAMICS S S150 List Manual, Chapter "Function Diagrams/Term Board TB30"	
Weight	kg	0.1

Option boards

5.5 Terminal Board TB30

Terminal Modules

6.1 Description

Terminal Modules are terminal expansion modules for snapping onto a mounting rail according to EN 60715. Each of them has 2 DRIVE-CLiQ interfaces for communication with the Control Unit and an additional Terminal Module or Sensor Module. They have a 24 V DC power supply.

Designation	Article number	Function	
TM15	6SL3055-0AA00-3FA.	Extension of the available digital inputs/outputs within a drive system by 24 bidirectional DIs/DOs	
TM31	6SL3055-0AA00-3AA1	Extension of the available digital inputs/outputs and the analog inputs/outputs within a drive system	
		Additionally: Relay outputs with changeover contact and a temperature sensor input.	
TM41	6SL3055-0AA00-3PA1	Extension of the available digital inputs/outputs and an- alog inputs in the drive system	
		Additionally: Supply of TTL signals as an incremental encoder emulation, e.g. to a higher-level controller.	
TM54F	6SL3055-0AA00-3BA.	Dual-processor I/O interface with 4 fail-safe digital out- puts and 10 fail-safe digital inputs for utilization of the Safety Integrated functions of the SINAMICS drive system via external actuators and sensors.	
TM120	6SL3055-0AA00-3KA.	Evaluation of 4 temperature sensors	
		The temperature sensor inputs are safely electrically sep- arated from the evaluation electronics in the TM120 Ter- minal Module and are suitable for evaluating the tem- perature of special motors, e.g. linear motors.	
TM150	6SL3055-0AA00-3LA0	DRIVE-CLiQ component for temperature evaluation	
		The temperature is measured in a temperature range from -99 °C to +250 °C for different temperature sensors:	

Table 6-1Terminal Modules for the CU320-2

6.2 Safety instructions for Terminal Modules

6.2 Safety instructions for Terminal Modules

NOTICE

Device failure as a result of unshielded or incorrectly routed cables to temperature sensors

Unshielded or incorrectly laid cables to the temperature sensors can cause induced voltages from the power side to the signal-processing electronics. This can result in significant disturbance of all signals (fault messages) up to failure of individual components (destruction of the devices).

- Only use shielded cables as temperature sensor cables.
- If temperature sensor cables are routed together with the motor cable, use separately shielded cables twisted in pairs.
- Connect the cable shield at both ends to ground potential through a large surface area.
- Recommendation: Use suitable MOTION-CONNECT cables.

NOTICE

Damage through use of incorrect DRIVE-CLiQ cables

The use of incorrect or unreleased DRIVE-CLiQ cables can cause damage or functional faults to devices or the system.

• Only use suitable DRIVE-CLiQ cables that have been released by Siemens for the particular application.

Note

Malfunctions due to polluted DRIVE-CLiQ interfaces

Malfunctions can occur in the system through the use of polluted DRIVE-CLiQ interfaces.

• Cover unused DRIVE-CLiQ interfaces with the supplied blanking covers.

Note

Malfunction in the switched-off state due to diagnostic currents

Unlike mechanical switching contacts, e.g. emergency stop switches, diagnostic currents can also flow when the semiconductor is in the switched-off state (logical state "0" or "OFF"). If interconnection with digital inputs is faulty, the diagnostic currents can result in incorrect switching states. Incorrect signal states of digital inputs can cause unwanted motions of machine parts and trigger malfunctions.

- Observe the conditions of digital inputs and digital outputs specified in the relevant manufacturer documentation.
- Check the conditions of the digital inputs and digital outputs with regard to currents in the "OFF" state and if necessary connect the digital inputs to suitably dimensioned, external resistors to protect against the reference potential of the digital inputs.

6.3.1 Description

The Terminal Module TM15 is a terminal expansion for snapping on to an EN 60715 DIN rail. The TM15 can be used to increase the number of available digital inputs/outputs within a drive system.

Table 6-2 Interface overview of the TM15	Table 6-2	Interface	overview	of the	TM15
--	-----------	-----------	----------	--------	------

Туре	Quantity
DRIVE-CLiQ interfaces	2
Bidirectional digital inputs/outputs	24 (isolation in 3 groups each with 8 DI/DO)

6.3.2 Interface description

6.3.2.1 Overview

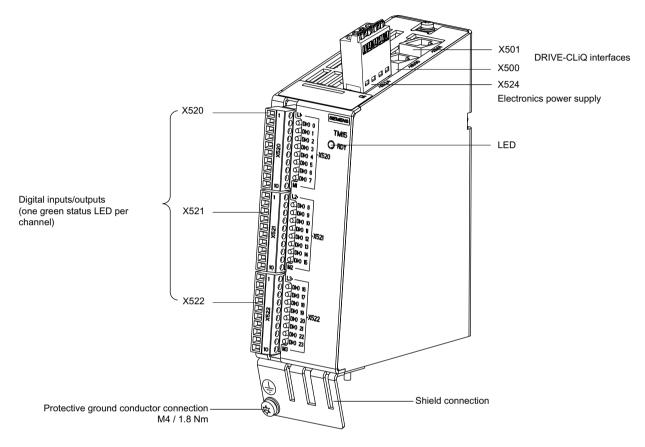


Figure 6-1 TM15 interface overview

6.3.2.2 X500/X501 DRIVE-CLiQ interfaces

	Pin	Signal name	Technical data
	1	ТХР	Transmit data +
	2	TXN	Transmit data -
* E ^t	3	RXP	Receive data +
	4	Reserved, do not use	-
	5	Reserved, do not use	-
	6	RXN	Receive data -
	7	Reserved, do not use	-
	8	Reserved, do not use	-
	А	+ (24 V)	Power supply
	В	M (0 V)	Electronics ground
Connector type	DRIVE-CLiQ socket		

Table 6-3 X500/X501 DRIVE-CLiQ interfaces

The blanking covers for the DRIVE-CLiQ interfaces are included in the scope of delivery. Blanking covers (50 x) Article No.: 6SL3066-4CA00-0AA0

Note

The maximum DRIVE-CLiQ cable length is 100 m.

6.3.2.3 X520 bidirectional digital inputs/outputs

Table 6-4	X520 digital inputs/outputs

	Terminal	Designation ¹⁾	Technical data	
	1	L1+	See Chapter "Technical data	
	2	DI/DO 0	(Page 128)".	
	3	DI/DO 1		
	4	DI/DO 2		
	5	DI/DO 3		
X520	6	DI/DO 4		
	7	DI/DO 5		
	8	DI/DO 6		
	9	DI/DO 7		
10	10	M1 (GND)		
Type: Screw ter	Type: Screw terminal 1 (Page 321)			

¹⁾ L1+: The 24 V DC infeed for DI/DO 0 to 7 (first potential group) must always be connected if at least one DI/DO of the potential group is used as an output.

M1: The ground reference for DI/DO 0 to 7 (first potential group) must always be connected if at least one DI/DO of the potential group is used as an input or output.

DI/DO: Bidirectional digital input/output

6.3.2.4 X521 bidirectional digital inputs/outputs

	Terminal	Designation ¹⁾	Technical data		
	1	L2+	See Chapter "Technical data		
	2	DI/DO 8	(Page 128)".		
	3	DI/DO 9			
	4	DI/DO 10			
	5	DI/DO 11			
X521	6	DI/DO 12			
	7	DI/DO 13			
	8	DI/DO 14			
	9	DI/DO 15			
10	10	M2 (GND)			
Type: Screw te	Type: Screw terminal 1 (Page 321)				

Table 6-5 X521 digital inputs/outputs

 L2+: The 24 V DC infeed for DI/DO 8 to 15 (second potential group) must always be connected if at least one DI/DO of the potential group is used as an output.
 M2: The ground reference for DI/DO 8 to 15 (second potential group) must always be connected if at least

M2: The ground reference for DI/DO 8 to 15 (second potential group) must always be connected if at least one DI/DO of the potential group is used as an input or output. DI/DO: Bidirectional digital input/output

6.3.2.5 X522 bidirectional digital inputs/outputs

	Terminal	Designation ¹⁾	Technical data		
	1	L3+	See Chapter "Technical data		
	2	DI/DO 16	(Page 128)".		
	3	DI/DO 17			
	4	DI/DO 18			
	5	DI/DO 19	-		
X522	6	DI/DO 20			
	7	DI/DO 21			
	8	DI/DO 22			
	9	DI/DO 23			
10	10	M3 (GND)			
Type: Screw ter	Type: Screw terminal 1 (Page 321)				

Table 6-6 X522 digital inputs/outputs

¹⁾ L3+: The 24 V DC infeed for DI/DO 16 to 23 (third potential group) must always be connected if at least one DI/DO of the potential group is used as an output.

M3: The ground reference for DI/DO 16 to 23 (third potential group) must always be connected if at least one DI/DO of the potential group is used as an input or output.

DI/DO: Bidirectional digital input/output

6.3.2.6 X524 Electronics power supply

	Terminal	Designation	Technical data	
	+	Electronics power supply (24 V)	Voltage: 24 V DC (20.4 28.8 V)	
	+ Electronics power supply (24 V) M Electronics ground (0 V)		Current consumption: max. 0.6 A (including DRIVE-CLiQ and control of dig- ital outputs)	
	М	Electronics ground (0 V)	Max. current via the jumper in the con- nector: 20 A (15 A according to UL/CSA)	
Type: Spring-loaded terminal 6 (Page 320)				

Table 6-7 X524 electronics power supply

The maximum cable length is 30 m.

Note

The two "+" and "M" terminals are jumpered in the connector. This ensures that the supply voltage is looped through.

The digital outputs are supplied via terminals X520, X521, and X522.

6.3.3 Connection example

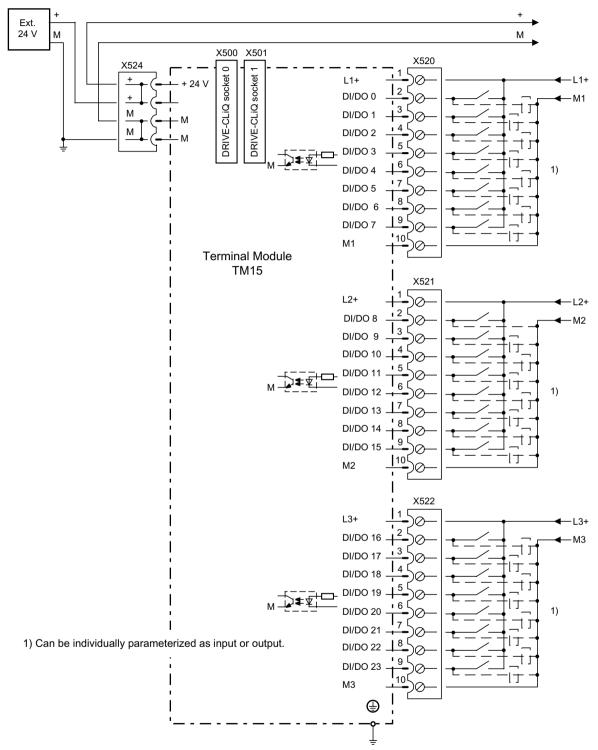


Figure 6-2 Example connection of TM15

6.3.4 Meaning of the LED

LED	Color	Status	Description, cause	Remedy
READY	-	Off	The electronics power supply is missing or outside the permis- sible tolerance range.	-
	Green	Continuous light	The component is ready for operation. Cyclic DRIVE-CLiQ com- munication is taking place.	-
	Orange	Continuous light	DRIVE-CLiQ communication is being established.	-
	Red	Continuous light	This component has at least one fault. Note: The LED is activated irrespective of whether the corresponding messages have been reconfigured.	Correct and ac- knowledge the fault.
	Green/re d	Flashing light 0.5 Hz	Firmware is being downloaded.	-
		Flashing light 2 Hz	Firmware download is complete. The system waits for POWER ON.	Carry out a POWER ON.
	Green/ orange	Flashing light	Component recognition via LED is activated (parameter p0154=1).	-
	or Red/ orange		Note: Both options depend on the LED status when component rec- ognition is activated.	

Table 6-8Meanings of the LEDs on the Terminal Module TM15

6.3.5 Dimension drawing

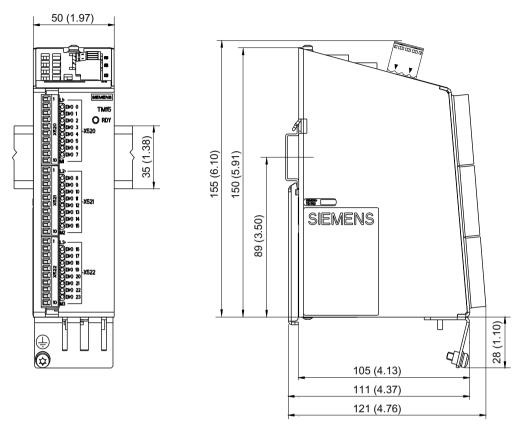
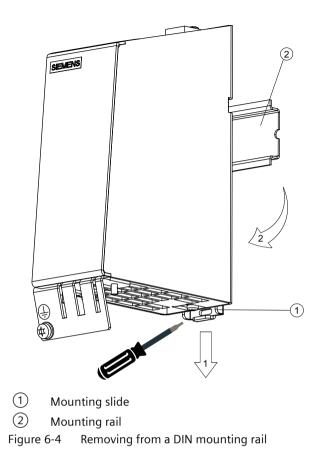


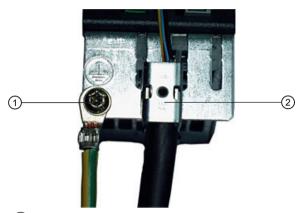
Figure 6-3 Dimension drawing of Terminal Module TM15, all data in mm and (inches)


6.3.6 Mounting

Mounting

- 1. Tilt the component backwards slightly and attach it to the DIN rail using the hooks.
- 2. Swivel the component onto the DIN rail until you hear the mounting slide at the rear latch into position.
- 3. Slide the component along the mounting rail to either the left or the right into its final position.

Removal


- 1. First shift the mounting slide downwards at the lug to release the interlocking with the mounting rail.
- 2. Swivel the component to the front and withdraw it upwards from the DIN rail.

6.3.7 Protective conductor connection and shield support

It is always advisable to shield the digital input/output wiring.

The following diagram shows a typical Weidmüller shield connection clamp for the shield supports.

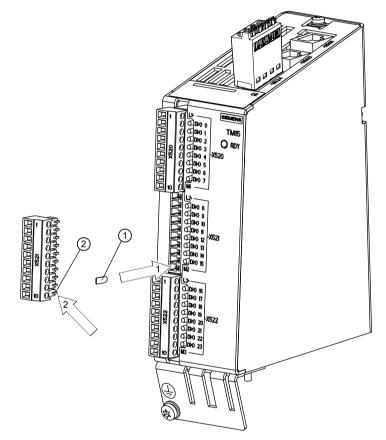
- 1 Protective conductor connection M4 / 1.8 Nm (15.9 lbf in)
- Shield connection terminal, Weidmüller company, type: KLBUE CO1, Article number: 1753311001
- Figure 6-5 Protective conductor connection and shield support

NOTICE

Damage or faulty operation due to incorrect shielding or inadmissible cable lengths

If the correct shielding procedures or the permissible cable lengths are not observed, it can cause damage or the machine may malfunction.

- Only use shielded cables.
- Do not exceed the cable lengths stated in the technical data.


The TM15 housing is connected to the ground terminal of the module supply (terminal X524). If the ground terminal is actually grounded, then the housing is also grounded. An additional ground connection using the M4 screw is especially necessary if high potential bonding currents can flow (e.g. through the cable shield).

6.3.8 Connector coding

A series of coding elements ("coding sliders") are supplied with each Terminal Module TM15.

Connector coding

- 1. Insert at least one coding slider at the required position.
- 2. Remove the associated coding lug at the connector.

1 Coding slider

2 Coding lug at the connector to be removed

Figure 6-6 Connector coding using the example of interface X521

To avoid wiring errors, unique coding patterns must be defined for the connectors X520, X521 and X522.

Possible patterns:

- 3 connectors on one component are encoded differently (i.e. X520, X521 and X522).
- Different component types are encoded differently.
- Identical components on the same machine are encoded differently, e.g. several TM15-type components.

6.3.9 Technical data

Table 6-9 Technical data

/ _{DC} A _{DC} N	24 (20.4 28.8) ≤0.15 ≤3 30	
	30	
Can either be parameterized a	s DI or DO	
24		
/es, in groups of 8		
m 30		
/ _{DC}	-30 +30	
/ _{DC}	-30 +5	
/ _{DC}	15 30	
Ω	2.8	
mA	9	
/ _{DC}	5	
mA	0.0 1.0 (per channel)	
15	"0" → "1": 50 "1" → "0": 100	
/ _{DC}	24	
H _{DC}	0.5	
15	"0" → "1": 50 "1" → "0": 150	
JS	"0" → "1": 100 "1" → "0": 225	
IS	125 (typ.) 350 (max.)	
Hz Hz Hz N	Max. 100 Max. 0.5 Max. 10 5	
:Hz	1 (typ.)	
/ _{DC}	0.75 (max.) for maximum load in all cir- cuits	
AL	Max. 10 per channel	
	es, in groups of 8 n DC DC DC DC DC A DC A S S S S S S S Iz Iz Iz DC	

6SL3055-0AA00-3FA.	Unit	Value		
Voltage drop, output (I/O power supply to the output)	V _{DC}	0.5		
Max. total current of outputs (per group) up to 60 °C up to 50 °C up to 40 °C	A _{DC} A _{DC} A _{DC}	2 3 4		
Response time	The response time ing:	e of the digital inputs/outputs comprises the follow-		
	Response time on the component itself (approx. 1/2 DRIVE-CLiQ cycle).			
	Transfer time via the DRIVE-CLiQ connection (approx. 1 DRIVE-CLiQ cycle).			
	Evaluation on the Control Unit (see function diagram)			
	Reference: SINAM	More information is provided in the following reference: Reference: SINAMICS S120/S150 List Manual, Chapter "Function dia- grams/Terminal Module 15"		
Protective ground conductor connection	At the housing wit	At the housing with M4 screw		
Ventilation clearances, above/below	mm	50		
Weight	kg	1.0		

6.4 Terminal Module TM31

6.4.1 Description

The Terminal Module TM31 is a terminal expansion that is snapped onto a EN 60715 standard mounting rail. Terminal Module TM31 can be used to increase the number of available digital inputs/digital outputs and also the number of analog inputs/analog outputs within a drive system.

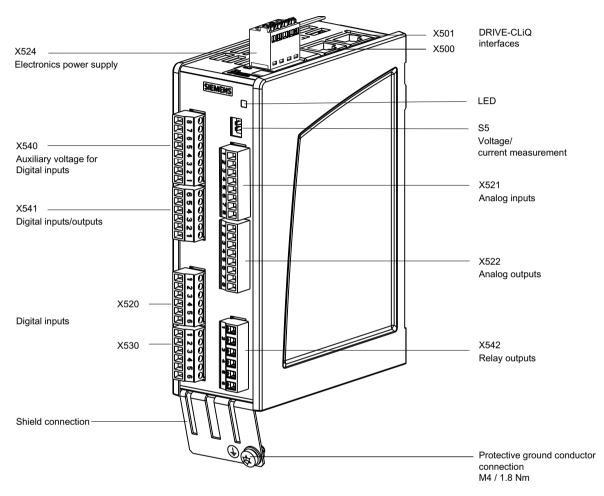

The TM31 contains the following interfaces:

Table 6-10 Interface overview of the TM31

Туре	Quantity
DRIVE-CLiQ interfaces	2
Digital inputs	8
Bidirectional digital inputs/outputs	4
Analog inputs	2
Analog outputs	2
Relay outputs	2
Temperature sensor input	1

6.4.2 Interface description

6.4.2.1 Overview

6.4.2.2 X500/X501 DRIVE-CLiQ interfaces

	Pin	Signal name	Technical data
	1	ТХР	Transmit data +
	2	TXN	Transmit data -
*	3	RXP	Receive data +
	4	Reserved, do not use	-
	5	Reserved, do not use	-
	6	RXN	Receive data -
	7	Reserved, do not use	-
	8	Reserved, do not use	-
	А	+ (24 V)	Power supply
	В	M (0 V)	Electronics ground
Connector type	DRIVE-CLiQ socket		

Table 6-11 X500/X501 DRIVE-CLiQ interfaces

The blanking covers for the DRIVE-CLiQ interfaces are included in the scope of delivery. Blanking covers (50 x) Article No.: 6SL3066-4CA00-0AA0

Note

The maximum DRIVE-CLiQ cable length is 100 m.

6.4.2.3 X520 digital inputs

Table 6-12 X520: Digital inputs

	Terminal	Designation ¹⁾	Technical data	
	1	DI O	Voltage: -3 +30 V	
	2	DI 1	Electrical isolation: Yes	
	3	DI 2	Reference potential: M1	
	4	DI 3	Input characteristic acc. to IEC 61131-2, type 1	
	5	M1	Input voltage (including ripple)	
5	6	М	"1" signal: 15 30 V "0" signal: -3 +5 V	
			Input current at 24 V DC: typ. 9 mA at <0.5 mA: Signal "0" reliably detected	
			Input delay for "0" \rightarrow "1": typ. 50 µs max. 100 µs For "1" \rightarrow "0": typ. 130 µs/max. 150 µs	
Type: Screw te	Type: Screw terminal 1 (Page 321)			

¹⁾ DI: Digital input; M: Electronics ground; M1: reference potential

Note

Ensuring the function of digital inputs

An open input is interpreted as "low".

Terminal M1 must be connected so that the digital inputs (DI) can function.

This is achieved by using one of the following measures:

- 1. Providing the ground reference of the digital inputs
- 2. A jumper to terminal M **Note:** This removes isolation for these digital inputs.

6.4.2.4 X521 analog inputs

	Terminal	Designation ¹⁾	Technical data
	1	AI 0+	The analog inputs can be toggled between current
	2	AI 0-	and voltage input using switches S5.0 and S5.1.
	3	AI 1+	As voltage input:
u u u u u u u u u u u u u u	4	AI 1-	-10 +10 V; R _i > 100 kΩ Resolution: 11 bits + sign
4 5 6			As current input: -20 +20 mA; $R_i = 250 \Omega$ Resolution: 10 bits + sign
	5	P10	Auxiliary voltage:
∞	6	М	P10 = 10 V
	7	N10	N10 = -10 V Current-carrying capacity: max. 3 mA
	8	М	Continuously short-circuit proof
Type: Screw t	erminal 1 (Pag	321)	

Table 6-13X521: Analog inputs

Type: Screw terminal 1 (Page 321)

¹⁾ AI: analog inputs; P10/N10: auxiliary voltage; M or GND: ground reference

NOTICE

Damage or malfunctions through impermissible voltage values

If a current exceeding ± 35 mA flows through the analog current input, the component could be destroyed.

The common mode range must not be violated in order to avoid incorrect analog-digital conversion results.

- The input voltage may only be in the range between -30 V and +30 V (destruction limit).
- The common mode voltage may only be in the range between -10 V and +10 V (error limit).
- The back EMF at the auxiliary voltage outputs may only be in the range between -15 V and +15 V.

Note

The power supply for the analog inputs can be taken internally or from an external power supply unit

6.4.2.5 S5 current/voltage changeover switch for analog inputs

Table 6-14 Current/voltage selector S5

	Switch	Function
	S5.0	Selector voltage (V)/current (I) Al0
V 🖳 I S5.1	S5.1	Selector voltage (V)/current (I) Al1

6.4.2.6 X522 analog outputs/temperature sensor

 Table 6-15
 X522: Analog outputs/temperature sensor

	Terminal	Designation ¹⁾	Technical data
	1	AO 0V+	You can set the following output signals using parameters:
	2	AO 0-	Voltage : -10 +10 V (max. 3 mA)
3	3	AO 0C+	Current 1 : 4 20 mA (max. load resistance \leq 500 Ω)
4	4	AO 1V+	Current 2 : -20 +20 mA (max. load resistance \leq 500 Ω)
5	5	AO 1-	Current 3 : 0 20 mA (max. load resistance \leq 500 Ω)
•	6	AO 1C+	Resolution: 11 bits + sign
			Continuously short-circuit proof
∞ 😭	7	+ temp	Temperature sensor ²⁾ Pt1000 / PTC / KTY84-130
	8	- temp	Measuring current through temperature sensor connection: 2 mA

Type: Screw terminal 1 (Page 321)

 $^{1)}$ AO xV: analog output voltage; AO xC: analog output current

- Accuracy of the temperature measurement (temperature sensor, including evaluation):
 - Pt1000: ±5 °C (Pt1000 tolerance class B acc. to DIN EN 60751)

- PTC: ±5 °C

2)

- KTY: ±7 °C

NOTICE

Damage or malfunctions through impermissible voltage values

If the back EMF is impermissible then damage and malfunctions may occur on the components.

• The back EMF at the outputs may only be in the range between -15 V and +15 V.

NOTICE

Damage to motor in the event of incorrectly connected KTY temperature sensor

If a KTY temperature sensor is connected with incorrect polarity, it is not possible to detect when the motor overheats. Overheating can cause damage to the motor.

• Connect a KTY temperature sensor with the correct polarity.

🔨 WARNING

Electric shock when the motor temperature sensor insulation fails

When connecting temperature sensors, which have no safe protective separation with respect to the motor power circuit, then arcing to the signal electronics can occur.

- Use motors whose temperature sensors have safe electrical separation.
- Use only connecting cables and connectors with safe electrical separation between the wires of the temperature sensor and the wires of the power circuit.
- If safe electrical separation cannot be guaranteed (for linear motors or third-party motors, for example), use a Sensor Module External (SME120 or SME125) or Terminal Module TM120.

6.4.2.7 X524 Electronics power supply

	Terminal	Designation	Technical data	
M Electronics ground (0 V) M Electronics ground (0 V) M Electronics ground (0 V) M Electronics ground (0 V)	+	Electronics power supply (24 V)		
M Electronics ground (0 V) and auxiliary voltages) M Electronics ground (0 V) Max. current via the jumper in the con				
M Electronics ground (0 V) Max. current via the jumper in the con	М	Electronics ground (0 V)		
nector: 20 A (15 A according to UL/CSA	М	Electronics ground (0 V)	Max. current via the jumper in the con- nector: 20 A (15 A according to UL/CSA)	

Table 6-16 X524: Electronics power supply

The maximum cable length is 30 m.

Note

The two "+" and "M" terminals are jumpered in the connector. This ensures that the supply voltage is looped through.

6.4.2.8 X530 digital inputs

	Terminal	Designation ¹⁾	Technical data	
	1	DI 4	Voltage: -3 +30 V DC	
	2	DI 5	Electrical isolation: Yes	
	3	DI 6	Reference potential: M2	
	4	DI 7	Input characteristic acc. to IEC 61131-2, type 1	
↓ 5 °	5	M2	Input voltage (including ripple)	
	6	М	"1" signal: 15 30 V "0" signal: -3 +5 V	
			Input current at 24 V DC: typ. 9 mA at <0.5 mA: Signal "0" reliably detected	
			Input delay for "0" \rightarrow "1": typ. 50 µs/max. 100 µs for "1" \rightarrow "0": typ. 130 µs/max. 150 µs	
Type: Screw terminal 1 (Page 321)				

¹⁾ DI: digital input; M: electronics ground; M2: reference potential

Note

Ensuring the function of digital inputs

An open input is interpreted as "low".

To enable the digital inputs (DI) to function, terminal M2 must be connected.

This is achieved by using one of the following measures:

- 1. Providing the ground reference of the digital inputs
- 2. A jumper to terminal M
 - Note: This removes isolation for these digital inputs.

6.4.2.9 X540 auxiliary voltage for the digital inputs

		Terminal	Designation	Technical data
	8	8	+24 V	Voltage: +24 V DC
		7	+24 V	Max. total load current of +24 V auxili-
\square	ი	6	+24 V	ary voltage for terminals X540 and X541 combined: 150 mA
\square	сл	5	+24 V	X341 combined: 150 mA
	4	4	+24 V	
	ω	3	+24 V	
	≥	2	+24 V	
	-	1	+24 V	
Type: Screw terminal 1 (Page 321)				

Table 6-18 X540: Auxiliary voltage for digital inputs

Note

This voltage supply is only for powering the digital inputs.

Note

If the 24 V supply is briefly interrupted, the auxiliary voltage for the digital inputs is deactivated for this time.

6.4.2.10 X541 bidirectional digital inputs/outputs

	6		
	0	Μ	As input:
n 0	5	DI/DO 11	Voltage: -3 +30 V DC
5 4	4	DI/DO 10	Electrical isolation: no
	3	DI/DO 9	Reference potential: M
ω	2	DI/DO 8	Input characteristic acc. to IEC 61131-2, type 1
2 1			Input voltage (including ripple) "1" signal: 15 30 V "0" signal: -3 +5 V
			Input current at 24 V DC: typ. 9 mA at <0.5 mA: Signal "0" reliably detected
			Input delay: for "0" to "1": Typ. 50 μs for "1" to "0": typ. 100 μs
			As output:
			Voltage: 24 V DC
			Electrical isolation: no
			Reference potential: M
			Output voltage "1" signal, with load: > X524.+ -2 V
			Output current for each output: $\leq 0.5 \text{ A}$ Sum of all 4 outputs: $\leq 0.1 \text{ A}$ (when parameter p4046=0) $\leq 1.0 \text{ A}$ (when parameter p4046=1) Residual current for "0" signal: < 0.5 mA Short-circuit protection, automatic restart after a short-circuit
			Load types: ohmic, capacitive, inductive
			Output delay for "0" \rightarrow "1": typ. 150 µs / max. 500 µs (ohmic load) for "1" \rightarrow "0": typ. 50 µs (ohmic load)
			Switching frequency for ohmic load: max. 100 Hz for inductive load: max. 0.5 Hz for lamp load: max. 10 Hz
			Lamp load: max. 5 W
	1	+24 V	Auxiliary voltage: Voltage: +24 V DC Max. Total load current of +24 V auxiliary voltage for terminals X540 and X541 combined: 150 mA

 Table 6-19
 X541: Bidirectional digital inputs/outputs

¹⁾ DI/DO: Bidirectional digital input/output; M: Electronics ground

Note

An open input is interpreted as "low".

Note

If the 24 V supply is briefly interrupted, then the digital outputs are deactivated during this time.

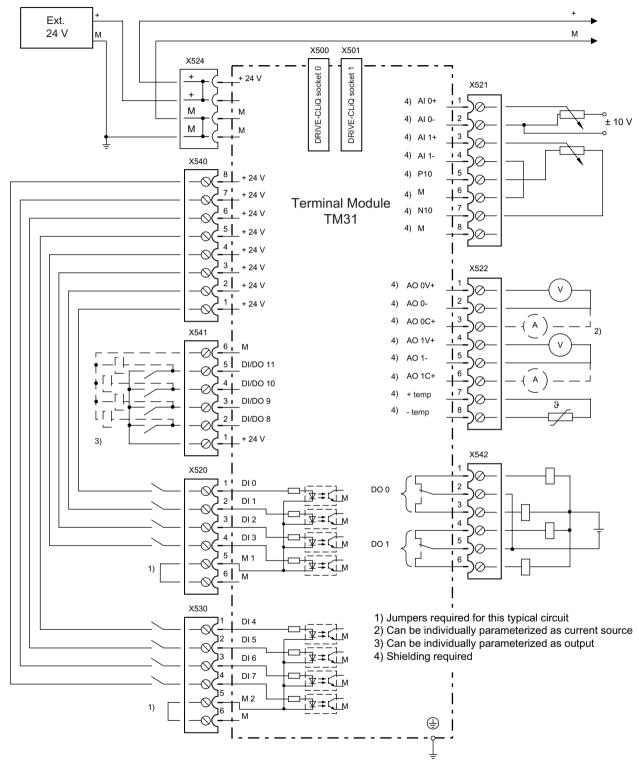

6.4.2.11 X542 relay outputs

Table 6-20 X542: Relay outputs

	Terminal	Designation ¹⁾	Technical data	
	1	DO 0.NC	Contact type: Two-way contact max. load current: 8 A	
	2	DO 0.COM	Max. switching voltage: 250 V _{AC} . 30 V _{DC}	
	3	DO 0.NO	Max. switching capacity at 250 V _{AC} : 2000 VA (cos φ = 1) Max. switching capacity at 250 V _{AC} : 750 VA (cos φ = 0.4)	
	4	DO 1.NC	Max. switching capacity at $30 V_{DC}$: 240 W (resistive load)	
	5	DO 1.COM	Required minimum current: 100 mA	
	6	DO 1.NO	Output delay: \leq 20 ms ²⁾ Overvoltage category: Class II according to IEC 61800-5-1	
Type: Screw terminal 3 (Page 321) Maximum switching frequency at full load: 6 rpm				

¹⁾ DO: digital output, NO: normally-open contact, NC: normally-closed contact, COM: mid-position contact

²⁾ Depending on the parameterization and the supply voltage (P24) of the TM31

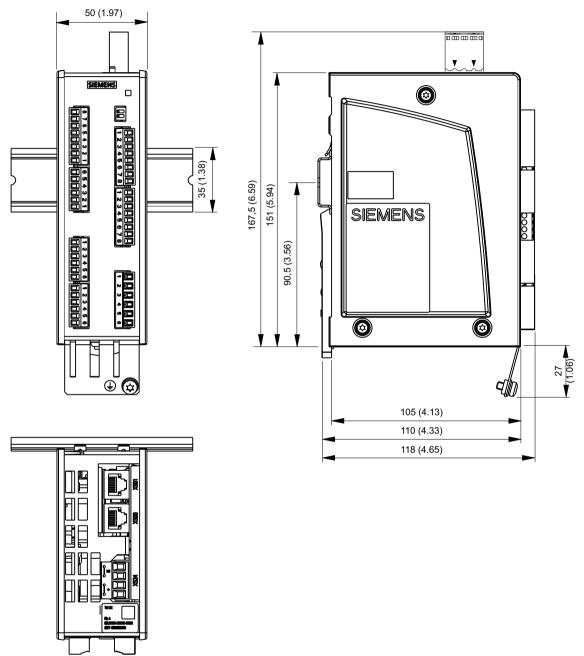
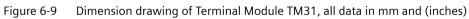
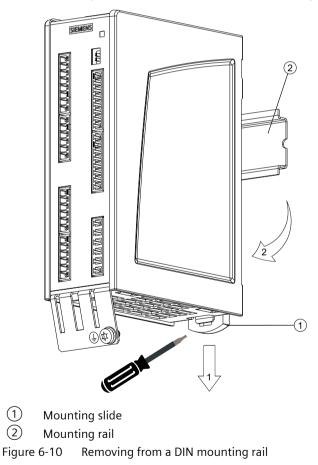

6.4.3 Connection example

Figure 6-8 Connection example of TM31


6.4.4 Meaning of the LED

LED	Color	Status	Description, cause	Remedy
READY	-	Off	The electronics power supply is missing or outside the per- missible tolerance range.	-
	Green	Continuous light	The component is ready for operation. Cyclic DRIVE-CLiQ communication is taking place.	-
	Orange	Continuous light	DRIVE-CLiQ communication is being established.	-
	Red	Continuous light	This component has at least one fault. Note: The LED is activated irrespective of whether the correspond- ing messages have been reconfigured.	Correct and acknowl- edge the fault.
	Green/re d	Flashing light 0.5 Hz	Firmware is being downloaded.	-
		Flashing light 2 Hz	Firmware download is complete. The system waits for POW-ER ON.	Carry out a POWER ON.
	Green/ orange	Flashing light	Component recognition via LED is activated (parameter p0154=1).	-
	or Red/ orange		Note: Both options depend on the LED status when component recognition is activated.	

Table 6-21 Meanings of the LEDs on the Terminal Module TM31

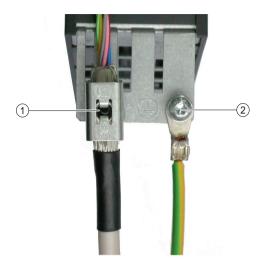

6.4.6 Installation

Installation

- 1. Tilt the component backwards slightly and attach it to the DIN rail using the hooks.
- 2. Swivel the component onto the DIN rail until you hear the mounting slide at the rear latch into position.
- 3. Slide the component along the mounting rail to either the left or the right into its final position.

Removal

- 1. First shift the mounting slide downwards at the lug to release the interlocking with the mounting rail.
- 2. Swivel the component to the front and withdraw it upwards from the DIN rail.



6.4.7 Protective conductor connection and shield support

It is always advisable to shield the digital input/output wiring.

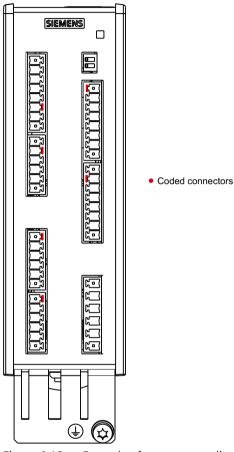
6.4 Terminal Module TM31

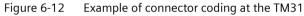
The following diagram shows a typical Weidmüller shield connection clamp for the shield supports.

- Shield connection terminal, Weidmüller company, type: KLBUE CO1, Article number: 1753311001
- 2 Protective conductor connection M4 / 1.8 Nm (15.9 lbf in)
- Figure 6-11 Protective conductor connection and shield support

NOTICE

Damage or faulty operation due to incorrect shielding or inadmissible cable lengths


If the correct shielding procedures or the permissible cable lengths are not observed, it can cause damage or the machine may malfunction.


- Only use shielded cables.
- Do not exceed the cable lengths stated in the technical data.

6.4 Terminal Module TM31

6.4.8 Connector coding

To ensure that identical connectors are assigned correctly on the TM31, the connecters are encoded as shown in the following diagram.

The bending radii of the cables must be taken into account (see description of MOTION-CONNECT).

6.4.9 Technical data

6SL3055-0AA00-3AA1	Unit	Value
Electronics power supply Voltage Current (without DRIVE-CLiQ, digital out- puts and auxiliary voltages)	V _{DC} A _{DC}	24 (20.4 28.8) ≤0.2 ≤5
Power loss	W	
Response time		ime of the digital inputs/outputs and the ana- outs comprises the following:
		ime on the component itself 2 DRIVE-CLiQ cycle).
		ne via the DRIVE-CLiQ connection DRIVE-CLiQ cycle).
	• Evaluation	on the Control Unit (see function diagram).
	Reference: SIN	ion is provided in the following reference: AMICS S120/S150 List Manual, ion diagrams/Terminal Module 31".
Protective ground conductor connection	At the housing	with M4 screw
Maximum cable lengths: electronics power supply DRIVE-CLiQ cables inputs/outputs	m m m	30 100 30
Ventilation clearances, above/below	mm	50
Weight	kg	0.49

Table 6-22 Technical data

6.5 Terminal Module TM41

6.5.1 Description

The Terminal Module TM41 is an expansion module that is snapped onto an EN 60715 standard mounting rail.

The encoder interface of the TM41 can be used to emulate an incremental encoder. The TM41 can also be used to connect analog controls to SINAMICS.

The TM41 contains the following interfaces:

Table 6-23 Interface overview of the TM41

Туре	Quantity
DRIVE-CLiQ interfaces	2
Digital inputs, floating	4
Bidirectional digital inputs/outputs	4

6.5 Terminal Module TM41

Туре	Quantity
Analog inputs	1
TTL encoder output	1

6.5.2 Interface description

6.5.2.1 Overview

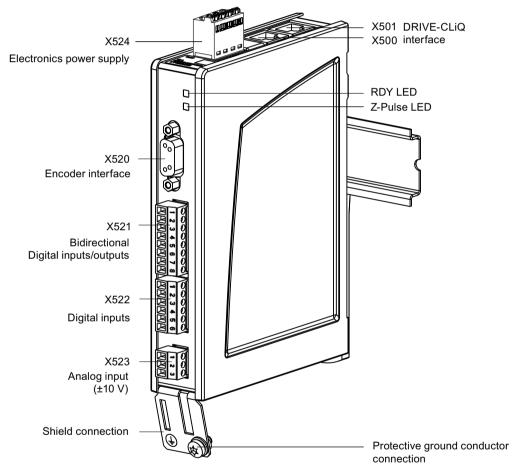


Figure 6-13 TM41 interface overview

6.5.2.2 X500/X501 DRIVE-CLiQ interfaces

	Pin	Signal name	Technical data
	1	ТХР	Transmit data +
	2	TXN	Transmit data -
* E ¹	3	RXP	Receive data +
	4	Reserved, do not use	-
	5	Reserved, do not use	-
	6	RXN	Receive data -
	7	Reserved, do not use	-
	8	Reserved, do not use	-
	А	+ (24 V)	Power supply
	В	M (0 V)	Electronics ground
Connector type	DRIVE-C	LiQ socket	· · ·

Table 6-24 X500/X501 DRIVE-CLiQ interfaces

The blanking covers for the DRIVE-CLiQ interfaces are included in the scope of delivery. Blanking covers (50 x) Article No.: 6SL3066-4CA00-0AA0

Note

The maximum DRIVE-CLiQ cable length is 100 m.

6.5.2.3 X520 encoder interface

Table 6-25X520: Encoder interface

	Pin	Signal name	Technical data
	1	A	Incremental signal A
	2	R	Reference signal R
	3	В	Incremental signal B
	4	Reserved, do not use	-
	5	Reserved, do not use	-
	6	A*	Inverse incremental signal A
	7	R*	Inverse reference signal R
	8	B*	Inverse incremental signal B
	9	М	Ground
Connector 9-pin SUB-D socket; TTL encoder (RS422) type:			
Max. cable length: 30 m			

6.5 Terminal Module TM41

Note

The X520 encoder interface produces signals acc. to RS422 standard.

RS422 is a technical standard for differential serial data transmission

Differential signals A/A*, B/B*, and R/R* must not be operated "single-ended".

6.5.2.4 X521 bidirectional digital inputs/outputs

	Terminal	Designation ¹⁾	Technical data
	1	DI/DO 0	As input:
	2	DI/DO 1	Voltage: -3 30 V DC
	3	DI/DO 2	Electrical isolation: no
	4	DI/DO 3	Reference potential: M
$\overset{\omega}{\blacktriangleright}$			Input characteristic acc. to IEC 61131-2, type 1
4 5 6			Input voltage (including ripple) "1" signal: 15 30 V "0" signal: -3 +5 V
8			Input current at 24 V DC: typ. 9 mA at <0.5 mA: Signal "0" reliably detected
			Input delay for "0" \rightarrow "1": typ. 50 µs for "1" \rightarrow "0": typ. 100 µs
			As output:
			Voltage: 24 V DC
			Electrical isolation: no
			Reference potential: M
			Output voltage "1" signal, with load: > X524.+ -2 V
			Output current for each output: $\leq 0.5 \text{ A}$ Sum of all 4 outputs: $\leq 2 \text{ A}$ Residual current for "0" signal: $< 0.5 \text{ mA}$ Short-circuit protection, automatic restart after a short- circuit
			Load types: ohmic, capacitive, inductive
			Output delay for "0" \rightarrow "1": typ. 150 µs / max. 500 µs (ohmic load) for "1" \rightarrow "0": typ. 50 µs (ohmic load)
			Switching frequency for ohmic load: max. 100 Hz for inductive load: max. 0.5 Hz for lamp load: max. 10 Hz
			Lamp load: max. 5 W
	5	+24 V	Voltage: 24 V DC
	6	+24 V	Max. total load current of +24 V auxiliary voltage of ter-
	7	+24 V	minals 5 up to 8 combined: 500 mA
	8	+24 V	

Table 6-26	X521: Digital inputs/outputs
------------	------------------------------

Iype: Screw terminal 1 (Page 321)

¹⁾ DI/DO: bidirectional digital input/output

6.5 Terminal Module TM41

Note

This power supply is only for supplying the digital inputs.

Note

An open input is interpreted as "low".

Note

If the 24 V supply is briefly interrupted, then the digital outputs are deactivated during this time.

6.5.2.5 X522 isolated digital inputs

Terminal	Designation ¹⁾	Technical data
1	DI O	Voltage: -3 +30 V DC
2	DI 1	Electrical isolation: Yes
3	DI 2	Reference potential: M1
4	DI 3	Input characteristic acc. to IEC 61131-2, type 1
5	M1	Input voltage (including ripple)
6	М	"1" signal: 15 30 V "0" signal: -3 +5 V
		Input current at 24 V DC: typ. 9 mA at <0.5 mA: Signal "0" reliably detected
		Input delay for "0" \rightarrow "1": typ. 50 µs/max. 100 µs for "1" \rightarrow "0": typ. 130 µs/max. 150 µs
	1 2 3 4 5	I DI 0 2 DI 1 3 DI 2 4 DI 3 5 M1

Table 6-27 X522: Digital inputs

Type: Screw terminal 1 (Page 321)

¹⁾ DI: Digital input; M: Electronics ground; M1: reference potential

Note

Ensuring the function of digital inputs

Terminal M1 must be connected so that the digital inputs (DI) can function.

This is achieved by using one of the following measures:

- 1. Providing the ground reference of the digital inputs
- 2. A jumper to terminal M
 - Note: This removes isolation for these digital inputs.

6.5.2.6 X523 analog input

Table 6-28	X523: Analog input
------------	--------------------

	Terminal	Designation ¹⁾	Technical data	
-	1	AI 0-	Voltage : -10 +10 V;	
	2	AI 0+	$R_i > 100 k\Omega$	
ω	3	Reserved, do not use	Resolution : 12 bits + sign	
Type: Screw terminal 1 (Page 321)				

¹⁾ AI: analog input

Note

Permissible voltage values

The common mode range must not be violated in order to avoid incorrect analog-digital conversion results. The following voltages are permissible:

- Input voltage: ±30 V (destruction limit)
- Common mode voltage ±10 V (increased errors when exceeded)

6.5.2.7 X524 electronics power supply

Interface X524 assumes the electronics power supply.

	Terminal	Designation	Technical data
	+	Electronics power supply (24 V)	Voltage: 24 V DC (20.4 28.8 V)
	+	Electronics power supply (24 V)	Current consumption: max. 3.1 A (including DRIVE-CLiQ and digital out-
	М	Electronics ground (0 V)	puts)
	М	Electronics ground (0 V)	Max. current via the jumper in the con- nector: 20 A (15 A according to UL/CSA)
Type: Spring-loaded terminal 6 (Page 320)			

Table 6-29 X524: Power supply

The maximum cable length is 30 m.

Note

The two "+" and "M" terminals are bridged in the connector. This ensures that the supply voltage is looped through.

6.5 Terminal Module TM41

6.5.3 Connection example

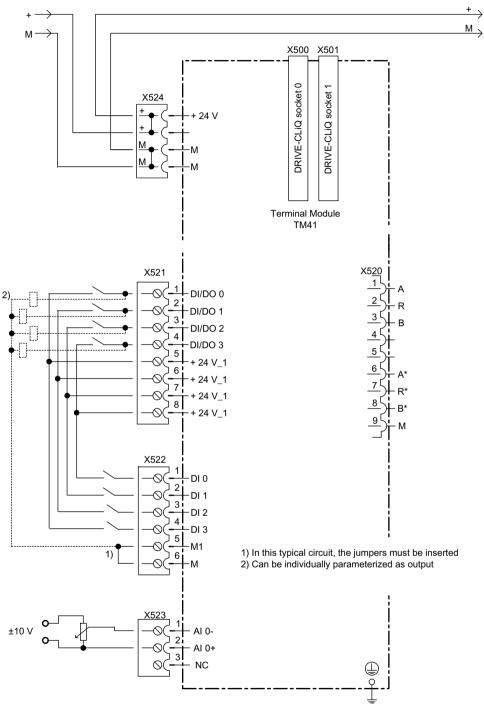
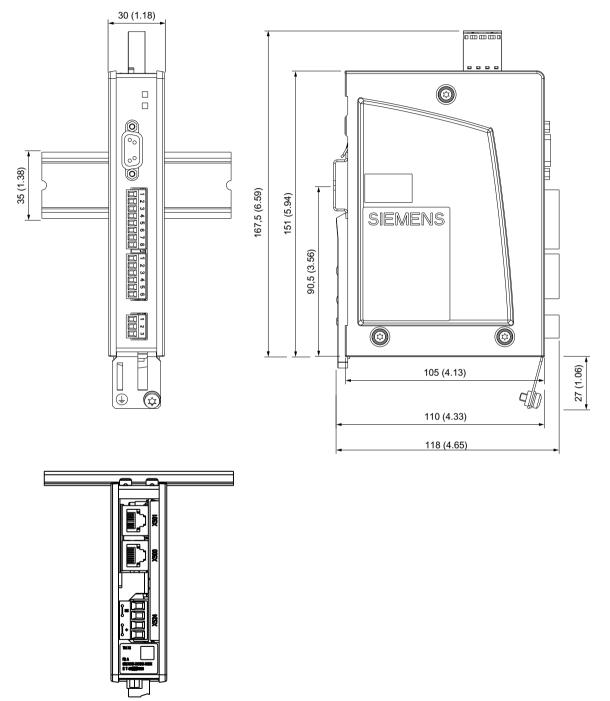


Figure 6-14 Sample connection of TM41

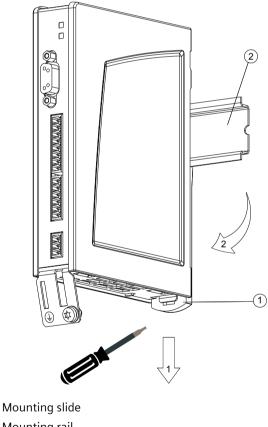

6.5.4 Meaning of the LEDs

LED	Color	Status	Description, cause	Remedy
READY -		Off	The electronics power supply is missing or outside the per- missible tolerance range.	_
	Green	Continuous light	The component is ready for operation. Cyclic DRIVE-CLiQ communication is taking place.	_
	Orange	Continuous light	DRIVE-CLiQ communication is being established.	-
	Red	Continuous light	This component has at least one fault. Note: The LED is activated irrespective of whether the correspond- ing messages have been reconfigured.	Correct and acknowl- edge the fault.
	Green/re d	Flashing light 0.5 Hz	Firmware is being downloaded.	-
		Flashing light 2 Hz	Firmware download is complete. The system waits for POW-ER ON.	Carry out a POWER ON.
	Green/ orange	Flashing light	Component recognition via LED is activated (parameter p0154=1).	-
	or Red/ orange		Note: Both options depend on the LED status when component recognition is activated.	
Z pulses	_	Off	The zero mark was found and the system waits for the zero mark output. OR The component is switched off.	-
	Red	Continuous light	The zero mark has not been released, or the zero mark search is running.	-
	Green	Continuous light	The system stops at the zero mark.	-
		Flashing light	The zero mark is output at each virtual revolution.	-

 Table 6-30
 Meaning of the LEDs on the Terminal Module TM41

6.5 Terminal Module TM41

6.5.5 Dimension drawing


6.5.6 Installation

Installation

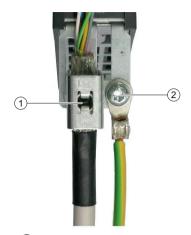
- 1. Tilt the component backwards slightly and attach it to the DIN rail using the hooks.
- 2. Swivel the component onto the DIN rail until you hear the mounting slide at the rear latch into position.
- 3. Slide the component along the mounting rail to either the left or the right into its final position.

Removal

- 1. First shift the mounting slide downwards at the lug to release the interlocking with the mounting rail.
- 2. Swivel the component to the front and withdraw it upwards from the DIN rail.

2 Mounting rail

(1)


Figure 6-16 Removing from a DIN mounting rail

6.5.7 Protective conductor connection and shield support

It is always advisable to shield the digital input/output wiring.

6.5 Terminal Module TM41

The following diagram shows a typical Weidmüller shield connection clamp for the shield supports.

- Shield connection terminal, Weidmüller company, type: KLBUE CO1, Article number: 1753311001
- 2 Protective conductor connection M4 / 1.8 Nm (15.9 lbf in)

Figure 6-17 Protective conductor connection and shield support

The bending radii of the cables must be taken into account (see description of MOTION-CONNECT).

NOTICE

Damage or faulty operation due to incorrect shielding or inadmissible cable lengths

If the correct shielding procedures or the permissible cable lengths are not observed, it can cause damage or the machine may malfunction.

- Only use shielded cables.
- Do not exceed the cable lengths stated in the technical data.

6.5.8 Technical data

6SL3055-0AA00-3PA1	Unit	Value
Electronics power supply Voltage Current (without DRIVE-CLiQ and digital outputs)	V _{DC} A _{DC}	24 (20.4 28.8) ≤0.5
Power loss	W	≤12
Response time		ime of the digital inputs/outputs and the ana- orise the following:
	•	ime on the component itself 2 DRIVE-CLiQ cycle).
	 Transfer time via the DRIVE-CLiQ connection (approx. 1 DRIVE-CLiQ cycle). 	
	• Evaluation	on the Control Unit (see function diagram).
	More information is provided in the following reference: Reference: SINAMICS S120/S150 List Manual, Chapter "Function diagrams/Terminal Module 41"	
Protective ground conductor connection	At the housing	with M4 screw
Maximum cable lengths: electronics power supply DRIVE-CLiQ cables inputs/outputs	m m m	30 100 30
Ventilation clearances, above/below	mm	50
Weight	kg	0.32

Table 6-31 Technical data

6.6 Terminal Module TM54F

6.6.1 Description

The TM54F is a terminal expansion module for snapping onto a mounting rail according to EN 60715: The TM54F includes fail-safe digital inputs and outputs to control the Safety Integrated functions of SINAMICS. A fail-safe digital input comprises 2 digital inputs. A fail-safe digital output comprises a 24 VDC switching output, a ground switching output and a digital input for checking the switching state.

The TM54F must be connected directly to a Control Unit via DRIVE-CLiQ. Only one TM54F Terminal Module can be assigned to each Control Unit.

Additional DRIVE-CLiQ nodes can be connected to the TM54F, such as Sensor Modules and Terminal Modules (however, no additional TM54F). Motor Modules and Line Modules must not be connected to a TM54F.

TM54F features the following interfaces:

	Table 6-32	Interface	overview	of the	TM54F
--	------------	-----------	----------	--------	-------

Туре	Quantity
DRIVE-CLiQ interfaces	2
Fail-safe digital inputs (F-DI)	10
Fail-safe digital outputs (F-DO)	4
Sensor ¹⁾ power supplies, dynamization supported ²⁾	2
Sensor ¹⁾ power supply, no dynamization	1
Digital inputs to check F_DO for a test stop	4
Power supply	1

¹⁾ Sensors: Fail-safe devices to issue commands and sense - for example, emergency stop buttons and safety locks, position switches and light arrays/light curtains.

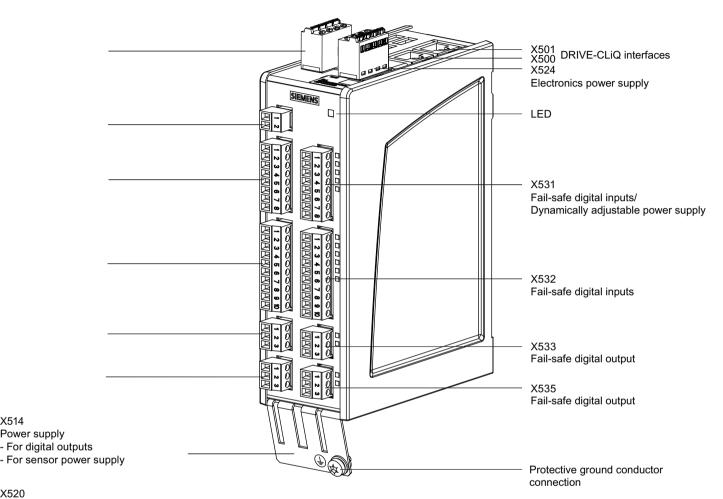
²⁾ Dynamic response: The sensor power supply is cycled on and off by the TM54F when the forced checking procedure is active for the sensors, cable routing, and the evaluation electronics.

Note

All signals connected to the TM54F must be PELV signals.

Note

The operating ranges of the F-DI meet the requirements of EN 61131-2 for type 1 digital inputs.


The rated values of the F-DO meet the requirements of EN 61131-2 for digital DC outputs with 0.5 A rated current.

Note

For cable lengths >30 m, shielded cables must be used for the connections to F-DI.

Interface description 6.6.2

6.6.2.1 **Overview**

X520

X514 Power supply

Sensor power supply

X521

Fail-safe digital inputs/ Dynamically adjustable power supply

X522 Fail-safe digital inputs

X523 Fail-safe digital output

X525 Fail-safe digital output

6.6.2.2 X500/X501 DRIVE-CLiQ interfaces

Table 6-33	X500/X501	DRIVE-CLiQ interfaces
	V2001V201	DINIVE-CLIQ IIIteriaces

	Pin	Signal name	Technical data
	1	ТХР	Transmit data +
	2	TXN	Transmit data -
	3	RXP	Receive data +
	4	Reserved, do not use	-
	5	Reserved, do not use	-
	6	RXN	Receive data -
	7	Reserved, do not use	-
	8	Reserved, do not use	-
	A	+ (24 V)	Power supply
	В	M (0 V)	Electronics ground
Connector type	DRIVE-CLiQ socket		

The blanking covers for the DRIVE-CLiQ interfaces are included in the scope of delivery. Blanking covers (50 x) Article No.: 6SL3066-4CA00-0AA0

Note

The maximum DRIVE-CLiQ cable length is 100 m.

6.6.2.3 X514 power supply for digital outputs and sensors

Table 6-34 X514: Power supply

	Terminal	Designation	Technical data		
	+	Power supply (24 V)	Voltage: 24 V DC (20.4 28.8 V)		
	+	Power supply (24 V)	Current consumption: max. 4.0 A		
	M1	Electronics ground (0 V)	(including DRIVE-CLiQ and digital out-		
	M1	Electronics ground (0 V)	puts) Max. current via jumper in connector: 20 A (15 A according to UL/CSA)		
Type: Spring-lo	Type: Spring-loaded terminal 6 (Page 320)				

The maximum cable length is 30 m.

Note

The two "+" and "M1" terminals are jumpered in the connector. This ensures that the supply voltage is looped through.

6.6.2.4 X520 sensor power supply

Table 6-35 X520: Sensor po	ower supply
----------------------------	-------------

Terminal	Designation	Technical data
1	L3	Voltage: +24 V DC Max. total load current: 500 mA
2	M1	

Without forced dormant error detection

6.6.2.5 X521 fail-safe digital inputs and dynamically adjustable power supply

	Terminal	Designation ¹)	Technical data
	1	L1+		Switched voltage: +24 V DC Max. total load current: 500 mA (voltage is switched for a test stop)
2	2	DI O	F-DI 0	Voltage: -3 +30 V DC
ω	3	DI 1+		Electrical isolation: Yes
4	4	DI 2	F-DI 1	Reference potential: see terminals 6, 7, 8
5	5	DI 3+		Input characteristic acc. to IEC 61131-2, type 1
6 7 8				Input voltage (including ripple) "1" signal: 15 30 V "0" signal: -3 +5 V
				Input current at 24 V DC: typ. 3.2 mA at <0.5 mA: Signal "0" reliably detected
				Input delay: ²⁾ for "0" \rightarrow "1": typ. 30 µs for "1" \rightarrow "0": typ. 60 µs
				Switching frequency: max. 100 Hz
	6	DI 1-	F-DI O	Reference potential for DI 1+
	7	DI 3-	F-DI 1	Reference potential for DI 3+
	8	M1		Reference potential for DI 0, DI 2, L1+
An F-DI consists of a F-DI 0 = terminals 2 F-DI 1 = terminals 4	, 3 and 6	d a 2nd digital inpu	ut where, in ad	dition, the cathode of the optocoupler is fed-out.
Type: Screw termina	al 1 (Page 321)			

Table 6-36 X521: Fail-safe digital inputs

¹⁾ DI: Digital input, F-DI: Fail-safe digital input

²⁾ Pure hardware delay

Note Execution of a test stop

The test stop of the F-DI 0 to F-DI 4 can only be performed if the F-DI is supplied from L1+.

Note

Ensuring the function of digital inputs

For the digital inputs DIx+ to function, the reference potential must be connected to input DIxin each case.

This is achieved by using one of the following measures:

- 1. Providing the ground reference of the digital inputs
- 2. A jumper between DIx- and terminal M1

6.6.2.6 X522 fail-safe digital inputs

Table 6-37 X522: Fail-safe digital inputs

	Terminal	Designation	1 ¹⁾	Technical data
	1	DI 4	F-DI 2	Voltage: -3 +30 V DC
	2	DI 5+		Electrical isolation: Yes
	3	DI 6	F-DI 3	Reference potential: see terminals 7, 8, 9, 10
	4	DI 7+		Input characteristic acc. to IEC 61131-2, type 1
	5	DI 8	F-DI 4	Input voltage (including ripple)
5	6	DI 9+		"1" signal: 15 30 V "0" signal: -3 +5 V
6 7 8				Input current at 24 V DC: typ. 3.2 mA at <0.5 mA: Signal "0" reliably detected
9 10				Input delay: ²⁾ for "0" \rightarrow "1": typ. 30 µs for "1" \rightarrow "0": typ. 60 µs
				Switching frequency: max. 100 Hz
	7	DI 5-	F-DI 2	Reference potential for DI 5+
	8	DI 7-	F-DI 3	Reference potential for DI 7+
	9	DI 9-	F-DI 4	Reference potential for DI 9+
	10	M1	ŀ	Reference potential for DI 4, DI 6 and DI 8

An F-DI consists of a digital input and a 2nd digital input where, in addition, the cathode of the optocoupler is fed-out.

F-DI 2 = terminals 1, 2 and 7

F-DI 3 = terminals 3, 4 and 8 F-DI 4 = terminals 5, 6 and 9

Type: Screw terminal 1 (Page 321)

¹⁾ DI: Digital input, F-DI: Fail-safe digital input

²⁾ Pure hardware delay

Note

Execution of a test stop

The test stop of the F-DI 0 to F-DI 4 can only be performed if the F-DI is supplied from L1+.

Note

Ensuring the function of digital inputs

For the digital inputs DIx+ to function, the reference potential must be connected to input DIxin each case.

This is achieved by using one of the following measures:

- 1. Providing the ground reference of the digital inputs
- 2. A jumper between DIx- and terminal M1

6.6.2.7 X523 fail-safe digital output

Table 6-38	X523: Fail-safe digital output
------------	--------------------------------

	Terminal	Designation ¹	1)	Technical data
	1	DI 20		Voltage: -3 +30 V DC
				Electrical isolation: Yes
				Reference potential: M1
				Input characteristic acc. to IEC 61131-2, type 1
				Input voltage (including ripple) "1" signal: 15 30 V "0" signal: -3 +5 V
			F-DO 0	Input current at 24 V DC: typ. 3.2 mA at < 0.5 mA: Signal "0" reliably detected
				Input delay: ²⁾ for "0" \rightarrow "1": typ. 30 µs for "1" \rightarrow "0": typ. 60 µs
				Switching frequency: max. 100 Hz
	2	DO 0+		Voltage: 24 V DC
	3	DO 0-		Electrical isolation: Yes
				Reference potential M1 for DO 0+ Terminal L1+, L2+ or L3+ for DO 0-
				Output voltage "1" signal, with load: > X514.+ -2 V
				Output current For each output: ≤ 0.5 A Sum of all 4 outputs: ≤ 2 A Residual current for "0" signal: < 0.5 mA Short-circuit protection, automatic restart after a short- circuit
				Load types: ohmic, capacitive, inductive
				Output delay ²⁾ for "0" \rightarrow "1": 300 µs (ohmic load) for "1" \rightarrow "0": 350 µs (ohmic load)
				Switching frequency for ohmic load: max. 100 Hz for inductive load: max. 0.5 Hz for lamp load: max. 10 Hz
				Lamp load: max. 5 W
An F-DO comprises		puts and one di	gital input for	feedback
-DO 0 = terminals				

Type: Screw terminal 1 (Page 321)

¹⁾ DI: Digital input; DO: digital output F-DO: Fail-safe digital output

²⁾ Pure hardware delay

6.6.2.8 X524 electronics power supply

	Terminal	Designation	Technical data
blue red	+	Electronics power supply (24 V)	Voltage: 24 V DC (20.4 28.8 V)
	+	Electronics power supply (24 V)	Current consumption: max. 0.7 A (including DRIVE-CLiQ)
	M Electro	Electronics ground (0 V)	.
	М	Electronics ground (0 V)	Max. current via the jumper in the con- nector: 20 A (15 A according to UL/CSA)

Table 6-39 X524 electronics power supply

The maximum cable length is 30 m.

Note

The two "+" and "M" terminals are jumpered in the connector. This ensures that the supply voltage is looped through.

6.6.2.9 X525 fail-safe digital output

Table 6-40X525: Fail-safe digital output

	Terminal	Designation ¹)	Technical data
	1	DI 21		Voltage: -3 +30 V DC
				Electrical isolation: Yes
				Reference potential: M1
				Input characteristic acc. to IEC 61131-2, type 1
				Input voltage (including ripple) "1" signal: 15 30 V "0" signal: -3 +5 V
			F-DO 1	Input current at 24 V DC: typ. 3.2 mA at <0.5 mA: Signal "0" reliably detected
				Input delay ²⁾ for "0" \rightarrow "1": typ. 30 µs for "1" \rightarrow "0": typ. 60 µs
				Switching frequency: max. 100 Hz
	2	DO 1+		Voltage: 24 V DC
	3	DO 1-		Electrical isolation: Yes
				Reference potential M1 for DO 1+ Terminal L1+, L2+ or L3+ for DO 1-
				Output voltage "1" signal, with load: > X514.+ -2 V
				Output current For each output: ≤ 0.5 A Sum of all 4 outputs: ≤ 2 A Residual current for "0" signal: < 0.5 mA Short-circuit protection, automatic restart after a short- circuit
				Load types: ohmic, capacitive, inductive
				Output delay ²⁾ for "0" \rightarrow "1": 300 µs (ohmic load) for "1" \rightarrow "0": 350 µs (ohmic load)
				Switching frequency for ohmic load: max. 100 Hz for inductive load: max. 0.5 Hz for lamp load: max. 10 Hz
				Lamp load: max. 5 W
An F-DO comprises		s and 1 digital i	nput for feed	pack signal
F-DO 1 = terminals		-		

Type: Screw terminal 1 (Page 321)

¹⁾ DI: Digital input; DO: Digital output F-DO: Fail-safe digital output

²⁾ Pure hardware delay

6.6.2.10 X531 fail-safe digital inputs and dynamically adjustable power supply

	Terminal	Designatior	1 ¹⁾	Technical data
	1	L2+		Switched voltage: +24 V DC Max. total load current: 500 mA (voltage is switched for a test stop)
	2	DI 10	F-DI 5	Voltage: -3 +30 V DC
ω	3	DI 11+		Electrical isolation: Yes
4	4	DI 12	F-DI 6	Reference potential: see terminals 6, 7, 8
5	5	DI 13+]	Input characteristic acc. to IEC 61131-2, type 1
6 7 8				Input voltage (including ripple) "1" signal: 15 30 V "0" signal: -3 +5 V
				Input current at 24 V DC: typ. 3.2 mA at <0.5 mA: Signal "0" reliably detected
				Input delay: ²⁾ for "0" \rightarrow "1": typ. 30 µs for "1" \rightarrow "0": typ. 60 µs
				Switching frequency: max. 100 Hz
	6	DI 11-	F-DI 5	Reference potential to DI 11+
	7	DI 13-	F-DI 6	Reference potential to DI 13+
	8	M1	•	Reference potential to DI 10, DI 12, L2+
An F-DI consists of 1 o	ligital input and a	2nd digital inp	ut where, in a	ddition, the cathode of the optocoupler is fed-out.

Table 6-41 X531: Fail-safe digital inputs

An F-DI consists of 1 digital input and a 2nd digital input where, in addition, the cathode of the optocoupler is fed-out. F-DI 5 = terminals 2, 3 and 6

F-DI 6 = terminals 4, 5 and 7

Type: Screw terminal 1 (Page 321)

¹⁾ DI: Digital input, F-DI: Fail-safe digital input

²⁾ Pure hardware delay

Note

Execution of a test stop

The test stop of the F-DI 5 to F-DI 9 can only be performed if the F-DI is supplied from L2+.

Note

Ensuring the function of digital inputs

For the digital inputs Dlx+ to function, the reference potential must be connected to input Dlxin each case.

This is achieved by using one of the following measures:

- 1. Providing the ground reference of the digital inputs
- 2. A jumper between DIx- and terminal M1

6.6.2.11 X532 fail-safe digital inputs

	Terminal	Designatio	on ¹⁾	Technical data
	1	DI 14	F-DI 7	Voltage: -3 +30 V DC
	2	DI 15+		Electrical isolation: Yes
	3	DI 16	F-DI 8	Reference potential: see terminals 7, 8, 9, 10
	4	DI 17+		Input characteristic acc. to IEC 61131-2, type 1
	5	DI 18	F-DI 9	Input voltage (including ripple)
5	6	DI 19+		"1" signal: 15 30 V "0" signal: -3 +5 V
6 7 8				Input current at 24 V DC: typ. 3.2 mA at <0.5 mA: Signal "0" reliably detected
9 10				Input delay: ²⁾ for "0" \rightarrow "1": typ. 30 µs for "1" \rightarrow "0": typ. 60 µs
				Switching frequency: max. 100 Hz
	7	DI 15-	F-DI 7	Reference potential for DI 15+
	8	DI 17-	F-DI 8	Reference potential for DI 17+
	9	DI 19-	F-DI 9	Reference potential for DI 19+
	10	M1		Reference potential for DI 14, DI 16 and DI 18

Table 6-42 X532: Fail-safe digital inputs

F-DI 7 = terminals 1, 2 and 7

F-DI 8 = terminals 3, 4 and 8

F-DI 9 = terminals 5, 6 and 9

Type: Screw terminal 1 (Page 321)

¹⁾ DI: Digital input, F-DI: Fail-safe digital input

²⁾ Pure hardware delay

Note

Execution of a test stop

The test stop of the F-DI 5 to F-DI 9 can only be performed if the F-DI is supplied from L2+.

Note

Ensuring the function of digital inputs

For the digital inputs DIx+ to function, the reference potential must be connected to input DIxin each case.

This is achieved by using one of the following measures:

- 1. Providing the ground reference of the digital inputs
- 2. A jumper between DIx- and terminal M1

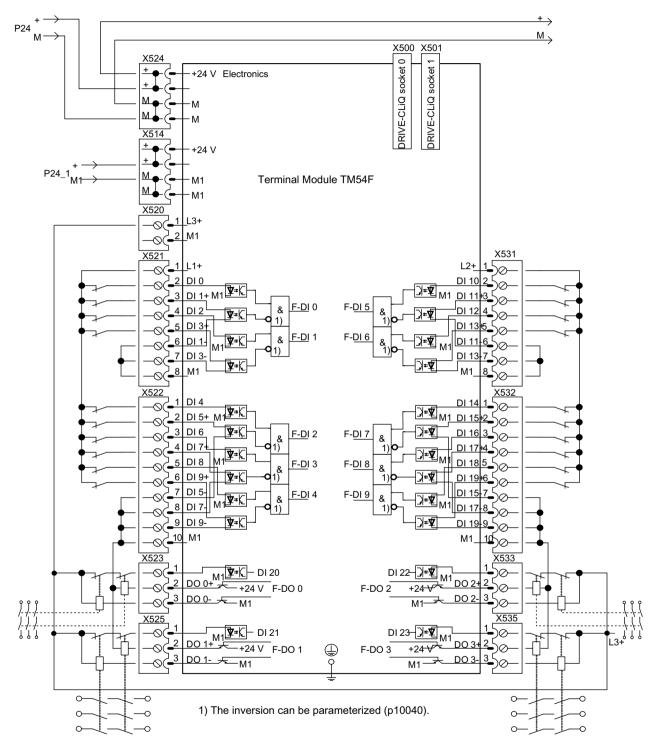
6.6.2.12 X533 fail-safe digital output

	Terminal	Designation ¹)	Technical data
	1	DI 22		Voltage: -3 +30 V DC
				Electrical isolation: Yes
				Reference potential: M1
				Input characteristic acc. to IEC 61131-2, type 1
				Input voltage (including ripple) "1" signal: 15 30 V "0" signal: -3 +5 V
			F-DO 2	Input current at 24 V DC: typ. 3.2 mA at <0.5 mA: Signal "0" reliably detected
				Input delay ²) for "0" \rightarrow "1": typ. 30 µs for "1" \rightarrow "0": typ. 60 µs
				Switching frequency: max. 100 Hz
	2	DO 2+		Voltage: 24 V DC
	3	DO 2-		Electrical isolation: Yes
				Reference potential M1 for DO 2+ Terminal L1+, L2+ or L3+ for DO 2-
				Output voltage "1" signal, with load: > X514.+ -2 V
				Output current For each output: $\leq 0.5 \text{ A}$ Sum of all 4 outputs: $\leq 2 \text{ A}$ Residual current for "0" signal: $< 0.5 \text{ mA}$ Short-circuit protection, automatic restart after a short- circuit
				Load types: ohmic, capacitive, inductive
				Output delay ² for "0" \rightarrow "1": 300 µs (ohmic load) for "1" \rightarrow "0": 350 µs (ohmic load)
				Switching frequency for ohmic load: max. 100 Hz for inductive load: max. 0.5 Hz for lamp load: max. 10 Hz
				Lamp load: max. 5 W
An F-DO comprises F-DO 2 = terminals Type: Screw termina	1, 2, and 3	s and 1 digital i	nput for feedb	back signal

¹⁾ DI: Digital input; DO: Digital output F-DO: Fail-safe digital output

²⁾ Pure hardware delay

6.6.2.13 X535 fail-safe digital output


Table 6-44	X535: Fail-safe	digital output
101010 0 1 1		

	Terminal	Designation ¹	1)	Technical data
	1	DI 23		Voltage: -3 +30 V DC
				Electrical isolation: Yes
				Reference potential: M1
				Input characteristic acc. to IEC 61131-2, type 1
				Input voltage (including ripple) "1" signal: 15 30 V "0" signal: -3 +5 V
			F-DO 3	Input current at 24 V DC: typ. 3.2 mA at <0.5 mA: Signal "0" reliably detected
				Input delay ²⁾ for "0" \rightarrow "1": typ. 30 µs for "1" \rightarrow "0": typ. 60 µs
				Switching frequency: max. 100 Hz
	2	DO 3+		Voltage: 24 V DC
	3	DO 3-		Electrical isolation: Yes
				Reference potential M1 for DO 3+ Terminal L1+, L2+ or L3+ for DO 3-
				Output voltage "1" signal, with load: > X514.+ -2 V
				Output current For each output: ≤ 0.5 A Sum of all 4 outputs: ≤ 2 A Residual current for "0" signal: < 0.5 mA Short-circuit protection, automatic restart after a short- circuit
				Load types: ohmic, capacitive, inductive
				Output delay ²⁾ for "0" \rightarrow "1": 300 µs (ohmic load) for "1" \rightarrow "0": 350 µs (ohmic load)
				Switching frequency for ohmic load: max. 100 Hz for inductive load: max. 0.5 Hz for lamp load: max. 10 Hz
				Lamp load: max. 5 W
An F-DO comprise		ts and 1 digital i	nput for feed	back signal
F-DO 3 = terminal Type: Screw termi				

Type: Screw terminal 1 (Page 321)

¹⁾ DI: Digital input; DO: Digital output F-DO: Fail-safe digital output

²⁾ Pure hardware delay

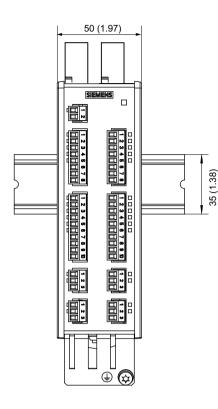
6.6.3 Connection example

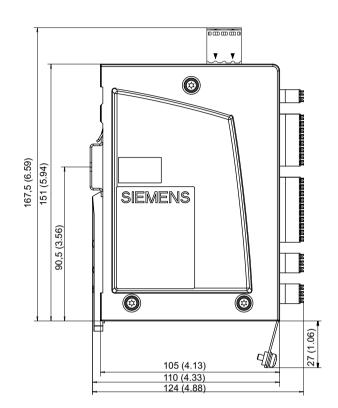
Figure 6-19 Connection example off TM54F

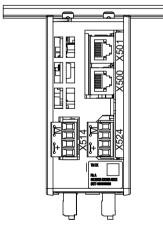
6.6.4 Meaning of the LEDs

LED	Color	Status	Description, cause	Remedy
READY	-	Off	The electronics power supply is missing or outside the permissible tolerance range.	-
	Green	Continuous light	The component is ready for operation, cyclic DRIVE-CLiQ communication is taking place.	-
	Orange	Continuous light	DRIVE-CLiQ communication is being established.	-
	Red	Continuous light	This component has at least one fault. Remark: The LED is activated irrespective of whether the corre- sponding messages have been reconfigured.	Remedy and acknowl- edge fault or safely ac- knowledge the fault
Green / Red		Flashing light 0.5 Hz	Firmware is being downloaded.	_
		Flashing light 2 Hz	Firmware download is complete. Wait for POWER ON.	Carry out a POWER ON
	Green / Orange or	Flashing light 1 Hz	Component recognition via LED is activated (parameter p0154=1).	_
	Red / Orange		Remark: Both options depend on the LED status when component recognition is activated. Green / Orange: Component is operating without any faults Red/orange: Component signals a fault	
L1+, L2+	-	Off	The controllable sensor power supply is functioning fault- free.	-
	Red	Continuous light	There is a fault in the controllable sensor power supply.	-
L3+	-	Off	The sensor power supply is operating fault-free.	-
	Red	Continuous	The sensor power supply has a fault.	_

Table 6-45 Meaning of the LEDs on the Terminal Module TM54F

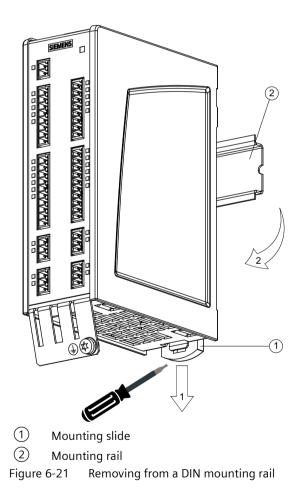

Terminal Modules


6.6 Terminal Module TM54F


LED Colo		olor	Status	Description, cause	Remedy	
F_DI z	LED	LED			-	
(input x, (x	x	x+1	-	NC contact/NC contact ¹ : (z = 0 9, x = 0, 2, 18)	-	
+1)+, (x +1)-)	-	Red	Continuous light	Different signal states at input x and x+1	-	
	-	-	Off	No signal at input x and no signal at input x+1	_	
				NC contact/NO contact ¹ : (z = 0 9, x = 0, 2, 18)	-	
	-	Red	Continuous light	Same signal states at input x and x+1	-	
	-	-	Off	No signal at input x and no signal at input x+1	_	
	LED	LED			-	
	x	x+1	-	NC contact/NC contact ¹ : (z = 0 9, x = 0, 2, 18)	-	
	Green	Green	Continuous light	One signal at input x and one signal at input x+1	-	
				NC contact/NO contact ¹ : (z = 0 9, x = 0, 2, 18)	-	
	Green	Green	Continuous light	One signal at input x and no signal at input x+1	-	
Single digit	al inputs	, not fail-s	afe		1	
DI x	-		Off	No signal at digital input x (x = 20 23)	_	
	Green		Continuous light	Signal at digital input x	-	
Fail-safe di	gital outp	outs with a	ssociated readb	ack channel		
F_DO y (0+3+, 03-)	Green Continuous light			Output y (y = 0 3) has an active signal	-	
			$F_DO y (y = 0$ ends on the type of	3) for test stop. of external circuit.		
DI 2y	-		Off	One of the two output lines y+ or y- or both lines of output y carry a signal	-	
	Green		Continuous light	Both output lines y+ and y- carry no signal	_	

¹⁾ Inputs x+1 (DI 1+, 3+, ... 19+) can be set individually by parameter p10040 (TM54F). p10040 (TM54F) = 0: Input x+1 is an NC contact. p10040 (TM54F) = 1: Input x+1 is an NO contact. Factory setting: p10040 (TM54F) = 0 for all inputs x+1.

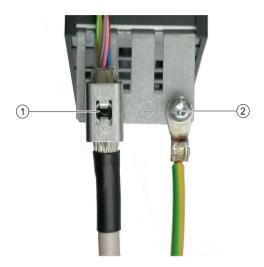
6.6.5 Dimension drawing


6.6.6 Installation

Installation

- 1. Tilt the component backwards slightly and attach it to the DIN rail using the hooks.
- 2. Swivel the component onto the DIN rail until you hear the mounting slide at the rear latch into position.
- 3. Slide the component along the mounting rail to either the left or the right into its final position.

Removal


- 1. First shift the mounting slide downwards at the lug to release the interlocking with the mounting rail.
- 2. Swivel the component to the front and withdraw it upwards from the DIN rail.

6.6.7 Protective conductor connection and shield support

It is always advisable to shield the digital input and output wiring.

The following diagram shows a typical Weidmüller shield connection clamp for the shield support.

1 Shield connection terminal, Weidmüller company, type: KLBUE CO1, Article number: 1753311001

2 Protective conductor connection M4 / 1.8 Nm (15.9 lbf in)

Figure 6-22 Protective conductor connection and shield support

NOTICE

Damage or faulty operation due to incorrect shielding or inadmissible cable lengths

If the correct shielding procedures or the permissible cable lengths are not observed, it can cause damage or the machine may malfunction.

- Only use shielded cables.
- Do not exceed the cable lengths stated in the technical data.

6.6.8 Technical data

6SL3055-0AA00-3BA.	Unit	Value			
Electronics power supply					
Voltage Current X524 (without DRIVE-CLiQ) Current X514 (without DRIVE-CLiQ and digital outputs) Power loss	V _{DC} A _{DC} A _{DC} W	24 (20.4 28.8) ≤0.2 ≤0.05 ≤5			
Sensor power supply with and without forced dormant error detection (L1+, L2+, L3+)					
Voltage	V	24 (20.4 28.8)			

6.7 Terminal Module TM120

6SL3055-0AA00-3BA.	Unit	Value	
Max. load current per output	А	0.5	
Max. cable length for the 24 V infeed	m	30	
Power loss	W	4.5 at 24 V	
Protective ground conductor connection	On the ho	On the housing with M4 screw	
Ventilation clearances, above/below	mm	50	
Weight	kg	Approx. 0.48	

6.7 Terminal Module TM120

6.7.1 Description

The Terminal Module TM120 is a DRIVE-CLiQ component for safe electrically isolated temperature evaluation. It can be used for 1FN, 1FW6, and third-party motors in which the temperature sensors cannot be installed with safe electrical separation. The TM120 is installed in the control cabinet and can be snapped on to a DIN rail (EN 60715).

When a TM120 is being used, temperature evaluation and encoder evaluation functions are separated off from one another. The TM120 can detect the motor temperature via 4 channels with different temperature sensors. An encoder is evaluated using Sensor Modules (e.g. SMC.., SME..). This means that when connected to a Sensor Module SMC, the TM120 represents a control cabinet alternative to the SME120/SME125.

The TM120 contains the following interfaces:

Table 6-47Overview of the TM120 interfaces

Туре	Quantity
DRIVE-CLiQ interfaces	2
Temperature sensor inputs	4

6.7 Terminal Module TM120

6.7.2 Interface description

6.7.2.1 Overview

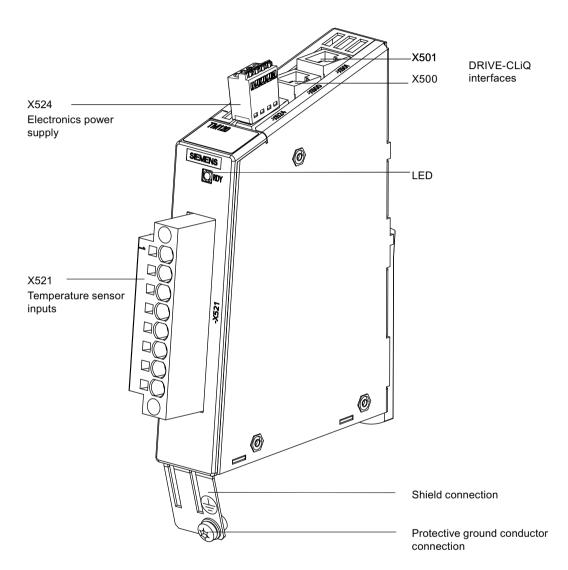


Figure 6-23 Interface overview TM120

6.7.2.2 X500/X501 DRIVE-CLiQ interfaces

	Pin	Signal name	Technical data		
	1	ТХР	Transmit data +		
	2	TXN	Transmit data -		
* E ^t	3	RXP	Receive data +		
	4	Reserved, do not use	-		
	5	Reserved, do not use	-		
	6	RXN	Receive data -		
	7	Reserved, do not use	-		
	8	Reserved, do not use	-		
	A	+ (24 V)	Power supply		
	В	M (0 V)	Electronics ground		
Connector type	DRIVE-CL	iQ socket	Q socket		

Table 6-48 X500/X501: DRIVE-CLiQ interfaces

The blanking covers for the DRIVE-CLiQ interfaces are included in the scope of delivery. Blanking covers (50 x) Article No.: 6SL3066-4CA00-0AA0

Note

The maximum DRIVE-CLiQ cable length is 100 m.

6.7.2.3 X521 temperature sensor input

Table 6-49 X521: Temperature sensor input

	Terminal	Function	Technical data
	1	- Temp	Temperature sensor connection Pt1000 / KTY84-130 / PTC / bimetallic
	2 + Temp switch with NC contact for linear motor applications, connect the Pt1000 or KTY84-1 temperature sensor here		for linear motor applications, connect the Pt1000 or KTY84-130 motor
	3	- Temp	Temperature sensor connection Pt1000 / KTY84-130 / PTC / bimetallic
	4	+ Temp	switch with NC contact for linear motor applications, connect the PTC triple element 1 or bimetallic switch here
	5	- Temp	Temperature sensor connection Pt1000 / KTY84-130 / PTC / bimetallic
	6	+ Temp	switch with NC contact for linear motor applications, connect the PTC triple element 2 here
	7	- Temp	Temperature sensor connection Pt1000 / KTY84-130 / PTC / bimetallic
	8	+ Temp	switch with NC contact for linear motor applications, connect the PTC triple element 3 here
Type: Spring-loa Measuring curr		5 (Page 320) ature sensor conne	ction: 2 mA

NOTICE

Damage when using a non-specified temperature sensor

If sensors other than those specified are connected, this may result in incorrect measured values. Damage can result if overheating is not detected.

• Only connect temperature sensors that have been specified for operation with a TM120 Terminal Module.

NOTICE

Overheating of the motor through jumpering the temperature sensor connections

Jumpering of the temperature sensor connections "+ temp" and "- temp" results in incorrect measurement results. Damage to the motor can result if the overheating is not detected.

• When using several temperature sensors, separately connect the individual sensors to "+ temp" and "- temp".

The table below shows the preferable assignment of the connecting terminal for the temperature sensor input:

	Signal name	Meaning			
Terminal	1FW6	1FN3 (2x1FN3)	1FN1	Segment motor 4 segments	
1	Pt10001)	Pt10001)	Pt10001)	1 PTC 120 °C	Pt1000
2	Pt1000 ²⁾	Pt1000 ²⁾	Pt1000 ²⁾	1 PTC 120 °C	Pt1000
3	PTC 130 °C	PTC 120 °C	Bimetallic switch with NC contact	2_PTC 120 °C	PTC triple element 1 or bi- metallic switch with NC
4	PTC 130 °C	PTC 120 °C	Bimetallic switch with NC contact	2_PTC 120 °C	contact
5	PTC 150 °C	(2_Pt1000)1)		3_PTC 120 °C	PTC triple element 2
6	PTC 150 °C	(2_Pt1000) ²⁾		3_PTC 120 °C	
7		(2 PTC 120 °C)		4 PTC 120 °C	PTC triple element 3
8		(2 PTC 120 °C)		4 PTC 120 °C	

Table 6-50Preferable assignment, X521 temperature sensor input

¹⁾ Instead of a Pt1000 temperature sensor, a KTY temperature sensor can also be used (negative pole).

²⁾ Instead of a Pt1000 temperature sensor, a KTY temperature sensor can also be used (positive pole).

The interconnection provided is a suggestion (software default setting). Which temperature sensor is connected to which input can be freely configured.

NOTICE

Damage to motor in the event of incorrectly connected KTY temperature sensor

If a KTY temperature sensor is connected with incorrect polarity, it is not possible to detect when the motor overheats. Overheating can cause damage to the motor.

Connect a KTY temperature sensor with the correct polarity.

Note

A 6FX7008-1BC.1 power cable is recommended for connecting Pt1000 / KTY temperature sensors.

Note

The maximum length of the temperature sensor cable is 100 m. The cables must be shielded.

6.7.2.4 X524 Electronics power supply

Table 6-51 X524 electronics power supply

	Terminal	Designation	Technical data
	+ Electronics power supply (Voltage: 24 V DC (20.4 28.8 V)
		Electronics power supply (24 V)	Current consumption (max.): 0.5 A
	М	Electronics ground (0 V)	(including DRIVE-CLiQ)
	М	Electronics ground (0 V)	Max. current via the jumper in the con- nector: 20 A (15 A according to UL/CSA)
Type: Spring-l	oaded term	inal 6 (Page 320)	

The maximum cable length is 30 m.

Note

The two "+" and "M" terminals are jumpered in the connector. This ensures that the supply voltage is looped through.

6.7.3 Connection examples

Each TM120 is directly connected to an encoder evaluation unit (SMCxx or SMExx) by looping the corresponding DRIVE-CLiQ channel via the TM120. This ensures that encoders are automatically assigned to the temperature signals and, consequently, to the correct axis. The assignment can also be performed manually.

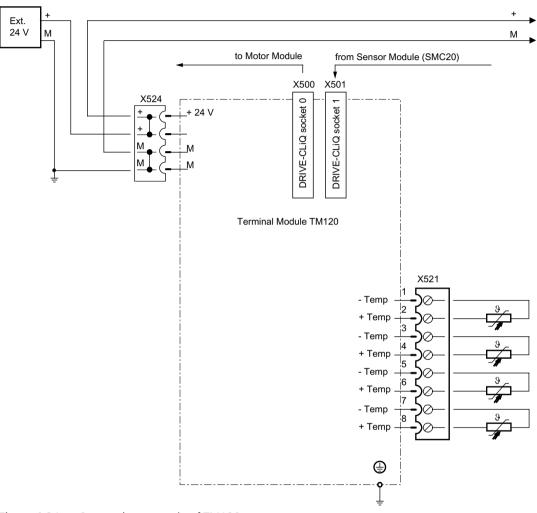
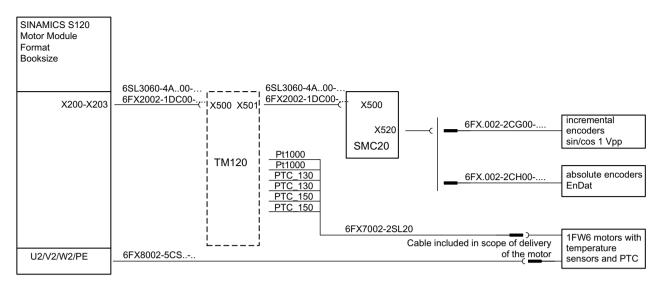
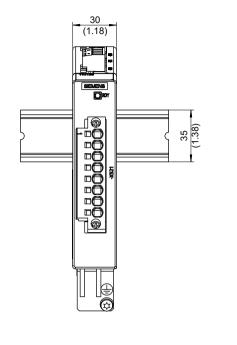



Figure 6-24 Connection example of TM120



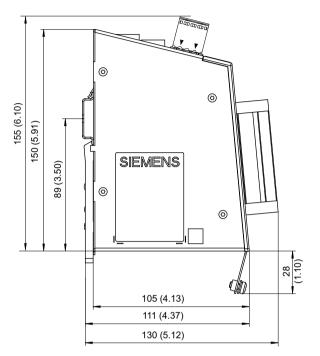

6.7.4 Meaning of the LED

Table 6-52	Meaning of the LEDs on the Terminal Module TM120
------------	--

LED	Color	Status	Description, cause	Remedy
READY	- Off		The electronics power supply is missing or outside the permis- sible tolerance range.	Check the power sup- ply.
	Green	Continuous light	The component is ready for operation. Cyclic DRIVE-CLiQ com- munication is taking place.	-
	Orange	Continuous light	DRIVE-CLiQ communication is being established.	-
	Red	Continuous light	This component has at least one fault. Note: The LED is activated irrespective of whether the corresponding messages have been reconfigured.	Remove and acknowl- edge the fault.
	Green/ red	Flashing light 0.5 Hz	Firmware is being downloaded.	-
		Flashing light 2 Hz	Firmware download is complete. The system waits for POWER ON.	Carry out a POWER ON.
	2 Hz Green/ Flashing orange light or 2 Hz red/ orange		Component recognition via LED is activated (parameter p0154=1). Note: Both options depend on the LED status when component recognition is activated.	-

6.7.5 Dimension drawing

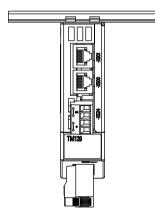


Figure 6-26 Dimension drawing of Terminal Module TM120, all data in mm and (inches)

6.7.6 Installation

Installation

- 1. Tilt the component backwards slightly and attach it to the DIN rail using the hooks.
- 2. Swivel the component onto the DIN rail until you hear the mounting slide at the rear latch into position.
- 3. Slide the component along the mounting rail to either the left or the right into its final position.

Removal

- 1. First shift the mounting slide downwards at the lug to release the interlocking with the mounting rail.
- 2. Swivel the component to the front and withdraw it upwards from the DIN rail.

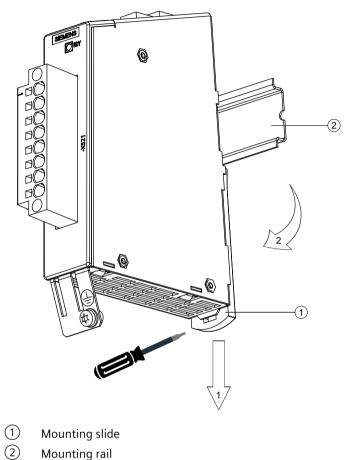
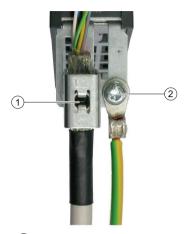



Figure 6-27 Removal of a TM120 from a DIN rail

6.7.7 Protective conductor connection and shield support

The following diagram shows a typical Weidmüller shield connection clamp for the shield supports.

 Shield connection terminal, Weidmüller company, type: KLBUE CO1, Article number: 1753311001

2 Protective conductor connection M4 / 1.8 Nm (15.9 lbf in)

Figure 6-28 Protective conductor connection and shield support

NOTICE

Damage or faulty operation due to incorrect shielding or inadmissible cable lengths

If the correct shielding procedures or the permissible cable lengths are not observed, it can cause damage or the machine may malfunction.

- Only use shielded cables.
- Do not exceed the cable lengths stated in the technical data.

6.7.8 Technical data

Table 6-53 Technical data

6SL3055-0AA00-3KA.	Unit	Value
Electronics power supply		
Voltage	V _{DC}	24 (20.4 28.8)
Current (without DRIVE-CLiQ)	A _{DC}	≤0.2
Power loss	W	≤4
Maximum cable length	m	30
Protective ground conductor connection	At the housing with M4 scre	ew .
Ventilation clearances, above/below	mm	50
Weight	kg	0.41

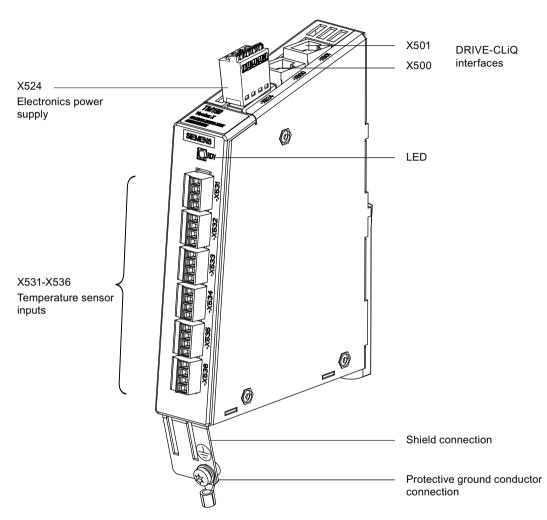
6.8.1 Description

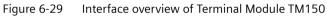
The terminal module TM150 is a DRIVE-CLiQ component for temperature evaluation. The temperature is measured in a temperature range from -99 °C to +250 °C for the following temperature sensors:

- Pt100 (with monitoring for wire break and short-circuit)
- Pt1000 (with monitoring for wire breakage and short-circuit)
- KTY84 (with monitoring for wire breakage and short-circuit)
- PTC (with short-circuit monitoring)
- Bimetallic NC contact (without monitoring)

For the temperature sensor inputs, for each terminal block the evaluation can be parameterized for 1x2-wire,

2x2-wire, 3-wire or 4-wire. There is no galvanic isolation in the TM150.


The TM150 is mounted in the control cabinet and can be snapped on to a standard mounting rail (EN 60715).


The TM150 contains the following interfaces:

Туре	Quantity
DRIVE-CLiQ interfaces	2
Temperature sensor inputs	12
Electronics power supply	1

6.8.2 Interface description

6.8.2.1 Overview

6.8.2.2 X500/X501 DRIVE-CLiQ interfaces

	Pin	Signal name	Technical data	
	1	ТХР	Transmit data +	
P	2	TXN	Transmit data -	
* E ^t	3	RXP	Receive data +	
	4	Reserved, do not use	-	
	5	Reserved, do not use	-	
	6	RXN	Receive data -	
	7	Reserved, do not use	-	
	8	Reserved, do not use	-	
	А	+ (24 V)	Power supply, max. 450 mA	
	В	M (0 V)	Electronics ground	
Connector type	DRIVE-CI	-CLiQ socket		

Table 6-55 X500/X501: DRIVE-CLiQ interfaces

The blanking covers for the DRIVE-CLiQ interfaces are included in the scope of delivery. Blanking covers (50 units), article number: 6SL3066-4CA00-0AA0

Note

The maximum DRIVE-CLiQ cable length is 100 m.

6.8.2.3 X524 Electronics power supply

Table 6-56 X524 electronics power supply

	Terminal	Designation	Technical data
blue red	+ + M M	Electronics power supply (24 V) Electronics power supply (24 V) Electronics ground (0 V) Electronics ground (0 V)	Voltage: 24 V DC (20.4 28.8 V) Current consumption (max.): 0.5 A (including DRIVE-CLiQ) Max. current via the jumper in the con- nector: 20 A (15 A according to UL/CSA)
Type: Spring-	oaded term	inal 6 (Page 320)	

The maximum cable length is 30 m.

Note

The two "+" and "M" terminals are jumpered in the connector. This ensures that the supply voltage is looped through.

6.8.2.4 X531-X536 temperature sensor inputs

	Terminal	Function 1x2-/2x2-wire	Function 3 and 4-wire	Technical data
	1	+Temp (channel x)	+ (Channel x)	Temperature sensor connection for sensors with 1x2 wires
				Connection of the 2nd measurement cable for sensors with 4 wires
	2	-Temp (channel x)	- (Channel x)	Temperature sensor connection for sensors with 1x2 wires
				Connection of the 1st measurement cable for sensors with 3 and 4 wires
	3	+Temp (channel y)	+ I _c (constant current, positive channel x)	Temperature sensor connection for sensors with 2x2, 3 and 4-wires
	4	-Temp (channel y)	- I _c (constant current, nega- tive channel x)	

Table 6-57 X531-X536: Temperature sensor inputs

Measuring current via temperature sensor connection: approx. 0.83 mA

When connecting temperature sensors with 3 wires, a jumper must be inserted between $X53\Box$.2 and $X53\Box$.4 (\Box = 1...6).

Table 6-58	Channel assignment
------------	--------------------

Terminal	Channel number [x] for 1x2, 3 and 4-wires	Channel number [y] for 2x2 wires	
X531	0	6	
X532	1	7	
X533	2	8	
X534	3	9	
X535	4	10	
X536	5	11	

NOTICE

Damage to motor in the event of incorrectly connected KTY temperature sensor

If a KTY temperature sensor is connected with incorrect polarity, it is not possible to detect when the motor overheats. Overheating can cause damage to the motor.

• Connect a KTY temperature sensor with the correct polarity.

NOTICE

Overheating of the motor through jumpering the temperature sensor connections

Jumpering temperature sensor connections "+Temp" and "-Temp" results in incorrect measurement results. Damage to the motor can result if the overheating is not detected.

• When using several temperature sensors, separately connect the individual sensors to "+Temp" and "-Temp".

NOTICE

Device failure as a result of unshielded or incorrectly routed cables to temperature sensors

Unshielded or incorrectly routed cables to temperature sensors can result in interference being coupled into the signal processing electronics from the power side. This can result in significant disturbance of all signals (fault messages) up to failure of individual components (destruction of the devices).

- Only use shielded cables as temperature sensor cables.
- If temperature sensor cables are routed together with the motor cable, use separately shielded cables twisted in pairs.
- Connect the cable shield at both ends to ground potential through a large surface area.
- Recommendation: Use suitable MOTION-CONNECT cables.

Note

Incorrect temperature measured values as a result of cables with an excessively high resistance

An excessively long cable length or an excessively small cable cross-section can falsify the temperature measurement (for a Pt100, a 10 Ω cable resistance can falsify the result of the measurement by 10%). As a consequence, excessively high measured values are output, which could lead to the motor being unnecessarily tripped prematurely.

- Use only cable lengths \leq 300 m.
- For cable lengths >100 m, use cables with a cross-section of $\ge 1 \text{ mm}^2$.

6.8.3 Connection examples

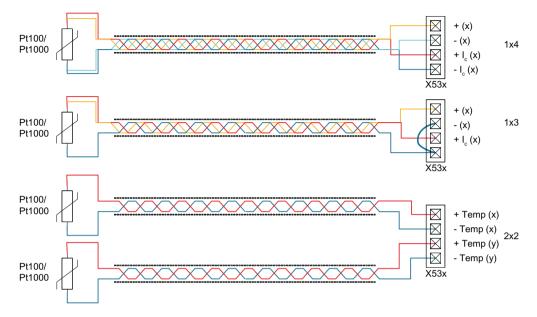
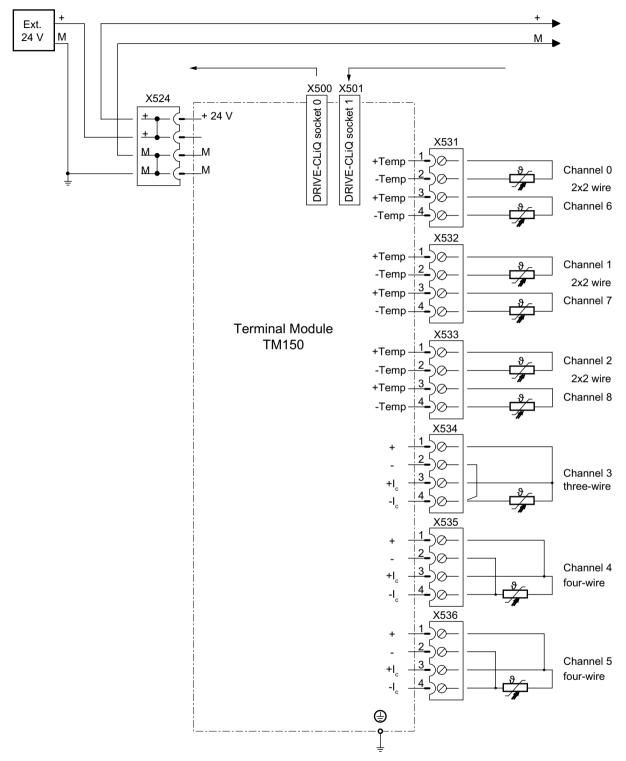
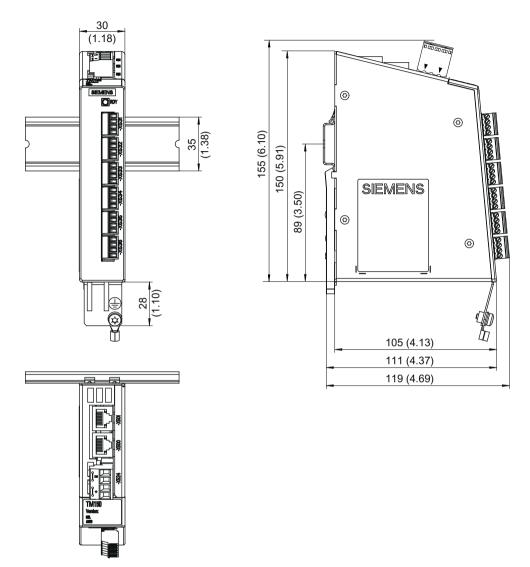


Figure 6-30 Connecting a Pt100/Pt1000 with 2x2, 3 and 4-wires to the temperature sensor inputs X53. of the TM150 Terminal Module




Figure 6-31 Connection example for a Terminal Module TM150

6.8.4 Meaning of the LED

Table 6-59	Meaning of the LEDs at the Terminal Module TM150
------------	--

LED	Color	Status	Description, cause	Remedy
READY	-	Off	The electronics power supply is missing or outside the permissible tolerance range.	Check the power sup- ply.
	Green	Continu- ous light	The component is ready for operation and cyclic DRIVE-CLiQ communication is taking place.	-
	Orange	Continu- ous light	DRIVE-CLiQ communication is being established.	-
	Red	Continu- ous light	This component has at least one fault. Remark:	Remove and acknowl- edge the fault.
		LED is controlled irrespective of the corresponding messages being reconfigured.		
	Green/ red	Flashing light 0.5 Hz	Firmware is being downloaded.	_
		Flashing light 2 Hz	Firmware has been downloaded. The system waits for POWER ON.	Carry out a POWER ON.
Green/ orange		Flashing light	Component recognition via LED is activated (parameter p0154=1).	-
	or 2 Hz Remark:		Remark:	
	red/ orange		Both options depend on the LED status when component rec- ognition is activated.	

6.8.5 Dimension drawing

6.8.6 Installation

Installation

- 1. Tilt the component backwards slightly and attach it to the DIN rail using the hooks.
- 2. Swivel the component onto the DIN rail until you hear the mounting slide at the rear latch into position.
- 3. Slide the component along the mounting rail to either the left or the right into its final position.

Removal

- 1. First shift the mounting slide downwards at the lug to release the interlocking with the mounting rail.
- 2. Swivel the component to the front and withdraw it upwards from the DIN rail.

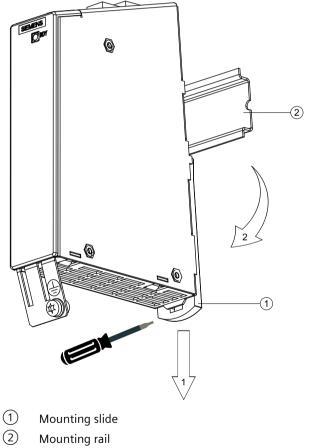


Figure 6-33 Removing a TM150 from a mounting rail

6.8.7 Protective conductor connection and shield support

The following diagram shows a typical Weidmüller shield connection clamp for the shield supports.

- Shield connection terminal, Weidmüller company, type: KLBUE CO1, Article number: 1753311001
- 2 Protective conductor connection M4 / 1.8 Nm (15.9 lbf in)

Figure 6-34 Protective conductor connection and shield support

NOTICE

Damage or faulty operation due to incorrect shielding or inadmissible cable lengths

If the correct shielding procedures or the permissible cable lengths are not observed, it can cause damage or the machine may malfunction.

- Only use shielded cables.
- Do not exceed the cable lengths stated in the technical data.

6.8.8 Technical data

Table 6-60 Technical data

6SL3055-0AA00-3LA0	Unit	Value
Electronics power supply		
Voltage	V _{DC}	24 (20.4 28.8)
Current (without DRIVE-CLiQ)	A _{DC}	≤0.1
Power loss	W	≤2
Maximum cable length	m	30
Protective ground conductor connection	At the housing with M4 scre	ew
Ventilation clearances, above/below	mm	50
Weight	kg	0.4

Terminal Modules

6.8 Terminal Module TM150

7.1 Description

DRIVE-CLiQ Hub Modules are extension units for star-shaped distribution of a DRIVE-CLiQ line. Using them, you can extend an axis grouping by 5 DQ interfaces to connect partial axis groupings. It is possible to connect DRIVE-CLiQ Hub Modules in series (cascade connection).

Table 7-1	DRIVE-CLiQ Hub Modules for the CU320-2
-----------	--

Designation	Article number	Function
DMC20	6SL3055-0AA00-6AA1	The DMC20 is intended for installation in the control cab- inet.
DME20	6SL3055-0AA00-6AB.	The DME20 is intended for external applications. It has degree of protection IP67.

7.2 Safety instructions for Hub Modules

NOTICE

Damage through use of incorrect DRIVE-CLiQ cables

The use of incorrect or unreleased DRIVE-CLiQ cables can cause damage or functional faults to devices or the system.

 Only use suitable DRIVE-CLiQ cables that have been released by Siemens for the particular application.

Note

Function equipotential bonding for distributed DRIVE-CLiQ nodes

Integrate all of the components that are connected via DRIVE-CLiQ in the functional equipotential bonding concept. You make the connection by mounting on bare metallic machine and plant units that are all connected to one another.

Alternatively, you can establish equipotential bonding with a conductor (min. 6 mm²), which is routed as far as possible in parallel to the DRIVE-CLiQ cable. This involves all distributed DRIVE-CLiQ nodes, e.g. DME20, SME20, SME25, SME120, SME125.

Note

Malfunctions due to polluted DRIVE-CLiQ interfaces

Malfunctions can occur in the system through the use of polluted DRIVE-CLiQ interfaces.

• Cover unused DRIVE-CLiQ interfaces with the supplied blanking covers.

7.3 DRIVE-CLiQ Hub Module DMC20

7.3.1 Description

The DRIVE-CLiQ Hub Module DMC20 is an expansion module for snapping on to a standard mounting rail acc. to EN 60715. It is used to distribute a DRIVE-CLiQ line with a star-type topology. With the DMC20, an axis grouping can be expanded with 5 DRIVE-CLiQ sockets for additional subgroups.

The component is especially suitable for applications which require DRIVE-CLiQ nodes to be removed in groups, without interrupting the DRIVE-CLiQ line and, therefore, the data exchange process.

7.3.2 Interface description

7.3.2.1 Overview

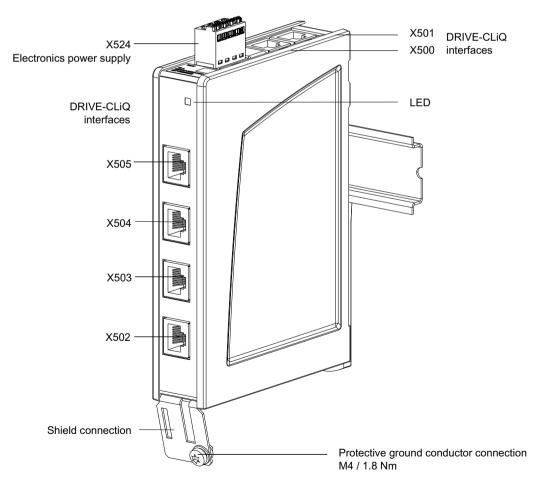


Figure 7-1 Interface overview of the DMC20

7.3.2.2 X500-X505 DRIVE-CLiQ interfaces

	Pin	Signal name	Technical data
	1	ТХР	Transmit data +
	2	TXN	Transmit data -
* E ¹	3	RXP	Receive data +
	4	Reserved, do not use	-
	5	Reserved, do not use	-
	6	RXN	Receive data -
	7	Reserved, do not use	-
	8	Reserved, do not use	-
	А	+ (24 V)	Power supply
	В	M (0 V)	Electronics ground
Connector type	DRIVE-CL	iQ socket	

Table 7-2 X500-X505: DRIVE-CLiQ interfaces

The blanking covers for the DRIVE-CLiQ interfaces are included in the scope of delivery. Blanking covers (50 x) Article No.: 6SL3066-4CA00-0AA0

Note

Only MOTION-CONNECT DRIVE-CLiQ cables may be used to establish connections. The maximum length of MOTION-CONNECT 500 is 100 m and for MOTION-CONNECT 800PLUS cables, 75 m.

7.3.2.3 X524 Electronics power supply

Table 7-3X524: Electronics power supply

	Terminal	Designation	Technical data	
.	+	Electronics power supply (24 V)	Voltage: 24 V DC (20.4 28.8 V) Current consumption: Max. 2.4 A	
	+	Electronics power supply (24 V)	(including DRIVE-CLiQ)	
	М	Electronics ground (0 V)	Max. current via the jumper in the con-	
	М	Electronics ground (0 V)	nector: 20 A (15 A according to UL/CSA)	
Type: Spring-loaded terminal 6 (Page 320)				

The maximum cable length is 30 m.

Note

The two "+" and/or "M" terminals are jumpered in the connector. This ensures that the supply voltage is looped through.

7.3.3 Meaning of the LED

 Table 7-4
 Description of the LEDs on the DRIVE-CLiQ Hub Module DMC20

LED	Color	Status	Description, cause	Remedy
READY	-	Off	The electronics power supply is missing or outside the permissible tolerance range.	-
	Green	Continu- ous light	The component is ready for operation. Cyclic DRIVE-CLiQ com- munication is taking place.	-
	Orange	Continu- ous light	DRIVE-CLiQ communication is being established.	-
	Red	Continu- ous light	This component has at least one fault. Note:	Remove and acknowl- edge the fault.
			LED is controlled irrespective of the corresponding messages being reconfigured.	
	Green/red	Flashing light 0.5 Hz	Firmware is being downloaded.	_
		Flashing light 2 Hz	Firmware download is complete. The system waits for POWER ON.	Carry out a POWER ON.
	Green/ orange	Flashing light	Component recognition via LED is activated (p0154 = 1). Note:	_
	or Red/ orange	2 Hz	Whether the LED flashes green/orange or red/orange depends on the status the LED had during activation (setting parameter p0154 to "1").	

7.3.4 Dimension drawing

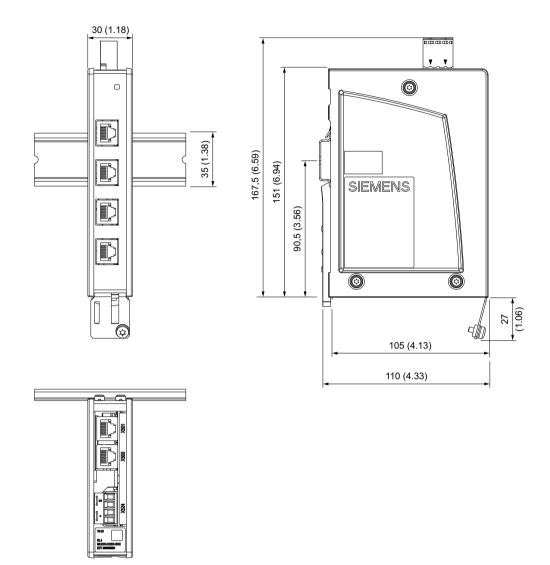


Figure 7-2 Dimension drawing of the DRIVE-CLiQ Hub Module DMC20, all data in mm and (inches)

7.3.5 Installation

Installation

- 1. Tilt the component backwards slightly and attach it to the DIN rail using the hooks.
- 2. Swivel the component onto the DIN rail until you hear the mounting slide at the rear latch into position.
- 3. Slide the component along the mounting rail to either the left or the right into its final position.

Removal

- 1. First shift the mounting slide downwards at the lug to release the interlocking with the mounting rail.
- 2. Swivel the component to the front and withdraw it upwards from the DIN rail.

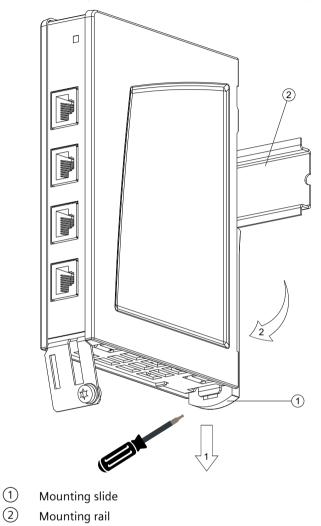
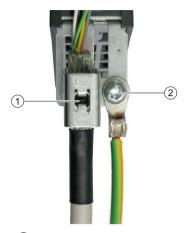



Figure 7-3 Removing from a DIN mounting rail

7.3.6 Protective conductor connection and shield support

The following diagram shows a typical Weidmüller shield connection clamp for the shield supports.

- Shield connection terminal, Weidmüller company, type: KLBUE CO1, Article number: 1753311001
- 2 Protective conductor connection M4 / 1.8 Nm (15.9 lbf in)
- Figure 7-4 Protective conductor connection and shield support

NOTICE

Damage or faulty operation due to incorrect shielding or inadmissible cable lengths

If the correct shielding procedures or the permissible cable lengths are not observed, it can cause damage or the machine may malfunction.

- Only use shielded cables.
- Do not exceed the cable lengths stated in the technical data.

7.3.7 Technical data

	Table 7-5	Technical data	of the DMC20
--	-----------	----------------	--------------

6SL3055-0AA00-6AA1	Unit	Value
Electronics power supply		
Voltage Current (without DRIVE-CLiQ node) Power loss Maximum cable length	V _{DC} A _{DC} W m	DC 24 (20.4 28.8) ≤0.2 ≤4 30
Protective ground conductor connection	At the housing with M4 scre	ew
Ventilation clearances, above/below	mm	50
Weight	kg	0.36

7.4 DRIVE-CLiQ Hub Module External DME20

7.4.1 Description

The DRIVE-CLiQ Hub Module External DME20 is used to implement star-shaped distribution of a DRIVE-CLiQ line. With the DME20, an axis grouping can be expanded with 5 DRIVE-CLiQ sockets for additional subgroups.

The component has degree of protection IP67 and is especially suitable for applications which require DRIVE-CLiQ nodes to be removed in groups, without interrupting the DRIVE-CLiQ line and therefore the data exchange.

NOTICE

Damage due to leaking plug connections

If IP67 protection is not ensured, water or dirt can enter and lead to damage.

• Ensure that all connectors are correctly screwed into place and appropriately locked.

7.4.2 Interface description

7.4.2.1 Overview

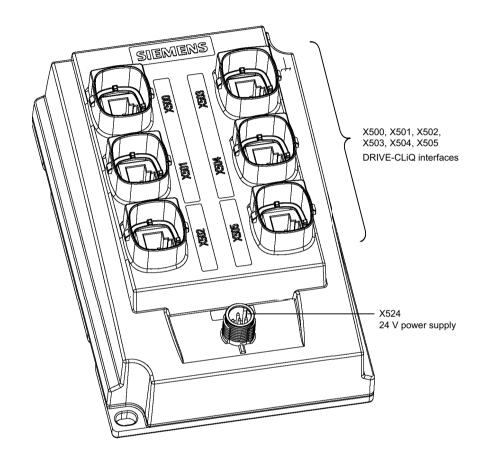


Figure 7-5 Interface overview of the DME20

7.4.2.2 X500-X505 DRIVE-CLiQ interfaces

	Pin	Signal name	Technical data
	1	ТХР	Transmit data +
	2	TXN	Transmit data -
	3	RXP	Receive data +
	4	Reserved, do not use	-
	5	Reserved, do not use	-
	6	RXN	Receive data -
	7	Reserved, do not use	-
	8	Reserved, do not use	-
	A	+ (24 V)	Power supply
	В	M (0 V)	Electronics ground
Connector type	DRIVE-CLiQ s	socket	

The blanking covers for the DRIVE-CLiQ interfaces are included in the scope of delivery. Blanking covers (6 units), article number: 6SL3066-4CA01-0AA0

Note

Only MOTION-CONNECT DRIVE-CLiQ cables may be used to establish connections. The maximum length of MOTION-CONNECT 500 is 100 m and for MOTION-CONNECT 800PLUS cables, 75 m.

7.4.2.3 X524 Electronics power supply

Table 7-7X524: Electronics power supply

	Pin	Designation	Technical data
$\begin{array}{c} 2 \\ 0 \\ 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	1	Electronics power supply	The connection voltage of 20.4 V to
	2	Electronics power supply	28.8 V refers to the (terminal) voltage the DME20. This must be taken into ac
	3	Electronics ground	count when selecting the cable cross-sec-
	4	Electronics ground	tion and supply cable lengths.
	5	not connected	Pins 1 and 2: jumpered internally Pins 3 and 4: Bridged internally Current consumption: max. 2.4 A
5-pin socket, max. connecta	ble cross-sectio	n: 4 x 0.75 mm ²	

Note

The maximum cable length for the 24 V supply of the DME20 is 100 m.

Where UL-compliant design is not required, use of the following cables and connectors from Siemens is recommended:

Pre-assembled cables

Connecting cable for power supply with M12 plug and M12 socket, A-coded, 4-pin, Article number: 6XV1801-5D..

Cables to be assembled by the user

Cable	Connector	
24 V DC cable,	M12 plug connector,	
2-wire, 2 x 0.75 mm²,	4-pin, A-coded,	
Article number: 6XV1812-8A	Article number: 6GK1907-0DC10-6AA3	

Table 7-8Cable length P24 supply cable

Connected loads ¹⁾ m	1	2	3	4	5
Cross-section					
0.34 mm ²	75 m	45 m	30 m	25 m	20 m
2 x 0.34 mm ²	100 m	90 m	65 m	50 m	40 m
0.75 mm ²	100 m	100 m	75 m	60 m	50 m
2 x 0.75 mm ²	100 m				
T _a = 55 °C 100 m DRIVE-CLiQ		·			

¹⁾ Connected motors with DRIVE-CLiQ encoder, DRIVE CLiQ mounted encoder SME

Hub Modules

7.4 DRIVE-CLiQ Hub Module External DME20

7.4.3 Dimension drawing

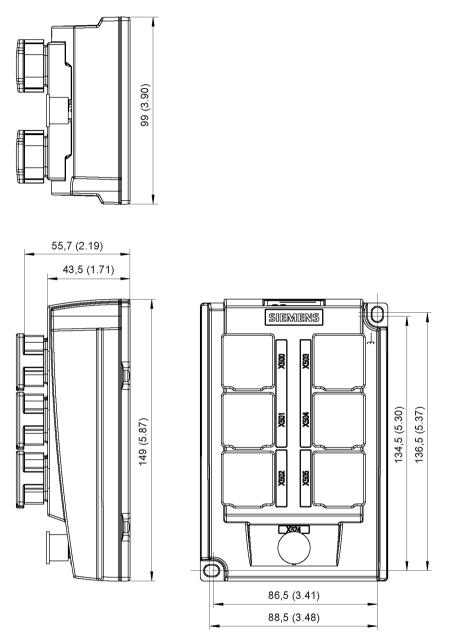
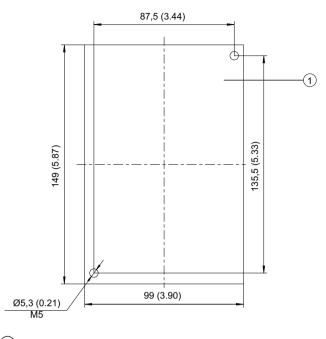



Figure 7-6 Dimension drawing of the DRIVE-CLiQ Hub Module External DME20, all data in mm and (inches)

7.4.4 Installation

1 Contact surface Figure 7-7 Mounting dimensions DME20

Installation

- 1. Place the drilling pattern on the mounting surface. Make sure that the contact surface is bare, unpainted metal.
- 2. Drill two holes with Ø 5.3 or M5 threaded holes according to the drilling pattern.
- 3. Mount the DME20 DRIVE-CLiQ Hub Module External on the contact surface. The tightening torque is 6.0 Nm (53.1 lbf in).

7.4.5 Technical data

Table 7-9 Technical data of the DME20

6SL3055-0AA00-6AB.	Unit	Value
Electronics power supply		
Voltage Current (without DRIVE-CLiQ node) Power loss	V _{DC} A _{DC} W	24 (20.4 28.8) ≤0.2 ≤4
Protective ground conductor connection	Screwed to the housing M5	
Weight	kg	0.8

7.4.6 Specifications for use with UL approval

Pre-assembled cables

Sensor/actuator cable, 5-pin, variable cable, free cable end at straight socket M12-SPEEDCON, cable length: 2, 5, 10, 15 m SAC-5P-...-186/FS SCO Up to 100 m on request

Phoenix Contact

Cables to be assembled by the user

Cable	Connector
Cable coil, black PUR/PVC, 5-pin Conductor colors: brown/white/blue/black/	Sensor/actuator connector, socket, straight, 5-pin, M12, A-coded
gray	Screw connection, metal knurl,
Cable length: 100 m	cable gland Pg9
SAC-5P-100.0-186/0.75	SACC-M12FS-5CON-PG9-M
Article number: 1535590	Article number: 1681486
Phoenix Contact	

Power supply

The DME20 must use one of the following 24 V power supplies with voltage limiting:

- SITOP 6EP1x.. or 6ES7307..
- SINAMICS Control Supply Module 6SL3100-1DE22-0A...

Cable pin assignment

Table 7-10	Connection to X524 electronics power si	upply
------------	---	-------

	Pin	Designation	Technical data
2	1 (brown) ¹⁾	Electronics power supply	The supply voltage of 20.4 28.8 V relates to the ter-
	2 (white) 1)	Electronics power supply	minal voltage at the DME20. This must be taken into
	3 (black) 1)	Electronics ground	account when selecting the cable cross-section and supply cable lengths.
6	4 (blue) 1)	Electronics ground	Pins 1 and 2: jumpered internally
	5 (gray) 1)	Not connected internally	Pins 3 and 4: jumpered internally

¹⁾ The colors refer to the cable specified above

Voltage Sensing Module VSM10

8.1 Description

The Voltage Sensing Module VSM10 is an expansion module for snapping on to a standard mounting rail acc. to EN 60715. It is used to sense the actual value of a voltage. For example, it can be used to sense the three-phase line supply voltage, which is then provided to the closed-loop control. The phase differential voltage can be measured, either grounded (in the delivery state) or isolated.

The Voltage Sensing Module can be used for the following line types:

- Up to 600 V 3-ph. AC for all line types
- Up to 690 V 3-ph. AC for networks with grounded start point and IT networks

A 100 V 3-ph. AC input is available for transducer transformers. Do not use both voltage connections simultaneously.

For booksize units, these components can be optionally used to increase the degree of ruggedness against irregularities in the line supply.

A VSM is already integrated for Active Interface Modules Chassis and Smart Line Modules Chassis.

In addition to the voltage sensing, a temperature sensor can be connector to the VSM10 to thermally monitor the line reactor. Further, the functionality of the line filter can checked using two analog inputs. All data recorded are transferred to the higher-level system via DRIVE-CLiQ.

The Voltage Sensing Module achieves radio interference category C2 with limit classes A1 for interference voltage and A for emitted interference.

Туре	Quantity
Analog inputs	2
Voltage connection (690 V)	1 (3-phase)
Voltage connection (100 V)	1 (3-phase)
Temperature sensor input (KTY / Pt1000 / PTC) ¹⁾	1
Neutral point grounding	1
DRIVE-CLiQ interface	1

Table 8-1 Interface overview of the VSM10

¹⁾ Pt1000 sensors cannot be evaluated by Voltage Sensing Modules with Article No. 6SL3053-0AA00-3AA0.

8.2 Safety instructions for the Voltage Sensing Module (VSM10)

8.2 Safety instructions for the Voltage Sensing Module (VSM10)

NOTICE

Destruction of the VSM10 as a result of incorrectly performed voltage measurements

If the voltage measurement is carried out incorrectly, the VSM10 can be destroyed as a result of the high voltage stress across the insulating clearance.

• When using long motor cables, it is not permissible that the output voltage of the Motor Module is directly measured at the motor.

NOTICE

Destruction of the VSM10 as a result of a terminal assignment which is not permissible

The VSM10 has two terminal strips, X521 and X522, to sense the three-phase line supply voltage. A terminal assignment which is not permissible results in the module being destroyed.

- Use just one of the two terminal strips.
- Only connect voltages to terminal strip X521 up to a maximum 100 V (phase-to-phase) via a transformer.
- Only connect voltages to terminal strip X522 up to a maximum 690 V (phase-to-phase) directly.

NOTICE

Damage through use of incorrect DRIVE-CLiQ cables

The use of incorrect or unreleased DRIVE-CLiQ cables can cause damage or functional faults to devices or the system.

• Only use suitable DRIVE-CLiQ cables that have been released by Siemens for the particular application.

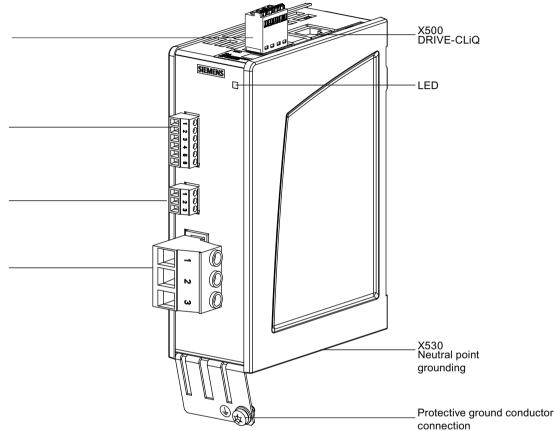
Note

Malfunctions due to polluted DRIVE-CLiQ interfaces

Malfunctions can occur in the system through the use of polluted DRIVE-CLiQ interfaces.

• Cover unused DRIVE-CLiQ interfaces with the supplied blanking covers.

Note


Malfunctions when using various generations of the VSM10 with parallel infeed

When connecting infeeds in parallel, only Voltage Sensing Modules of the same generation may be used (either 6SL3053-0AA00-3AA0 or 6SL3053-0AA00-3AA1), as otherwise malfunctions can occur.

• Especially when replacing a VSM10 (Page 227) it is important that all of the other VSM10 connected in parallel are replaced.

8.3 Interface description

8.3.1 Overview

X524 Electronics power supply

X520 Analog inputs/ Temperature sensor input

X521 Voltage detection (3-phase) up to 100 V

X522 Voltage detection (3-phase) up to 690 V

8.3 Interface description

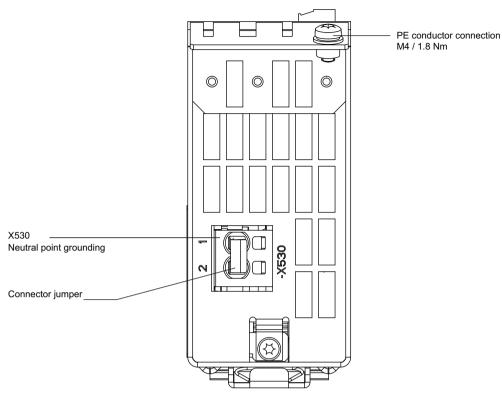


Figure 8-2 X530 interface at the VSM10 (view from below)

8.3.2 X500 DRIVE-CLiQ interface

	Pin	Signal name	Technical data
	1	ТХР	Transmit data +
	2	TXN	Transmit data -
1ª E L	3	RXP	Receive data +
	4	Reserved, do not use	-
	5	Reserved, do not use	-
	6	RXN	Receive data -
	7	Reserved, do not use	-
	8	Reserved, do not use	-
	А	+ (24 V)	Power supply
	В	M (0 V)	Electronics ground
Connector type	DRIVE-CI	LiQ socket	

Table 8-2 X500: DRIVE-CLiQ interface

The blanking cover for the DRIVE-CLiQ port is included in the scope of delivery. Blanking covers (50 x) Article No.: 6SL3066-4CA00-0AA0

8.3.3 X520 analog inputs/temperature sensor

	Terminal	Designation	Technical data
	1	AI 0-	2 analog differential inputs
	Voltage : -10 +10 V; Ri > 100 kΩ		
	3	Al 1- Resolution: 12 bits + sign	Resolution: 12 bits + sign
4 5 6	4	AI 1+	
	5	+ Temp ¹⁾	Pt1000 / KTY84-130 / PTC temperature sensor
	6	- Temp 1)	Measuring current via temperature sensor connection: 2 mA
Type: Screw te	rminal 1 (Page	321)	

Table 8-3 X520: Analog inputs/temperature sensor

1) Accuracy of the temperature measurement (temperature sensor, including evaluation):

- Pt1000: ±5 °C (Pt1000 tolerance class B acc. to DIN EN 60751)

- KTY: ±7 °C

- PTC: ±5 °C

Note

Permissible voltage values

The common mode range must not be violated in order to avoid incorrect analog-digital conversion results. The following voltages are permissible:

- Input voltage: ±30 V (destruction limit)
- Common mode voltage: ±10 V with respect to ground potential (increased errors when exceeded)

NOTICE

Damage to motor in the event of incorrectly connected KTY temperature sensor

If a KTY temperature sensor is connected with incorrect polarity, it is not possible to detect when the motor overheats. Overheating can cause damage to the motor.

Connect a KTY temperature sensor with the correct polarity.

Note

In order to minimize noise emission, shielded cables should be used.

Note

The maximum cable length for a shielded cable applied on both sides to the temperature sensor and to the analog inputs is 30 m.

8.3 Interface description

WARNING

Electric shock when the motor temperature sensor insulation fails

When connecting temperature sensors, which have no safe protective separation with respect to the motor power circuit, then arcing to the signal electronics can occur.

- Use motors whose temperature sensors have safe electrical separation.
- Use only connecting cables and connectors with safe electrical separation between the wires of the temperature sensor and the wires of the power circuit.
- If safe electrical separation cannot be guaranteed (for linear motors or third-party motors, for example), use a Sensor Module External (SME120 or SME125) or Terminal Module TM120.

8.3.4 X521 three-phase voltage sensing up to 100 V 3-ph. AC

Table 8-4 X521: Voltage sensing 100	V
-------------------------------------	---

	Terminal	Designation	Technical data
1 2 3	1	Phase voltage U	Connection to the voltage sensing for medi-
	2	Phase voltage V	um-voltage networks via a safe electrically isolated transformer
	3	Phase voltage W	Resistance to neutral point: ~500 k Ω
			Insulation resistance, neutral point - ground when the jumper is not inserted: >10 $M\Omega$
Type: Screw te	erminal 1 (Page	321)	•

| Type: Screw terminal 1 (Page 321)

NOTICE

Damage to the VSM10 as a result of an impermissible terminal assignment

The VSM10 has two terminal strips, X521 and X522, to sense the three-phase line supply voltage. A terminal assignment which is not permissible results in the module being damaged.

- Use just one of the two terminal strips.
- Only connect voltages to terminal strip X521 up to a maximum 100 V (phase-to-phase) via • a transformer.
- Only connect voltages to terminal strip X522 up to a maximum 690 V (phase-to-phase) • directly.

8.3.5 X522 three-phase voltage sensing up to 690 V 3-ph. AC

Table 8-5	X522: Voltage sensing 690 V
-----------	-----------------------------

	Terminal	Designation	Technical data
	1	Phase voltage U	Directly connected to the line voltage sensing
	2	Phase voltage V	Resistance to neutral point: ~3500 k Ω
ω	3	Phase voltage W	Insulation resistance, neutral point - ground when the jumper is not inserted: >10 $M\Omega$

Type: Screw terminal 5 (Page 321)

NOTICE

Damage to the VSM10 as a result of an impermissible terminal assignment

The VSM10 has two terminal strips, X521 and X522, to sense the three-phase line supply voltage. A terminal assignment which is not permissible results in the module being damaged.

- Use just one of the two terminal strips.
- Only connect voltages to terminal strip X521 up to a maximum 100 V (phase-to-phase) via a transformer.
- Only connect voltages to terminal strip X522 up to a maximum 690 V (phase-to-phase) directly.

NOTICE

Damage to the VSM10 through overcurrent with an incorrect connection sequence

Enabling the Line Module with an incorrect connection sequence results in overcurrent.

• Connect the line phases to the VSM10 in the same sequence as the one to the Line Module.

Note

Line voltage tap

If the configuration has a line filter, then the phase voltages for the VSM (X522) must be taken from in front of the line filter. If the configuration does not have a line filter, then X522 must be connected to the line side of the line reactor (voltages are taken from in front of the line reactor).

8.3 Interface description

8.3.6 X524 Electronics power supply

Terminal	Designation	Technical data
+	Electronics power supply (24 V)	Voltage: 24 V DC (20.4 28.8 V)
+	Electronics power supply (24 V)	Current consumption: max. 0.2 A
М	Electronics ground (0 V)	Max. current via the jumper in the con
М	Electronics ground (0 V)	nector: 20 A (15 A according to UL/CSA)
	+ + M	+Electronics power supply (24 V)+Electronics power supply (24 V)MElectronics ground (0 V)

Table 8-6 X524: Electronics power supply

The maximum cable length is 30 m.

Note

The two "+" and "M" terminals are jumpered in the connector. This ensures that the supply voltage is looped through.

8.3.7 X530 neutral point grounding

Table	Table 8-7X530: Neutral point grounding					
		Terminal	Designation	Technical data		
1		1	Neutral point of the voltage sensing	Jumper inserted: Grounded measure- ment		
2		2	Ground potential	Jumper not inserted: isolated measure- ment		
Type:	Type: Spring-loaded terminal 5 (Page 320)					

The Voltage Sensing Module is supplied with inserted jumper. When delivered, the neutral point is connected to ground potential via the connector jumper. Current can flow to ground. This connection is removed by removing the connector jumper. The measurement is then electrically isolated.

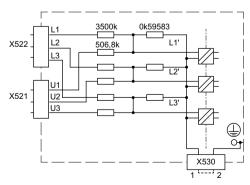
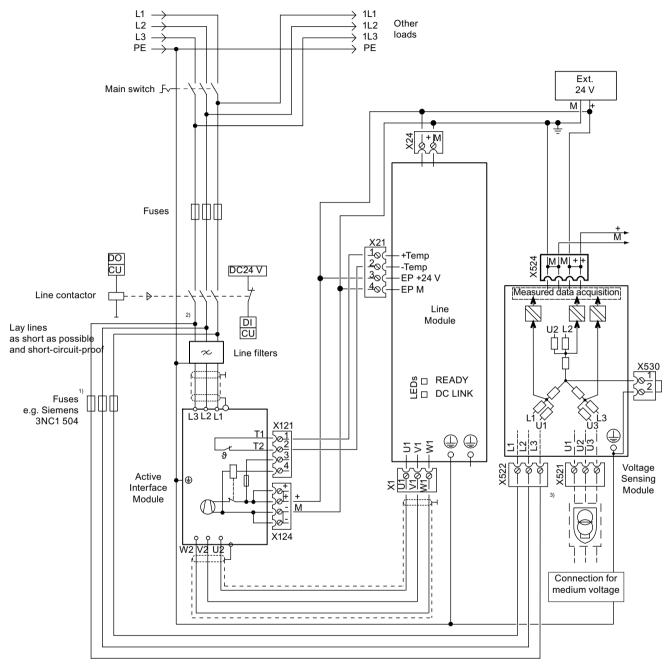



Figure 8-3 Internal circuit of the Voltage Sensing Module VSM10

8.4 Connection example

8.4 Connection example

- ¹⁾ It is only possible to omit the fuses if the cables to the Voltage Sensing Module are routed so that no short-circuit or ground fault can be expected under normal operating conditions (short-circuit proof routing).
- ²⁾ Tap the line voltage as actual value for the Voltage Sensing Module VSM10 corresponding to the system design, for example refer to the table.
- ³⁾ Use either terminal X521 or terminal X522.

Figure 8-4 Connection example for the VSM10 to measure the line voltage

8.5 Meaning of the LED

Conductor cross-section	Connection via	For components	
Up to 6 mm ²	Direct connection possible	Smart Line Modules 5 kW and 10 kW	
6 mm ² to 16 mm ²	ST16-TWIN terminal blocks, if required with a reducing jumper and ST4-TWIN or ST2.5-TWIN (Phoenix Contact company)	Active Line Modules 16 kW Smart Line Modules 16 kW Active Interface Module 16 kW	
16 mm ² to 50 mm ²	AGK10 UKH tap-off terminals with UKH terminals (Phoenix Contact)	Active Line Modules 36 kW and 55 kW Smart Line Modules 36 kW and 55 kW Active Interface Module 36 kW and 55 kW	
> 50 mm ²	Ring cable lug without insulation (Page 323) 8 mm/ 2.5 mm ²	Components with M8 connection bolts Active Line Modules 55 kW, 80 kW, and	
	Intermediate high-current connector, type UHV (Phoenix Contact) and ring cable lug without insulation (Page 323) 8 mm/2.5 mm ²	120 kW Active Interface Module 80 kW and 120 k	

Table 8-8	Suggestions for termi	nals and cable lugs which can be used	for tapping line voltage for the VSM10

8.5 Meaning of the LED

Table 8-9	Meanings of the LEDs o	n the Voltage Sensing Module VSM10
	Meanings of the LEDS of	in the voltage sensing module vsimio

LED	Color	Status	Description, cause	Remedy
READY	-	Off	The electronics power supply is missing or outside the permissible tolerance range.	-
	Green	Continu- ous light	The component is ready for operation. Cyclic DRIVE-CLiQ com- munication is taking place.	-
	Orange	Continu- ous light	DRIVE-CLiQ communication is being established.	-
	Red	Continu- ous light	This component has at least one fault. Note:	Remove and acknowl- edge the fault.
			LED is controlled irrespective of the corresponding messages being reconfigured.	
	Green/red	Flashing light 0.5 Hz	Firmware is being downloaded.	-
		Flashing light 2 Hz	Firmware download is complete. The system waits for POWER ON.	Carry out a POWER ON.
	Green/ orange	Flashing light	Detection of the component via LED is activated (p0144 = 1). Note:	-
	or Red/ orange	2 Hz	Whether the LED flashes green/orange or red/orange depends on the status the LED had during activation (setting of param- eter p0144 to "1").	

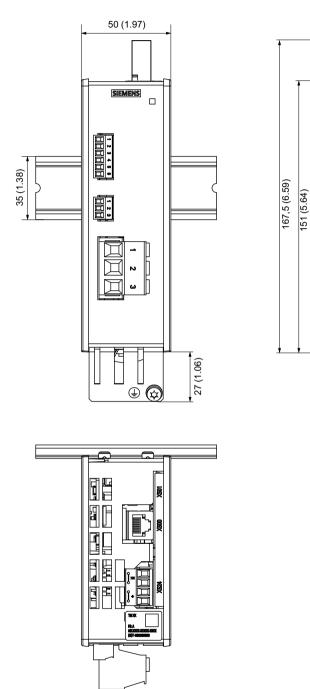
Cause and rectification of faults

Further information about the cause and rectification of faults is available in the SINAMICS S120 Function Manual "Drive Functions".

•••••••

Ø

q__


27 (1.06)

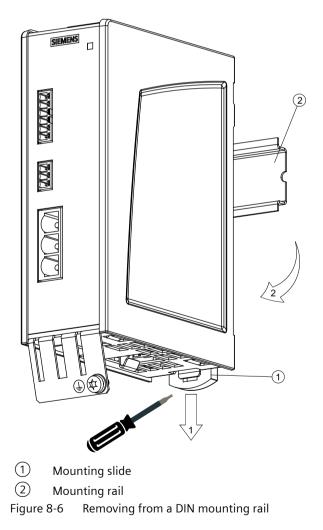
105 (4.13) 110 (4.33) 134 (5.28)

SIEMENS

90,5 (3.56)

8.6 Dimension drawing

8.7 Installation


8.7 Installation

Installation

- 1. Tilt the component backwards slightly and attach it to the DIN rail using the hooks.
- 2. Swivel the component onto the DIN rail until you hear the mounting slide at the rear latch into position.
- 3. Slide the component along the mounting rail to either the left or the right into its final position.

Removal

- 1. First shift the mounting slide downwards at the lug to release the interlocking with the mounting rail.
- 2. Swivel the component to the front and withdraw it upwards from the DIN rail.

8.9 Operation on an isolated-neutral system (IT system)

8.8 Protective conductor connection and shield support

The following shield connection clamps can be used on the bottom part of the component housing for shield connection of the analog inputs:

Shield connection clamp	Article No.	
Phoenix Contact	SK8	3025163
Phoenix Contact	SK14	3025176
Phoenix Contact	SK20	3025189
Weidmüller	KLBUE CO1	1753311001

The following pictures show the shield contacts with a shield connection clamp from Weidmüller.

- 1 Protective conductor connection M4 / 1.8 Nm (15.9 lbf in)
- Shield connection terminal, Weidmüller company, type: KLBUE CO1, Article number: 1753311001

Figure 8-7 Protective conductor connection and shield support at the VSM10

NOTICE

Damage or faulty operation due to incorrect shielding or inadmissible cable lengths

If the correct shielding procedures or the permissible cable lengths are not observed, it can cause damage or the machine may malfunction.

- Only use shielded cables.
- Do not exceed the cable lengths stated in the technical data.

8.9 Operation on an isolated-neutral system (IT system)

When using a Voltage Sensing Module on an insulated line supply (IT system), remove the connector jumper in terminal X530 from the under side of the component.

8.10 Technical data

Use 2 screwdrivers or another suitable tool in order to relieve the strain on the holding springs in the terminal, and then withdraw the connector jumper.

\Lambda warning

Electric shock when the connector jumper is removed

Because of the capacitors, a hazardous voltage is present at the X530 connector jumper for up to 5 minutes after the power supply has been switched off.

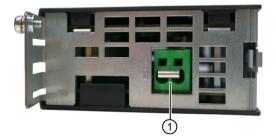
Contact with live parts can result in death or serious injury.

• Wait 5 minutes after the supply has been switched off before removing the connector jumper.

8.10 Technical data

Table 8-10 Technical data

6SL3053-0AA00-3AA1	Unit	Value
Electronics power supply		
Voltage Current (without DRIVE-CLiQ) Power loss Maximum cable length	V _{DC} A _{DC} W m	24 (20.4 28.8) ≤0.2 ≤4 30
Protective ground conductor connection	On the hou	using with M4 screw
Ventilation clearances, above/below	mm	50
Weight	kg	1


8.11 Service and maintenance

Replacing the Voltage Sensing Module VSM10 in Smart Line Modules Chassis and Active Interface Modules Chassis

When replacing a Voltage Sensing Module VSM10 in an Active Interface Module Chassis or Smart Line Module Chassis, observe the following application cases:

1. Replacing a VSM10 with article number 6SL3053-0AA00-3AA0 by a VSM10 with article number 6SL3053-0AA00-3AA1:

It is NOT permissible that the connector jumper 1 at terminal X530 at the lower side of the VSM10 is removed!

2. Replacing a VSM10 with article number 6SL3053-0AA00-3AA1 by a VSM10 with article number 6SL3053-0AA00-3AA1:

Proceed with the connector jumper (1) at terminal X530 of the new VSM10 (spare part) just the same as at the previously installed VSM10.

Electric shock due to incorrect replacement of spare parts

If you remove the connector jumper at terminal X530 when replacing a VSM10 with article number 6SL3053-0AA00-3AA0 by a VSM10 with article number 6SL3053-0AA00-3AA1, then a hazardous voltage is present in the Active Interface Module Chassis or Smart Line Module Chassis. Touching live components can result in death or severe injury.

• When replacing the VSM10 proceed as specified above.

8.11 Service and maintenance

Encoder system connection

9.1 Introduction

The encoder system should be connected to SINAMICS S120 via DRIVE-CLiQ.

Motors with DRIVE-CLiQ interfaces (e.g. synchronous motors 1FK7 and 1FT7, and induction motors 1PH7 and 1PH8) are designed for this purpose. These motors simplify commissioning and diagnostics because the motor and encoder type are identified automatically.

Motors and external encoders without DRIVE-CLiQ interface

Motors without DRIVE-CLiQ interfaces, as well as external encoders without integrated DRIVE-CLiQ interface, must be connected via Sensor Modules to enable the encoder and temperature signals to be evaluated. Sensor Modules Cabinet-Mounted (SMC) are available for installation in control cabinets and Sensor Modules External (SME) for installation outside control cabinets.

If not otherwise specified, only one encoder system can be connected to each Sensor Module.

Motors and external encoders with DRIVE-CLiQ interface

Motors with DRIVE-CLiQ interfaces can be connected to the associated Motor Module directly via the MOTION-CONNECT DRIVE-CLiQ cables available. The connection of the MOTION-CONNECT DRIVE-CLiQ cable at the motor has degree of protection IP67.

The DRIVE-CLiQ interface supplies the motor encoder via the integrated 24 V DC supply and transfers the motor encoder and temperature signals and the electronic rating plate data, such as a unique identification number, rated data (voltage, current, torque) directly to the Control Unit. Different encoder cables are therefore no longer required for the various encoder types, e.g. resolvers or absolute encoders. Wiring can be effected throughout with a MOTION-CONNECT DRIVE-CLiQ cable.

DRIVE-CLiQ encoder

A DRIVE-CLiQ encoder is an absolute encoder with integrated DRIVE-CLiQ interface (see Chapter DRIVE-CLiQ encoder (Page 311)).

9.2 Overview of Sensor Modules

9.2 Overview of Sensor Modules

Sensor Modules Cabinet-Mounted (SMC)

Sensor Modules Cabinet-Mounted SMC10, SMC20, SMC30 and SMC40 can be ordered and configured separately. They are used when a motor with a DRIVE-CLiQ interface is not available or when external encoders in addition to the motor encoder are required. Only one encoder system may be connected to the Sensor Modules Cabinet-Mounted SMC10, SMC20 and SMC30. The SMC40 supports two encoder systems. The Sensor Modules Cabinet-Mounted evaluate these measuring systems and convert the calculated values to DRIVE-CLiQ. Motor or encoder data are not saved.

Note

The Sensor Module Cabinet-Mounted supplies the power to the encoder; however, the Sensor Module Cabinet-Mounted must be provided separately with 24 V DC.

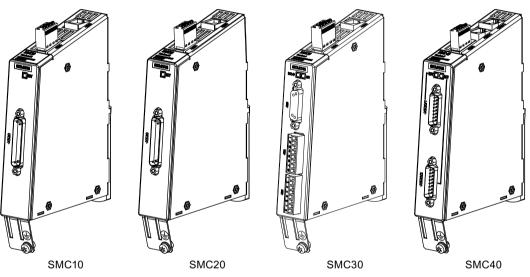
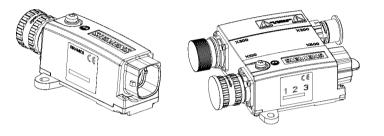


Figure 9-1 Overview of Sensor Modules Cabinet-Mounted (SMC)

Sensor Modules External (SME)

The Sensor Modules External SME20, SME25, SME120, and SME125 are only intended for use on machines (in North America, in accordance with the NFPA 79 "Electrical Standard for Industrial Machinery"). It is not permissible to connect DRIVE-CLiQ interfaces to other networks, e.g. Ethernet, but only to the DRIVE-CLiQ interfaces of the components.


9.2 Overview of Sensor Modules

Direct encoder systems outside the cabinet can be connected to the Sensor Modules External. The Sensor Modules External evaluate these encoder systems and convert the calculated values to DRIVE-CLiQ. No motor or encoder data is stored in the Sensor Modules External.

Note

The Sensor Module External provides the encoder power supply. The power supply for the Sensor Module External is provided from the connected DRIVE-CLiQ cable. This fact must be taken into consideration when the DRIVE-CLiQ cable is selected.

The Sensor Modules External have a higher degree of protection (IP67) and are therefore suitable for installation outside the cabinet.

SME125

SME20/25 SME120 Figure 9-2 Overview of Sensor Modules External (SME)

Connectable encoder systems

	SMC				SME			
Encoder systems	SMC10	SMC20	SMC30	SMC40	SME20	SME25	SME120	SME125
Resolver	Yes	-	-	-	-	-	-	-
Incremental encoder sin/cos (1 Vpp) with/without reference signal	-	Yes	-	-	Yes	-	Yes	-
Incremental encoder TTL / HTL	-	-	Yes	-	-	-	-	-
EnDat 2.1 absolute encoder	-	Yes	-	-	-	Yes	-	Yes
EnDat 2.2 absolute encoder with order designation EnDat01 or EnDat02	-	Yes	-	-	-	Yes	-	Yes
EnDat 2.2 absolute encoder with order designation EnDat22	-	-	-	Yes	-	-	-	-

Table 9-1Overview of the connectable encoder systems

9.3 Safety instructions for Sensor Modules and encoders

		SMC			SME			
Encoder systems	SMC10	SMC20	SMC30	SMC40	SME20	SME25	SME120	SME125
Absolute encoder SSI	-	Yes ¹⁾	Yes ²⁾	-	-	Yes ¹⁾	-	Yes ¹⁾
Temperature evaluation	Yes	Yes	Yes	-	Yes ³⁾	-	Yes (protec- tive elec- trical separa- tion)	Yes (protec- tive elec- trical separa- tion)

¹⁾ Only possible for SSI encoders with a 5 V supply

²⁾ Possible for SSI encoders with a 5 V or 24 V supply

³⁾ With specified 6FX8002-2CA88 adapter cable

9.3 Safety instructions for Sensor Modules and encoders

NOTICE

Devices damaged by disconnecting/connecting encoder lines during operation

Disconnecting or connecting plug-in connections during operation can damage devices or cause malfunctions.

• Only disconnect or connect the encoder cables to Siemens motors in a voltage-free state if hot-plugging has not been specifically released. When using direct measuring systems (third-party encoders), ask the manufacturer whether it is permissible to disconnect/ connect under voltage.

NOTICE

Damage when connecting an impermissible number of encoder systems

If more than the maximum permissible number of encoder systems are connected to a Sensor Module, this will cause damage.

- At a Sensor Module only connect the maximum permissible number of encoder systems.
 - Sensor Modules SMC10, SMC20 and SMC30: Single-encoder system
 - Sensor Module SMC40: Two-encoder systems
 - Sensor Modules SMEx: Single-encoder system

Note

Encoder failures due to encoder signal disturbances

Unfavorable material combinations generate static electricity between the belt pulley and the belt. This electrostatic charge (several kV) can discharge via the motor shaft and the encoder, which results in disturbance of the encoder signals (encoder error).

• Use an antistatic version of the belt (special conductive polyurethane mixture).

Note

Diminished level of interference immunity due to equalizing currents via the electronics ground

Ensure that there are no electrical connections between the encoder system housing and the signal cables, or the encoder system electronics.

If this is not carefully observed, under certain circumstances the system will not be able to reach the required interference immunity level (there is then a danger of equalization currents flowing through the electronics ground).

NOTICE

Damage through use of incorrect DRIVE-CLiQ cables

The use of incorrect or unreleased DRIVE-CLiQ cables can cause damage or functional faults to devices or the system.

 Only use suitable DRIVE-CLiQ cables that have been released by Siemens for the particular application.

Note

Function equipotential bonding for distributed DRIVE-CLiQ nodes

Integrate all of the components that are connected via DRIVE-CLiQ in the functional equipotential bonding concept. You make the connection by mounting on bare metallic machine and plant units that are all connected to one another.

Alternatively, you can establish equipotential bonding with a conductor (min. 6 mm²), which is routed as far as possible in parallel to the DRIVE-CLiQ cable. This involves all distributed DRIVE-CLiQ nodes, e.g. DME20, SME20, SME25, SME120, SME125.

Note

Malfunctions due to polluted DRIVE-CLiQ interfaces

Malfunctions can occur in the system through the use of polluted DRIVE-CLiQ interfaces.

• Cover unused DRIVE-CLiQ interfaces with the supplied blanking covers.

9.4 Sensor Module Cabinet-Mounted SMC10

9.4.1 Description

The Sensor Module Cabinet-Mounted SMC10 is an expansion module for snapping on to a standard mounting rail acc. to EN 60715. It evaluates encoder signals and transmits the speed, actual position value, rotor position and, if necessary, the motor temperature via DRIVE-CLiQ to the Control Unit.

The SMC10 is used to evaluate sensor signals from resolvers.

9.4.2 Interface description

9.4.2.1 Overview

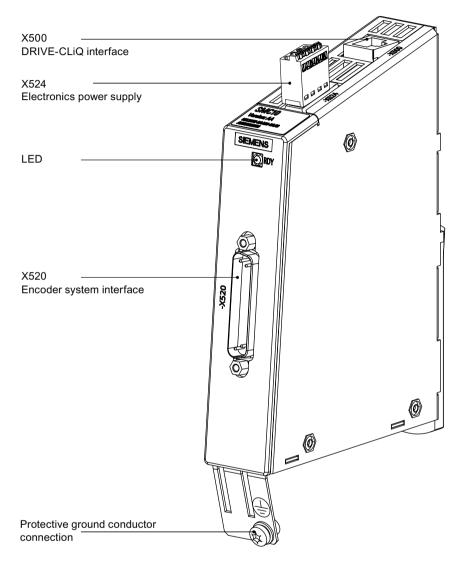


Figure 9-3 Interface overview for the SMC10

9.4.2.2 X500 DRIVE-CLiQ interface

	Pin	Signal name	Technical data
	1	ТХР	Transmit data +
P	2	TXN	Transmit data -
* E ¹	3	RXP	Receive data +
	4	Reserved, do not use	-
	5	Reserved, do not use	-
	6	RXN	Receive data -
	7	Reserved, do not use	-
	8	Reserved, do not use	-
	А	Reserved, do not use	-
	В	M (0 V)	Electronics ground
Connector type	DRIVE-CL	iQ socket	

Table 9-2 X500: DRIVE-CLiQ interface

The blanking cover for the DRIVE-CLiQ port is included in the scope of delivery. Blanking covers (50 x) Article No:: 6SL3066-4CA00-0AA0

9.4.2.3 X520 encoder system interface

	Pin	Signal name	Technical data					
	1	Reserved, do not use	-					
	2	Reserved, do not use	-					
	3	S2	Resolver signal A (sin+)					
• 25	4	S4	Inverted resolver signal A (sin-)					
	5	Ground	Ground (for internal shield)					
	6	S1	Resolver signal B (cos+)					
	7	S3	Inverted resolver signal B (cos-)					
	8	Ground	Ground (for internal shield)					
	9	R1	Resolver excitation positive					
	10	Reserved, do not use	-					
	11	R2	Resolver excitation negative					
1 1	12	Reserved, do not use	-					
	13	+ Temp ¹⁾	Pt1000 / KTY84-130 / PTC temperature sensor					
	14	Reserved, do not use	-					
	15	Reserved, do not use	-					
	16	Reserved, do not use	-					
	17	Reserved, do not use	-					
	18	Reserved, do not use	-					
	19	Reserved, do not use	-					
	20	Reserved, do not use	-					
	21	Reserved, do not use	-					
	22	Reserved, do not use	-					
	23	Reserved, do not use	-					
	24	Ground	Ground (for internal shield)					
	25	- Temp ¹⁾	Pt1000 / KTY84-130 / PTC temperature sensor					
Connector type:	25-pin SL	JB D connector						
Measuring currer	it via tempe	Measuring current via temperature sensor connection: 2 mA						

Table 9-3	X520: Encoder system	interface
	AJZ0. LICOUCI System	muchace

¹⁾ Accuracy of the temperature measurement (temperature sensor, including evaluation):

- Pt1000: ±5 °C (Pt1000 tolerance class B acc. to DIN EN 60751)

- KTY: ±7 °C
- -PTC: ±5 °C

NOTICE

Damage to motor due to incorrectly connected KTY temperature sensor

If a KTY temperature sensor is connected with incorrect polarity, it is not possible to detect when the motor overheats. Overheating can cause damage to the motor.

• Connect a KTY temperature sensor with the correct polarity.

Information for assigning parameters to the KTY temperature sensor can be found in the SINAMICS S120 Function Manual "Drive Functions" in the Chapter "Monitoring and protection functions/thermal motor protection".

Electric shock when the motor temperature sensor insulation fails

When connecting temperature sensors, which have no safe protective separation with respect to the motor power circuit, then arcing to the signal electronics can occur.

- Use motors whose temperature sensors have safe electrical separation.
- Use only connecting cables and connectors with safe electrical separation between the wires of the temperature sensor and the wires of the power circuit.
- If safe electrical separation cannot be guaranteed (for linear motors or third-party motors, for example), use a Sensor Module External (SME120 or SME125) or Terminal Module TM120.

9.4.2.4 X524 Electronics power supply

Terminal	Function	Technical data
+	Electronics power supply (24 V)	Voltage: 24 V DC (20.4 28.8 V)
+	Electronics power supply (24 V)	Current consumption: max. 0.35 A
М	Electronics ground (0 V)	(with encoder system)
М	Electronics ground (0 V)	Max. current via jumper in connector: 20 A (15 A according to UL/CSA)

Table 9-4X524: Electronics power supply

Type: Spring-loaded terminal 6 (Page 320)

The maximum cable length is 30 m.

Note

The two "+" and "M" terminals are jumpered in the connector. This ensures that the supply voltage is looped through.

9.4.3 Connection example

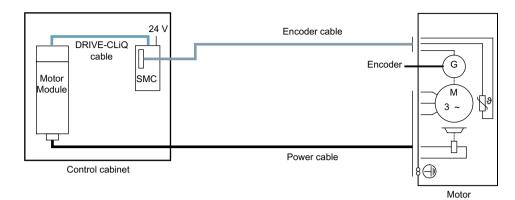


Figure 9-4 Connection of an encoder system via a Sensor Module Cabinet-Mounted (SMC) for a motor without a DRIVE-CLiQ interface

9.4.4 Meaning of the LED

LED	Color	Status	Description, cause	Remedy
RDY READY	-	Off	The electronics power supply is missing or outside the per- missible tolerance range.	-
	Green	Continuous light	The component is ready for operation. Cyclic DRIVE-CLiQ com- munication is taking place.	-
	Orange	Continuous light	DRIVE-CLiQ communication is being established.	-
	Red	Continuous light	This component has at least one fault. Note: The LED is activated irrespective of whether the correspond- ing messages have been reconfigured.	Remove and acknowl- edge the fault.
	Green/re d	Flashing light 0.5 Hz	Firmware is being downloaded.	-
		Flashing light 2 Hz	Firmware download is complete. The system waits for POWER ON.	Carry out a POWER ON.
	Green/ orange or Red/ orange	Flashing light 2 Hz	Component recognition via LED is activated (p0144=1). Note: Whether the LED flashes green/orange or red/orange depends on the status the LED had during activation (setting of param- eter p0144 to "1").	-

9.4.5 Dimension drawing

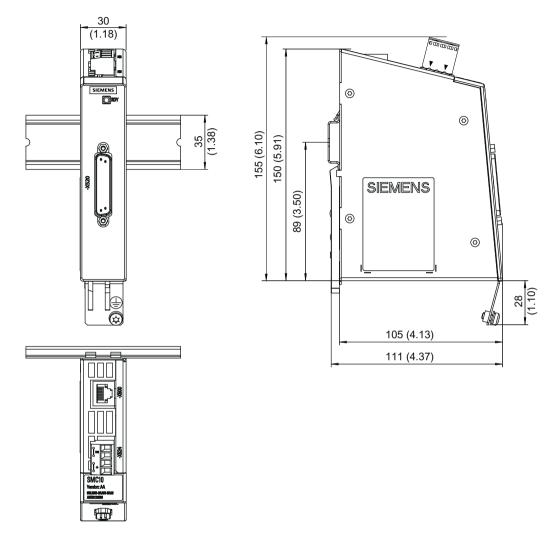
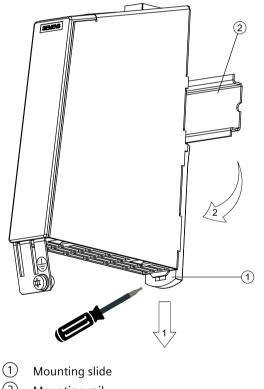


Figure 9-5 Dimension drawing of the Sensor Module Cabinet SMC10, all dimensions in mm and (inches)


9.4.6 Mounting

Installation

- 1. Tilt the component backwards slightly and attach it to the DIN rail using the hooks.
- 2. Swivel the component onto the DIN rail until you hear the mounting slide at the rear latch into position.
- 3. Slide the components along the mounting rail to either the left or right up to their final position.

Removal

- 1. First shift the mounting slide downwards at the lug to release the interlocking with the mounting rail.
- 2. Swivel the component to the front and withdraw it upwards from the DIN rail.

2 Mounting rail

Figure 9-6 Removing from a DIN mounting rail

9.4.7 Technical specifications

	Table 9-6	Technical	specifications
--	-----------	-----------	----------------

6SL3055-0AA00-5AA.	Unit	Value
Electronics power supply Voltage	V _{DC}	24 (20.4 28.8) ≤ 0.2
Current (without encoder system) Power loss Max. cable length	A _{DC} W m	≤ 0.2 ≤ 4 30
Specification Transformation ratio of the resolver (ü) Excitation voltage on the SMC10 when ü=0.5 Amplitude monitoring threshold (secondary tracks) of the SMC10	V _{rms} V _{rms}	0.5 4.1 0.76
Excitation voltage (cannot be parameterized)	V _{rms}	4.1
Excitation frequency (synchronized to the current controller clock cycle)	kHz	5 to 16
Protective ground conductor connection	At the housi	ng with M4 screw
Max. encoder cable length	m	130
Ventilation clearances, above/below	mm	50
Weight	kg	0.41

Table 9-7 Max. frequency that can be evaluated (speed)

Resolver		Max. speed resolver / motor		
Number of poles	Number of pole pairs	8 kHz / 125 µs	4 kHz / 250 μs	2 kHz / 500 µs
2-pole	1	120000 rpm	60000 rpm	30000 rpm
4-pole	2	60000 rpm	30000 rpm	15000 rpm
6-pole	3	40000 rpm	20000 rpm	10000 rpm
8-pole	4	30000 rpm	15000 rpm	7500 rpm

The ratio between the ohmic resistance R and the inductance L (the primary winding of the resolver) determines whether the resolver can be evaluated with the SMC10. See the following diagram:

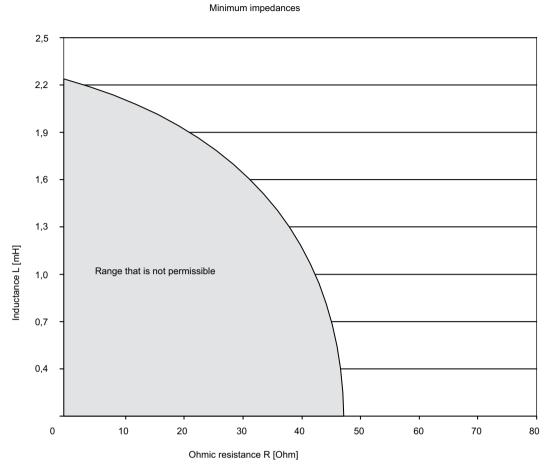


Figure 9-7 Rotor impedances that can be connected with excitation frequency f = 5000 Hz

To check as shown in the figure above, the impedances Z_{rs} or Z_{ro} (impedance between R1 and R2 with short-circuited or open outputs) from the encoder manufacturer's data sheet must be used.

9.5 Sensor Module Cabinet-Mounted SMC20

9.5.1 Description

The Sensor Module Cabinet-Mounted SMC20 is an expansion module for snapping on to a standard mounting rail acc. to EN 60715. It evaluates encoder signals and transmits the speed, actual position, rotor position and, if applicable, the motor temperature and reference point via DRIVE-CLiQ to the Control Unit.

Following encoder systems can be connected:

- Incremental encoder SIN/COS (1 Vpp) with and without reference signal
- Absolute encoder EnDat 2.1 (with SIN/COS incremental signals 1 Vpp)
- Absolute encoder EnDat 2.2 with order designation EnDat01 or EnDat02

- Absolute encoder SSI (with 5 V supply)
- Absolute encoder SSI (with 5 V supply) with SIN/COS incremental signals 1 Vpp

9.5.2 Interface description

9.5.2.1 Overview

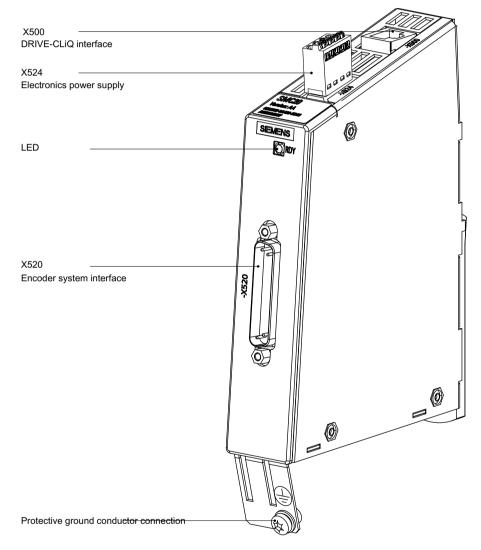


Figure 9-8 Interface description of the SMC20

9.5.2.2 X500 DRIVE-CLiQ interface

Table 9-8	X500: DRIVE-CLiQ interface

	Pin	Signal name	Technical data
	1	ТХР	Transmit data +
	2	TXN	Transmit data -
* The second sec	3	RXP	Receive data +
	4	Reserved, do not use	-
	5	Reserved, do not use	-
	6	RXN	Receive data -
	7	Reserved, do not use	-
	8	Reserved, do not use	-
	A	Reserved, do not use	-
	В	M (0 V)	Electronics ground
Connector type	DRIVE-CLiQ socket		

The blanking cover for the DRIVE-CLiQ port is included in the scope of delivery. Blanking covers (50 x) Article No:: 6SL3066-4CA00-0AA0

9.5.2.3 X520 encoder system interface

	Pin	Signal name	Technical data
	1	P encoder	Encoder power supply
	2	M encoder	Ground, encoder power supply
	3	A	Incremental signal A
• 25	4	A*	Inverse incremental signal A
	5	Ground	Ground (for internal shield)
	6	В	Incremental signal B
	7	B*	Inverse incremental signal B
	8	Ground	Ground (for internal shield)
	9	Reserved, do not use	-
	10	Clock	Clock, EnDat interface, SSI clock
	11	Reserved, do not use	-
	12	Clock*	Inverted clock, EnDat interface, inverted SSI clock
	13	+Temp ¹⁾	Pt1000 / KTY84-130 / PTC temperature sensor
	14	P sense	Sense input encoder power supply
	15	Data	Data, EnDat interface, SSI data
	16	M sense	Ground sense input encoder power supply
	17	R	Reference signal R
	18	R*	Inverse reference signal R
	19	С	Absolute track signal C
	20	C*	Inverse absolute track signal C
	21	D	Absolute track signal D
	22	D*	Inverse absolute track signal D
	23	Data*	Inverse data, EnDat interface, Inverse SSI data
	24	Ground	Ground (for internal shield)
	25	-Temp ¹⁾	Pt1000 / KTY84-130 / PTC temperature sensor
Connector type:	25-pin S	UB D connector	

Table 9-9X520: Encoder system interface

Measuring current via temperature sensor connection: 2 mA

¹⁾ Accuracy of the temperature measurement (temperature sensor, including evaluation):

- Pt1000: ±5 °C (Pt1000 tolerance class B acc. to DIN EN 60751)

- KTY: ±7 °C

- PTC: ±5 °C

NOTICE

Damage to motor due to incorrectly connected KTY temperature sensor

If a KTY temperature sensor is connected with incorrect polarity, it is not possible to detect when the motor overheats. Overheating can cause damage to the motor.

• Connect a KTY temperature sensor with the correct polarity.

Information for assigning parameters to the KTY temperature sensor can be found in the SINAMICS S120 Function Manual "Drive Functions" in the Chapter "Monitoring and protection functions/thermal motor protection".

🔨 warning

Electric shock when the motor temperature sensor insulation fails

When connecting temperature sensors, which have no safe protective separation with respect to the motor power circuit, then arcing to the signal electronics can occur.

- Use motors whose temperature sensors have safe electrical separation.
- Use only connecting cables and connectors with safe electrical separation between the wires of the temperature sensor and the wires of the power circuit.
- If safe electrical separation cannot be guaranteed (for linear motors or third-party motors, for example), use a Sensor Module External (SME120 or SME125) or Terminal Module TM120.

9.5.2.4 X524 Electronics power supply

Table 9-10	X524: Electronics power supply
------------	--------------------------------

	Terminal	Function	Technical data
	+	Electronics power supply (24 V)	Voltage: 24 V DC (20.4 28.8 V)
E E	+	Electronics power supply (24 V)	Current consumption: max. 0.35 A
	М	Electronics ground (0 V)	(with encoder system)
	М	Electronics ground (0 V)	Max. current via jumper in connector: 20 A (15 A according to UL/CSA)
Type: Spring-loaded terminal 6 (Page 320)			

The maximum cable length is 30 m.

Note

The two "+" and "M" terminals are jumpered in the connector. This ensures that the supply voltage is looped through.

9.5.3 Connection example

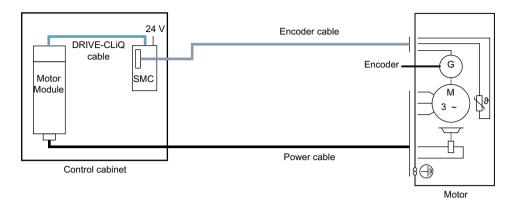


Figure 9-9 Connection of an encoder system via a Sensor Module Cabinet-Mounted (SMC) for a motor without a DRIVE-CLiQ interface

9.5.4 Meaning of the LED

LED	Color	Status	Description, cause	Remedy
RDY READY	-	Off	The electronics power supply is missing or outside the permis- sible tolerance range.	-
	Green	Continuous light	The component is ready for operation. Cyclic DRIVE-CLiQ com- munication is taking place.	-
	Orange	Continuous light	DRIVE-CLiQ communication is being established.	-
	Red	Continuous light	This component has at least one fault. Note: The LED is activated irrespective of whether the corresponding messages have been reconfigured.	Remove and ac- knowledge the fault.
	Green / Red	Flashing light 0.5 Hz	Firmware is being downloaded.	-
		Flashing light 2 Hz	Firmware download is complete. The system waits for POWER ON.	Carry out a POWER ON.
	Green / Orange or Red / Orange	Flashing light 2 Hz	Component recognition via LED is activated (p0144=1). Note: Whether the LED flashes green/orange or red/orange depends on the status the LED had during activation (setting of param- eter p0144 to "1").	-

Table 9-11Meaning of the LEDs on the Sensor Module Cabinet-Mounted SMC20

9.5.5 Dimension drawing

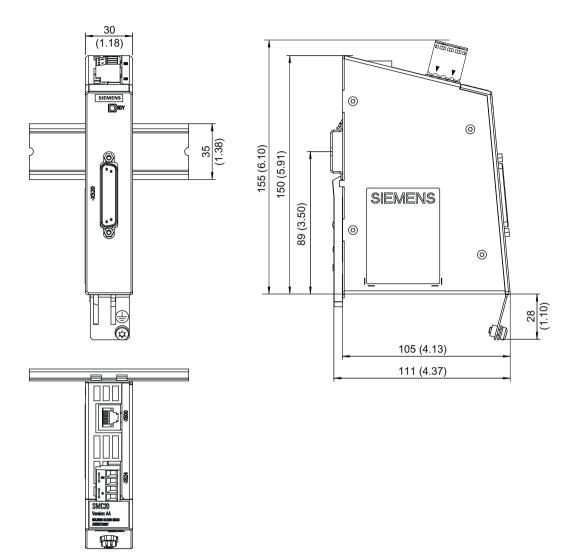
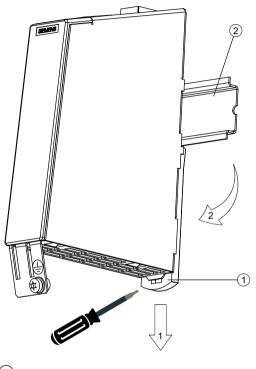


Figure 9-10 Dimension drawing of the Sensor Module Cabinet SMC20, all data in mm and (inches)


9.5.6 Mounting

Installation

- 1. Tilt the component backwards slightly and attach it to the DIN rail using the hooks.
- 2. Swivel the component onto the DIN rail until you hear the mounting slide at the rear latch into position.
- 3. Slide the components along the mounting rail to either the left or right up to their final position.

Removal

- 1. First shift the mounting slide downwards at the lug to release the interlocking with the mounting rail.
- 2. Swivel the component to the front and withdraw it upwards from the DIN rail.

- 1 Mounting slide
- 2 Mounting rail
- Figure 9-11 Removing from a DIN mounting rail

9.5.7 Technical data

Table 9-12 Technical data

6SL3055-0AA00-5BA.	Unit	Value
Electronics power supply		
Voltage	V _{DC}	24 (20.4 28.8)
Current (without encoder system)	A _{DC}	≤ 0.2
Power loss	W	≤ 4
Max. Cable length	m	30
Encoder system power supply		
Voltage	V _{DC}	5 V DC (with remote sense) ¹⁾
Current	A _{DC}	0.35
Encoder frequency that can be evaluated (f _{encoder})	kHz	≤ 500
SSI baud rate ²⁾	kBd	100 - 1000 ³⁾
Max. encoder cable length	m	100

6SL3055-0AA00-5BA.	Unit	Value
Protective ground conductor connection	At the housing with M4 screw	
Ventilation clearances, above/below	mm	50
Weight	kg	0.41

¹⁾ A controller compares the encoder system supply voltage - sensed via the Remote Sense cables - with the reference supply voltage of the encoder system, and adjusts the supply voltage for the encoder system at the output of the sensor module until the required supply voltage is obtained directly at the encoder system (only for 5 V encoder system power supply).

²⁾ Only possible for SSI encoders with 5 V supply.

³⁾ See the diagram "Maximum cable length depending on the SSI baud rate for SSI encoders"

Note

Current controller clock cycle

For a current controller cycle clock of 31.25 $\mu s,$ use an SMC20 with Article No. 6SL3055-0AA00-5BA3.

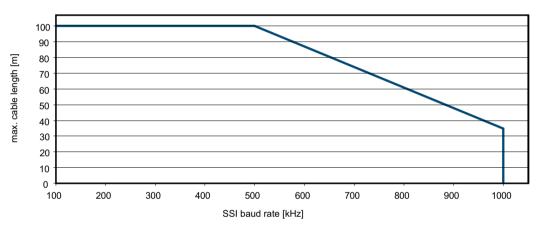


Figure 9-12 Maximum cable lengths depending on the SSI baud rate for SSI encoders

9.6 Sensor Module Cabinet-Mounted SMC30

9.6.1 Description

The Sensor Module Cabinet-Mounted SMC30 is an expansion module for snapping on to a standard mounting rail acc. to EN 60715. It evaluates encoder signals and transmits the speed, actual position, and, if applicable, the motor temperature and reference point via DRIVE-CLiQ to the Control Unit.

The SMC30 is used to evaluate encoder signals from encoders with TTL, HTL, or SSI interfaces.

A combination of TTL/HTL signal and SSI absolute signal is possible at terminals X521/X531, if both signals are derived from the same measured variable.

9.6.2 Interface description

9.6.2.1 Overview

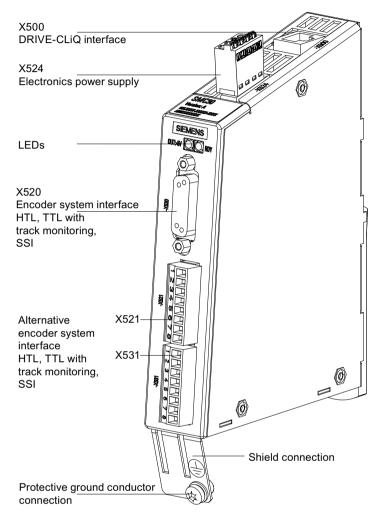


Figure 9-13 Interface description of the SMC30

9.6.2.2 X500 DRIVE-CLiQ interface

Table 9-13	X500: DRIVE-CLiQ interface

	Pin	Signal name	Technical data		
	1	ТХР	Transmit data +		
	2	TXN	Transmit data -		
* E L	3	RXP	Receive data +		
	4	Reserved, do not use	-		
	5	Reserved, do not use	-		
	6	RXN	Receive data -		
	7	Reserved, do not use	-		
	8	Reserved, do not use	-		
	А	Reserved, do not use	-		
	В	M (0 V)	Electronics ground		
Connector type	DRIVE-CLIC	Q socket			

The blanking cover for the DRIVE-CLiQ port is included in the scope of delivery. Blanking covers (50 x) Article No:: 6SL3066-4CA00-0AA0

9.6.2.3 X520 encoder system interface

Table 9-14X520: Encoder system interface

Pin	Signal name	Technical data
1	+Temp ¹⁾	Pt1000 / KTY84-130 / PTC temperature sensor
2	Clock	SSI clock
3	Clock*	Inverse SSI clock
4	P encoder 5 V / 24 V	Encoder power supply
5	P encoder 5 V / 24 V	
6	P sense	Sense input encoder power supply
7	M encoder (M)	Ground, encoder power supply
8	- Temp ¹⁾	Pt1000 / KTY84-130 / PTC temperature sensor
9	M sense	Ground sense input
10	R	Reference signal R
11	R*	Inverse reference signal R
12	В*	Inverse incremental signal B
13	В	Incremental signal B
14	A* / data*	Inverted incremental signal A/inverted SSI data
15	A / data	Incremental signal A/SSI data

	Pin	Signal name	Technical data
Connector type:	15-pin Sub-D socket		
Measuring current via temperature sensor connection: 2 mA			

1) Accuracy of the temperature measurement (temperature sensor, including evaluation):

- Pt1000: ±5 °C (Pt1000 tolerance class B acc. to DIN EN 60751)

- KTY: ±7 °C

- PTC: ±5 °C

NOTICE

Damage to the encoder due to incorrect supply voltage

The encoder supply can be parameterized to 5 V or 24 V. Incorrect parameter assignment can cause damage to the encoder.

• Select the appropriate supply voltage.

NOTICE

Damage to motor due to incorrectly connected KTY temperature sensor

If a KTY temperature sensor is connected with incorrect polarity, it is not possible to detect when the motor overheats. Overheating can cause damage to the motor.

• Connect a KTY temperature sensor with the correct polarity.

Information for assigning parameters to the KTY temperature sensor can be found in the SINAMICS S120 Function Manual "Drive Functions" in the Chapter "Monitoring and protection functions/thermal motor protection".

Electric shock when the motor temperature sensor insulation fails

When connecting temperature sensors, which have no safe protective separation with respect to the motor power circuit, then arcing to the signal electronics can occur.

- Use motors whose temperature sensors have safe electrical separation.
- Use only connecting cables and connectors with safe electrical separation between the wires of the temperature sensor and the wires of the power circuit.
- If safe electrical separation cannot be guaranteed (for linear motors or third-party motors, for example), use a Sensor Module External (SME120 or SME125) or Terminal Module TM120.

9.6.2.4 X521 / X531 alternative encoder system interface

	Pin	Designation	Technical data
X521	1	A	Incremental signal A
	2	A*	Inverse incremental signal A
	3	В	Incremental signal B
ω	4	B*	Inverse incremental signal B
4	5	R	Reference signal R
5	6	R*	Inverse reference signal R
6	7	CTRL	Control signal
	8	М	Ground
X531	1		Encoder nouver supply
	· · · · · · · · · · · · · · · · · · ·	P_Encoder 5 V / 24 V	Encoder power supply
	2	M_Encoder	Ground, encoder power supply
2	3	-Temp ¹⁾	Pt1000 / KTY84-130 / PTC temperature sensor
3	4	+Temp ¹⁾	Pt1000 / KTY84-130 / PTC temperature sensor
	5	Clock	SSI clock
5	6	Clock*	Inverse SSI clock
6	7	Data	SSI data
7 8	8	Data*	Inverse SSI data
		ction: 1.5 mm ² (AWG 16) perature sensor connection 2 m/	Α.

Table 9-15	X521/X531: Alternative encoder system interface
------------	---

¹⁾ Accuracy of the temperature measurement (temperature sensor, including evaluation):

- Pt1000: ±5 °C (Pt1000 tolerance class B acc. to DIN EN 60751)

²⁾ Because the physical transmission media is more robust, the bipolar connection should always be used. The unipolar connection should only be used if the encoder type does not output push-pull signals.

When unipolar HTL encoders are used, A*, B*, and R* on the terminal block must be jumpered with M_Encoder (X531)²⁾.

🔨 WARNING

Electric shock due to unconnected cable shields

Hazardous touch voltages can occur through capacitive cross-coupling due to unconnected cable shields.

• Attach the cable shield to the component for the encoder system connection at the terminals.

⁻ KTY: ±7 °C

⁻ PTC: ±5 °C

Temperature sensor connection

NOTICE

Damage to motor due to incorrectly connected KTY temperature sensor

If a KTY temperature sensor is connected with incorrect polarity, it is not possible to detect when the motor overheats. Overheating can cause damage to the motor.

• Connect a KTY temperature sensor with the correct polarity.

Information for assigning parameters to the KTY temperature sensor can be found in the SINAMICS S120 Function Manual "Drive Functions" in the Chapter "Monitoring and protection functions/thermal motor protection".

Note

The maximum length of the temperature sensor cable is 100 m. The cables must be shielded.

WARNING

Electric shock when the motor temperature sensor insulation fails

When connecting temperature sensors which are not isolated from the motor power circuit according to safe electrical separation, arcing to the signal electronics may occur.

- Use motors whose temperature sensors have safe electrical separation.
- Use only connecting cables and connectors with safe electrical separation between the wires of the temperature sensor and the wires of the power circuit.
- If safe electrical separation cannot be guaranteed (for linear motors or third-party motors, for example), use a Sensor Module External (SME120 or SME125) or Terminal Module TM120.

9.6.2.5 X524 Electronics power supply

Table 9-16 X524: Electronics power supply

	Terminal	Function	Technical data	
	+	Electronics power supply (24 V)	Voltage: 24 V DC (20.4 28.8 V)	
	+	Electronics power supply (24 V)	Current consumption: max. 0.55 A	
	М	Electronics ground (0 V)	(with encoder system)	
	М	Electronics ground (0 V)	Max. current via jumper in connector: 20 A (15 A according to UL/CSA)	
Type: Spring-l	oaded term	inal 6 (Page 320)	•	

The maximum cable length is 30 m.

Note

The two "+" and/or "M" terminals are jumpered in the connector. This ensures that the supply voltage is looped through.

9.6.3 Connection examples

Connection example 1: HTL encoder, bipolar, with reference signal

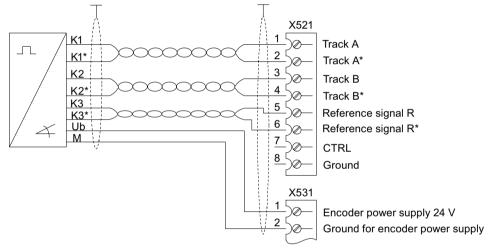
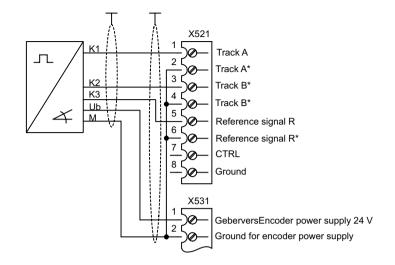



Figure 9-14 Connection example 1: HTL encoder, bipolar, with reference signal Signal cables must be twisted in pairs to improve immunity to induced noise.

Connection example 2: HTL encoder, unipolar, with reference signal

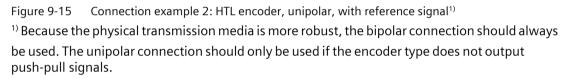


Figure 9-16 Photo of connection example 2: SMC30, 30 mm wide

The photo above shows the wire jumpers for connecting unipolar HTL encoders with a reference signal.

9.6.4 Meaning of the LEDs

 Table 9-17
 Meaning of LEDs on the Sensor Module Cabinet SMC30

LED	Color	Status	Description, cause	Remedy
RDY READY	– Off		The electronics power supply is missing or outside the permis- sible tolerance range.	-
Green		Continu- ous light	The component is ready for operation. Cyclic DRIVE-CLiQ com- munication is taking place.	-
	Orange	Continu- ous light	DRIVE-CLiQ communication is being established.	-
	Red	Continu- ous light	This component has at least one fault. Note: LED is controlled irrespective of the corresponding messages being reconfigured.	Correct fault and ac- knowledge
	Green/red	Flashing light 0.5 Hz	Firmware is being downloaded.	_
	Green/red	Flashing light 2 Hz	Firmware download is complete. The system waits for POWER ON.	Carry out a POWER ON
	Green/ orange or Red/ orange	Flashing light 2 Hz	Component recognition via LED is activated (p0144=1). Note: Whether the LED flashes green/orange or red/orange depends on the status the LED had during activation (setting of param- eter p0144 to "1").	-
OUT > 5 V	-	Off	The electronics power supply is missing or outside permissible tolerance range. Power supply \leq 5 V.	-
	Orange	Continu- ous light	The electronics power supply for the encoder system is avail- able. Power supply > 5 V	-

9.6.5 Dimension drawing

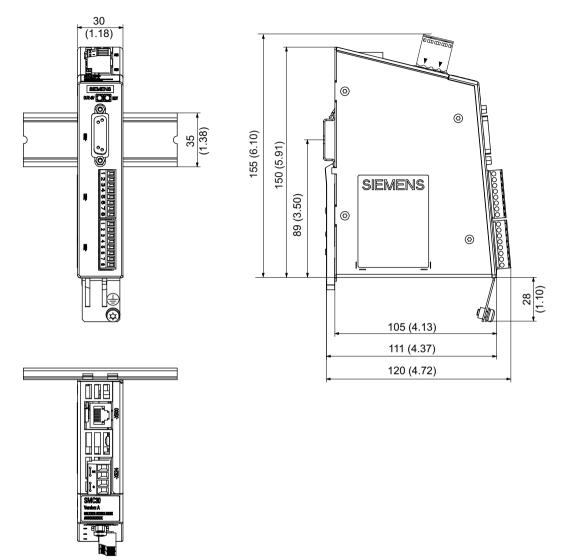
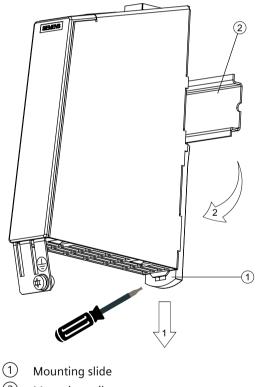


Figure 9-17 Dimension drawing of the Sensor Module Cabinet SMC30, all data in mm and (inches)

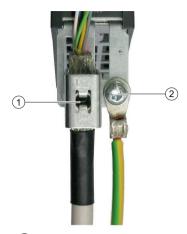

9.6.6 Mounting

Installation

- 1. Tilt the component backwards slightly and attach it to the DIN rail using the hooks.
- 2. Swivel the component onto the DIN rail until you hear the mounting slide at the rear latch into position.
- 3. Slide the components along the mounting rail to either the left or right up to their final position.

Removal

- 1. First shift the mounting slide downwards at the lug to release the interlocking with the mounting rail.
- 2. Swivel the component to the front and withdraw it upwards from the DIN rail.



2 Mounting rail

Figure 9-18 Removing from a DIN mounting rail

Protective conductor connection and shield support 9.6.7

Shield contacts are only required if the system is connected to X521/X531.

(1)Shield connection terminal, Weidmüller company, type: KLBUE CO1, Article number: 1753311001

(2)Protective conductor connection M4 / 1.8 Nm (15.9 lbf in)

Figure 9-19 Protective conductor connection and shield support

The bending radii of the cables must be observed (see MOTION-CONNECT description).

NOTICE

Damage or faulty operation due to incorrect shielding or inadmissible cable lengths

If the correct shielding procedures or the permissible cable lengths are not observed, it can cause damage or the machine may malfunction.

- Only use shielded cables. •
- Do not exceed the cable lengths stated in the technical data.

9.6.8 **Technical specifications**

Table 9-18 Technical specifications		
6SL3055-0AA00-5CA2	Unit	Value
Electronics power supply Voltage Current (without encoder system) Power loss Max. cable length	V _{DC} A _{DC} W m	24 (20.4 28.8) ≤ 0.2 ≤ 4 30
Encoder system power supply Voltage Current Encoder frequency that can be evaluated (f _{encoder})	V _{DC} A _{DC} kHz	5 (with or without remote sense) ¹⁾ or V_{DC} - 1 V 0.35 \leq 500
	-	

6SL3055-0AA00-5CA2	Unit	Value	
SSI baud rate	kBd	100 - 1000 ²⁾	
Protective ground conductor connection	At the housing with M4 screw		
Ventilation clearances, above/below	mm	50	
Weight	kg	0.41	

¹⁾ A controller compares the encoder system supply voltage - sensed via the Remote Sense cables - with the reference supply voltage of the encoder system, and adjusts the supply voltage for the encoder system at the output of the sensor module until the required supply voltage is obtained directly at the encoder system (only for 5 V encoder system power supply). Remote Sense only to X520.

²⁾ See the diagram "Maximum cable length depending on the SSI baud rate for SSI encoders"

Connectable encoder systems

Parameter	Designation	Threshold	Min.	Max.	Unit
High signal level (TTL bipolar at X520 or X521/X531) ¹⁾	U _{Hdiff}	-	2	5	V
Low signal level (TTL bipolar at X520 or X521/X531) ¹⁾	U _{Ldiff}	-	-5	-2	V
High signal level	U _H ³⁾	High	17	V _{cc}	V
(HTL unipolar)		Low	10	V _{cc}	V
Low signal level	U _L ³⁾	High	0	7	V
(HTL unipolar)		Low	0	2	V
High signal level (HTL bipolar) ²⁾	U _{Hdiff}	-	3	V _{cc}	V
Low signal level (HTL bipolar) ²⁾	U _{Ldiff}	-	-V _{cc}	-3	V
High signal level (SSI bipolar at X520 or X521/X531) ¹⁾	U _{Hdiff}	-	2	5	V
Low signal level (SSI bipolar at X520 or X521/X531) ¹⁾	U _{Ldiff}	-	-5	-2	V
Signal frequency	f _s	-	-	500	kHz
Edge clearance	t _{min}	-	100	-	ns
"Zero pulse inactive time" (before and after A=B=high)	t _{Lo}	-	640	(t _{ALo-BHi} - t _{Hi})/2 ⁴⁾	ns
"Zero pulse active time" (while A=B=high and beyond) ⁵⁾	t _{Hi}	-	640	t _{ALo-BHi} - 2 t _{Lo} ⁴⁾	ns

 Table 9-19
 Specification of encoder systems that can be connected

¹⁾ Other signal levels according to the RS 422 standard.

 $^{2)}$ $\,$ The absolute level of the individual signals varies between 0 V and V_{CC} of the encoder system.

³⁾ Only with Article No. 6SL3055-0AA00-5CA2 and firmware version 2.5 SP1 or higher can this value be configured using software. For older firmware releases and Article Nos. less than 6SL3055-0AA00-5CA2, the "low" threshold applies.

⁴⁾ $t_{ALO-BHi}$ is not a specified value, but is the time between the falling edge of track A and the next but one rising edge of track B.

⁵⁾ Additional information on setting the "Zero pulse active time" can be found in the manual: SINAMICS S120, Function Manual, "Tolerant encoder monitoring for SMC30".

	X520 (SUB-D)	X521 (terminal)	X531 (terminal)	Track monitoring	Remote Sense ²⁾		
HTL bipolar 24 V	polar 24 V Yes Yes		Yes		No		
HTL unipolar 24 V ¹⁾	Yes	Yes ¹⁾		Yes ¹⁾		No	No
TTL bipolar 24 V	Yes	Yes		Yes	No		
TTL bipolar 5 V	Yes	Yes		Yes	At X520		
SSI 24 V/5 V	Yes	Yes		No	No		
TTL unipolar		No					

Table 9-20 Encoders that can be connected

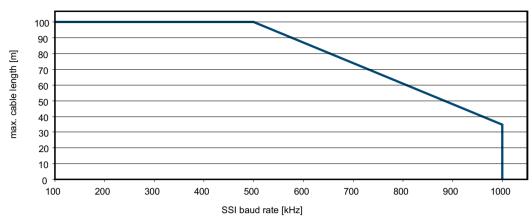
¹⁾ Because the physical transmission media is more robust, the bipolar connection should always be used. The unipolar connection should only be used if the encoder type does not output push-pull signals.

²⁾ A controller compares the encoder system supply voltage - sensed via the Remote Sense cables - with the reference supply voltage of the encoder system, and adjusts the supply voltage for the encoder system at the output of the sensor module until the required supply voltage is obtained directly at the encoder system (only for 5 V encoder system power supply).

Maximum encoder cable lengths

Note

The maximum cable lengths according to the following table must not be exceeded even when longer cable lengths can be calculated.


Table 9-21 Maximum encoder cable length

Encoder type	Maximum encoder cable length in m
TTL ¹⁾	100
HTL unipolar ²⁾	100
HTL bipolar	300
SSI	100 ³⁾

¹⁾ For TTL encoders at X520 \rightarrow Remote Sense \rightarrow 100 m

²⁾ Because the physical transmission media is more robust, the bipolar connection should always be used. The unipolar connection should only be used if the encoder type does not output push-pull signals.

³⁾ See the diagram "Maximum cable length depending on the SSI baud rate for SSI encoders"

SSI encoder

Encoders with 5 V supply connected to X521/X531

For encoders with 5 V supply at X521/X531 (no Remote Sense available), the maximum cable length¹⁾ depends on the encoder current. The following diagram shows an example of a 0.5 mm^2 conductor cross section.

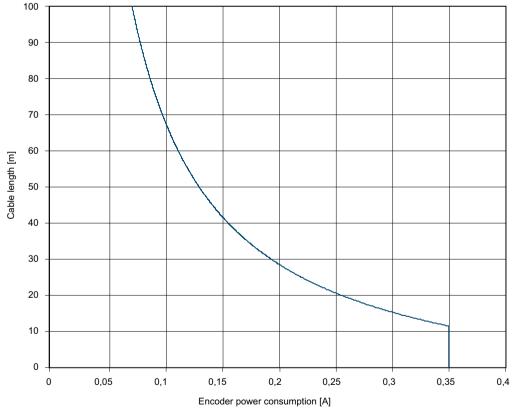


Figure 9-21 Max. cable length as a function of the encoder current drawn

¹⁾When encoders without Remote Sense are used, the permissible cable length is limited to 100 m because the voltage drop depends on the cable length and the encoder current.

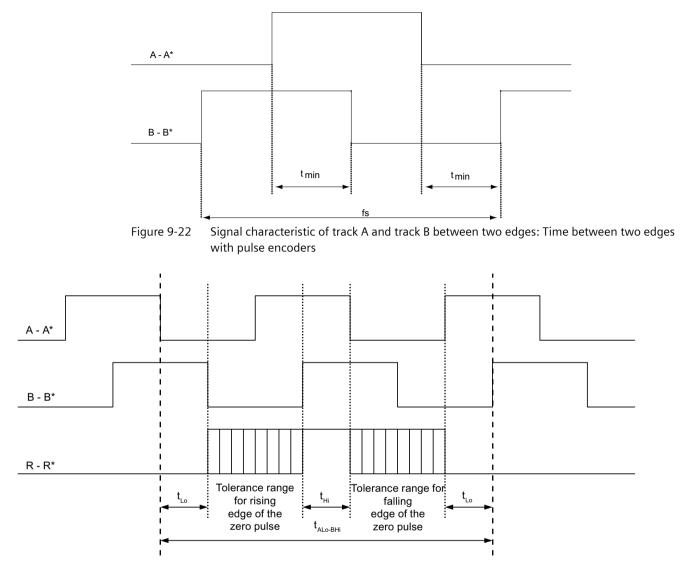


Figure 9-23 Position of the zero pulse to the track signals

9.7 Sensor Module Cabinet-Mounted SMC40

9.7.1 Description

The Sensor Module Cabinet-Mounted SMC40 is an expansion module for snapping on to a standard mounting rail acc. to EN 60715. It is used to convert encoder signals from absolute encoders with EnDat 2.2, order designation EnDat22, to DRIVE-CLiQ and transmit them to the Control Unit. Two encoder systems with EnDat 2.2 order designation EnDat22 can be connected to the SMC40, which are converted to two DRIVE-CLiQ encoder signals independently of each other.

Note

Permissible encoders

- Only use absolute encoders EnDat 2.2 with order designation EnDat22. Do not connect an absolute encoder EnDat 2.2 with the order designation EnDat02.
- Only use absolute encoders (not incremental encoders) with software versions 4.5 and 4.6.
- Do not use any battery-buffered encoders, such as e.g. Heidenhain EBI 1135.

Configuration and commissioning

To make sure that the Sensor Module Cabinet-Mounted SMC40 is integrated into the topology during first commissioning, observe the following connection conditions:

- Connect at least one of the DRIVE-CLiQ interfaces X500/1 or X500/2 on the SMC40 using DRIVE-CLiQ.
- Connect one EnDat encoder to the corresponding encoder interface X520/1 (to X500/1) or X520/2 (to X500/2).
- Operate the SMC40 only in a star topology. The DRIVE-CLiQ sockets X500/1 and X500/2 can **not** be used for a series connection.

Note

The SMC40 will only be subsequently integrated into the actual topology if the DRIVE-CLiQ interfaces X500/. and the corresponding encoder interfaces X520/. are assigned. Without a connected encoder, it is not possible to subsequently integrate the SMC40 into the topology.

Temperature signals

If the EnDat2.2 encoder already evaluates the temperature, the temperature signals can be transferred through the SMC40 via DRIVE-CLiQ.

9.7.2 Interface descriptions

9.7.2.1 Overview

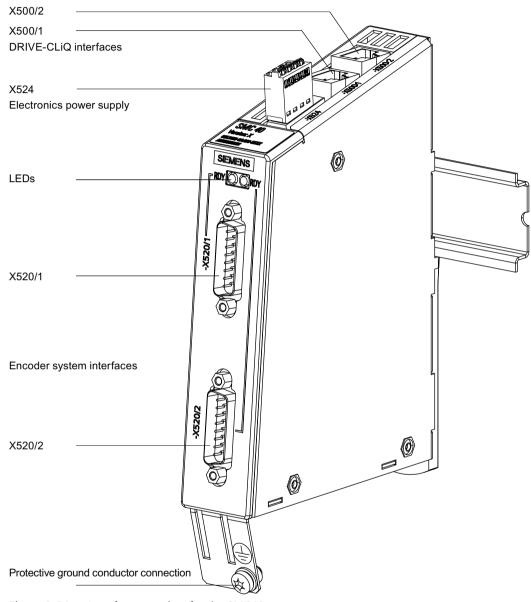


Figure 9-24 Interface overview for the SMC40

Interface assignment

The DRIVE-CLiQ and encoder interfaces of channel 1 and channel 2 are logically completely independently of one another and permanently assigned.

		X500/1 DRIVE-CLiQ socket	X500/2 DRIVE-CLiQ socket	Left RDY LED	Right RDY LED
X520/1	EnDat 2.2 input	channel 1		channel 1	
X520/2	EnDat 2.2 input		channel 2		channel 2

Connector X524 for the electronics power supply is used for both channels.

9.7.2.2 X500/1 and X500/2 DRIVE-CLiQ interfaces

	Pin	Signal name	Technical data
	1	ТХР	Transmit data +
	2	TXN	Transmit data -
	3	RXP	Receive data +
	4	Reserved, do not use	-
	5	Reserved, do not use	-
	6	RXN	Receive data -
	7	Reserved, do not use	-
	8	Reserved, do not use	-
	A	Reserved, do not use	-
	В	M (0 V)	Electronics ground
Connector type	DRIVE-CLiQ s	ocket	

Table 9-22 X500/1 and X500/2: DRIVE-CLiQ interfaces

The blanking covers for the DRIVE-CLiQ interfaces are included in the scope of delivery. Blanking covers (50 x) Article No.: 6SL3066-4CA00-0AA0

Note

The maximum DRIVE-CLiQ cable length is 30 m.

9.7.2.3 X520/1 and X520/2 encoder system interfaces

	Pin	Signal name	Technical data
	1	P encoder	Encoder power supply
	2	M encoder	Ground, encoder power supply
\bigcirc	3	Reserved, do not use	-
	4	Reserved, do not use	-
$\begin{pmatrix} 0 & 15 \\ 0 & 0 \\ 0 & - \end{array}$	5	Data	Data, EnDat interface
0	6	Reserved, do not use	-
00	7	Reserved, do not use	-
0 0	8	Data*	Inverse data EnDat interface
	9	P encoder	Encoder power supply
0 O)	10	Reserved, do not use	-
	11	M encoder	Ground, encoder power supply
$\left[\right) \right]$	12	Reserved, do not use	-
\sim	13	Reserved, do not use	-
	14	Clock	Clock, EnDat interface
15	15	Clock*	Inverse clock EnDat interface
nector :	15-pin Sl	JB D connector	

Table 9-23 X520/1 and X520/2: Encoder system interfaces

Note

The maximum cable length to encoder systems is 100 m. The specified supply voltage of the encoder must be observed.

Note

Pins 1/9 and 2/11 on the SMC40 side and on the encoder side (in the M12 connector, pin 8/2 and pin 5/1) are connected in parallel, and to increase the cable cross-section each must be wired with a separate conductor.

M WARNING

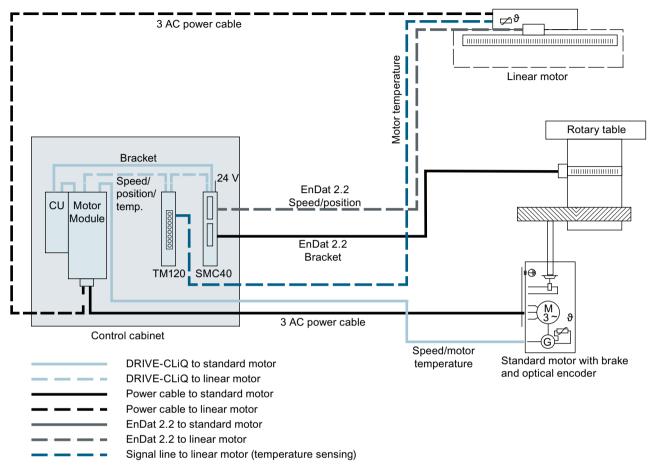
Electric shock when the motor temperature sensor insulation fails

When connecting temperature sensors which are not isolated from the motor power circuit according to safe electrical separation, arcing to the signal electronics may occur.

- Use motors whose temperature sensors have safe electrical separation.
- Use only connecting cables and connectors with safe electrical separation between the wires of the temperature sensor and the wires of the power circuit.
- If safe electrical separation cannot be guaranteed (for linear motors or third-party motors, for example), use a Sensor Module External (SME120 or SME125) or Terminal Module TM120.

9.7.2.4 X524 Electronics power supply

Table 9-24	X524: Electronics power supply
	AJZH. LIECTIONICS POWER Supply


	Terminal	Function	Technical data	
	+	Electronics power supply (24 V)	Voltage: 24 V DC (20.4 28.8 V)	
	+	Electronics power supply (24 V)	Current consumption: max. 0.35 A	
	М	Electronics ground (0 V)	(with encoder system)	
	М	Electronics ground (0 V)	Maximum current via jumper in connec- tor: 20 A (15 A according to UL/CSA)	
Type: Spring-l	Type: Spring-loaded terminal 6 (Page 320)			

The maximum cable length is 30 m.

Note

The two "+" and/or "M" terminals are jumpered in the connector. This ensures that the supply voltage is looped through.

9.7.3 Connection example

The wiring diagram shows two different applications of the SMC40. For each conversion of an EnDat 2.2 encoder signal into a DRIVE-CLiQ signal, a dedicated DRIVE-CLiQ cable must be used, as the electronics in the SMC40 is designed so that each channel is independent. The DRIVE-CLiQ cables cannot be interchanged.

Connecting a standard motor with brake and optical encoder

A standard motor with gearbox for a rotary indexing table drive is shown in the connection example. The rotary indexing table has an angular position measuring system with EnDat 2.2 interface. The measured angular data are transferred via EnDat 2.2 to the SMC40 and from there via DRIVE-CLiQ to the Control Unit.

The motor contains an integrated encoder and temperature evaluation, which transfers data via DRIVE-CLiQ directly to the Motor Module.

Connecting a linear motor without DRIVE-CLiQ interface

From a linear motor with linear scale, velocity and position are first transferred via the EnDat 2.2 connection to the SMC40 and from there, via DRIVE-CLiQ to a Terminal Module TM120.

The temperature sensors of the linear motor supply their analog temperature values directly to the TM120, which guarantees the safe electrical separation of the temperature cable and which transfers the temperature data together with the velocity and position data in the DRIVE-CLiQ protocol to the Motor Module.

9.7.4 Meaning of the LEDs

LED	Color	Status	Description, cause	Remedy
RDY READY	-	Off	The electronics power supply is missing or outside the permissible tolerance range.	-
	Green	Continu- ous light	The component is ready for operation. Cyclic DRIVE-CLiQ com- munication is taking place.	-
	Orange	Continu- ous light	DRIVE-CLiQ communication is being established.	-
	Red	Continu- ous light	This component has at least one fault. Note:	Correct and acknowl- edge the fault.
			LED is controlled irrespective of the corresponding messages being reconfigured.	
	Green/red	Flashing light 2 Hz	Firmware download is complete. The system waits for POWER ON.	Carry out a POWER ON.
	Green/ orange or Red/ orange	Flashing light 2 Hz	Component recognition via LED is activated (p0144=1). Note: Whether the LED flashes green/orange or red/orange depends on the status the LED had during activation (setting of param- eter p0144 to "1").	_

 Table 9-25
 Meaning of the LEDs on the Sensor Module Cabinet-Mounted SMC40

Each channel has a multifunction LED.

9.7.5 Dimension drawing

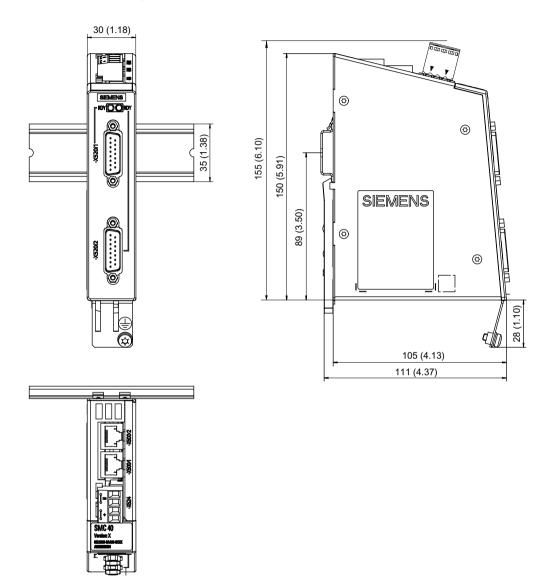


Figure 9-26 Dimension drawing of the Sensor Module Cabinet SMC40, all data in mm and (inches)

9.7.6 Installation

Installation

- 1. Tilt the component backwards slightly and attach it to the DIN rail using the hooks.
- 2. Swivel the component onto the DIN rail until you hear the mounting slide at the rear latch into position.
- 3. Slide the components along the mounting rail to either the left or right up to their final position.

Removal

- 1. First shift the mounting slide downwards at the lug to release the interlocking with the mounting rail.
- 2. Swivel the component to the front and withdraw it upwards from the DIN rail.

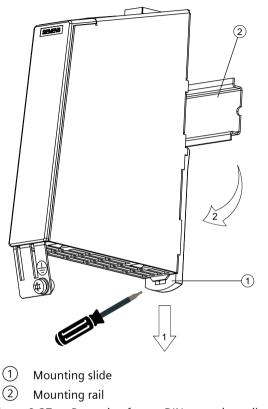


Figure 9-27 Removing from a DIN mounting rail

Mounting clearances

The SMC40 can be installed in the line-up together with other SMCs as required. When mounting next to heat sources, the following minimum lateral clearances must be observed:

- 50 mm for Line Modules and Motor Modules
- 100 mm for hotter components (e.g. pulsed resistor)

9.7.7 Technical data

6SL3055-0AA00-5DA0	Unit	Value
Electronics power supply		
Voltage	V _{DC}	24 (20.4 28.8)
Current (without encoder system)	A _{DC}	≤ 0.1
Power loss	W	≤ 4
Max. cable length	m	30
Encoder system power supply		
Voltage	V _{DC}	5.1 (without Remote Sense)
Current	A _{DC}	0.5
Evaluable encoder protocol	EnDat 2.2 v	vith order designation EnDat22
Max. encoder cable length	m	100
Protective ground conductor connection	At the hous	ing with M4 screw
Ventilation clearances, above/below	mm	50
Weight	kg	0.45

Table 9-26 Technical data

9.8 Sensor Module External SME20

9.8.1 Description

Direct encoder systems outside the cabinet can be connected to the Sensor Module External SME20. The SME20 evaluates these encoder systems and converts the calculated values to DRIVE-CLiQ.

Incremental direct encoder systems with SIN/COS (1 Vpp) and reference signal can be connected.

It is possible to connect a motor with a 17-pin round connector for the encoder to the 12-pin round connector of the SME20 using adapter cable 6FX 8002-2CA88-xxxx

- Pt1000, KTY and PTC sensors can be used for evaluation of the motor temperature.
- The Sensor Module is only suitable for motors without absolute track signals (C/D track):
 - Induction motors (e.g. 1PH)
 - Synchronous motors with pole position identification (e.g. 1FN, 1FW, 1FE)

Neither motor nor encoder data are saved in the SME20.

9.8.2 Interface description

9.8.2.1 Overview

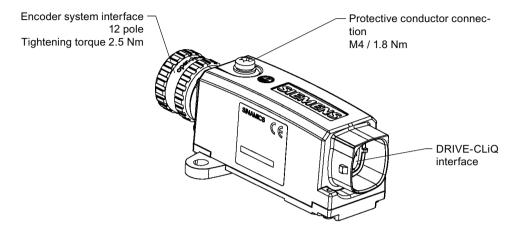


Figure 9-28 Interface description SME20

9.8.2.2 DRIVE-CLiQ interface

	Pin	Signal name	Technical specifications
	1	ТХР	Transmit data +
	2	TXN	Transmit data -
* The second sec	3	RXP	Receive data +
	4	Reserved, do not use	-
	5	Reserved, do not use	-
	6	RXN	Receive data -
	7	Reserved, do not use	-
	8	Reserved, do not use	-
	A	+ (24 V)	Power supply
	В	M (0 V)	Electronics ground
Connector type	DRIVE-CLiQ socket		
Current cons	umption, m	aximum 0.25 A	

Table 9-27 DRIVE-CLiQ interface

The blanking cover for the DRIVE-CLiQ port to secure the degree of protection IP 67 is not included in the scope of delivery.

Blanking covers (6 units), article number: 6SL3066-4CA01-0AA0

Note

Only MOTION-CONNECT DRIVE-CLiQ cables may be used for connections. The maximum cable length is 100 m for MOTION-CONNECT 500, and 75 m for MOTION-CONNECT 800PLUS cables.

9.8.2.3 Encoder system interface

Table 9-28	Encoder system	interface	SME20
	Encoder System	milleridee	2101220

	Pin	Signal name	Technical data
	1	B*	Inverse incremental signal B
	2	P5	Encoder power supply
	3	R	Reference signal R
	4	R*	Inverse reference signal R
	5	A	Incremental signal A
	6	A*	Inverse incremental signal A
5 4	7	-Temp ^{1) 2)}	Temperature sensor connection ³⁾ Pt1000 / KTY84-130 / PTC
	8	В	Incremental signal B
	9	+Temp ^{1) 2)}	Temperature sensor connection ³⁾ Pt1000 / KTY84-130 / PTC
	10	М	Ground for encoder power supply
	11	М	Ground for encoder power supply
	12	P5	Encoder power supply
Connector kit:	12 pole, article number: 6FX2003-0SA12		
Measuring current via temperature sensor connection: 2 mA Blanking cover for encoder system interface: Pöppelmann GmbH & Co. KG, Lohne, Article number: GPN 300 F211			

¹⁾ These connections do not have safe electrical separation!

- ²⁾ Accuracy of the temperature measurement (temperature sensor, including evaluation):
 - Pt1000: ±5 °C (Pt1000 tolerance class B acc. to DIN EN 60751)
 - KTY: ±7 °C
 - PTC: ±5 °C
- ³⁾ Connecting cable: Article number 6FX8002-2CA88-....

NOTICE

Damage to motor in the event of incorrectly connected KTY temperature sensor

If a KTY temperature sensor is connected with incorrect polarity, then it is not possible to detect when the motor overheats. Overheating can cause damage to the motor.

• Connect a KTY temperature sensor with the correct polarity.

🔨 warning

Electric shock when the motor temperature sensor insulation fails

When connecting temperature sensors, which have no safe protective separation with respect to the motor power circuit, then arcing to the signal electronics can occur.

- Use motors whose temperature sensors have safe electrical separation.
- Use only connecting cables and connectors with safe electrical separation between the wires of the temperature sensor and the wires of the power circuit.
- If safe electrical separation cannot be guaranteed (for linear motors or third-party motors, for example), use a Sensor Module External (SME120 or SME125) or Terminal Module TM120.

9.8.3 Connection example

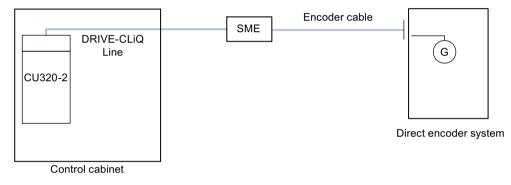


Figure 9-29 Connection of a direct encoder system via a Sensor Module External (SME)

9.8.4 Dimension drawing

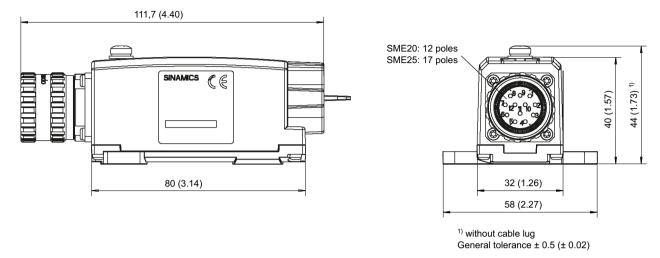
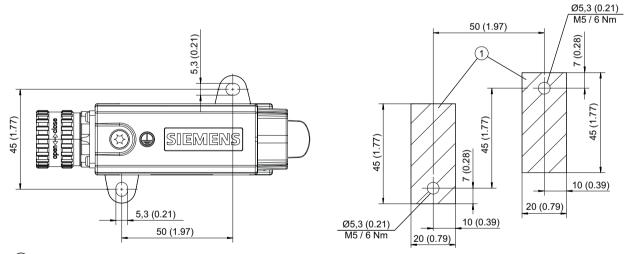



Figure 9-30 Dimension drawing of the Sensor Module External SME20, all data in mm and (inches)

9.8.5 Installation

1 Contact surface

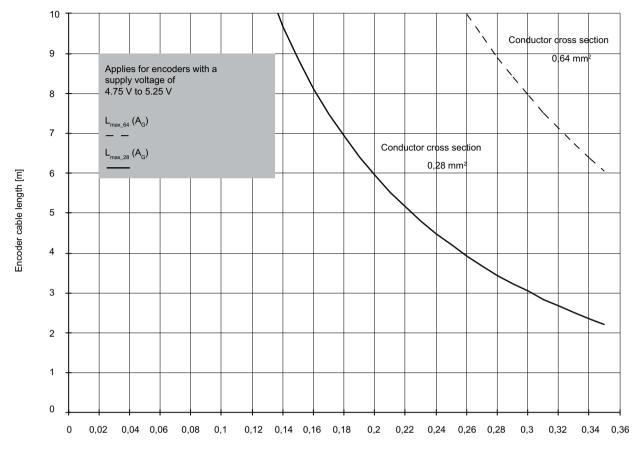
Figure 9-31 Drilling pattern for installing the SME20/SME25

Installation

- 1. Place the drilling pattern on the mounting surface. Make sure that the contact surface is bare, unpainted metal.
- 2. Drill two holes with Ø 5.3 or M5 threaded holes according to the drilling pattern.
- 3. Fix the Sensor Module to the mounting surface. The tightening torque is 6 Nm (53.1 lbf in).

9.8.6 Technical data

Table 9-29 Technical data


6SL3055-0AA00-5EA.	Unit	Value
Electronics power supply		
Voltage	V _{DC}	24 (20.4 28.8)
Current (without encoder system)	A _{DC}	≤ 0.15
Current (with encoder system)	A _{DC}	≤ 0.25
Power loss	W	≤ 4
Max. cable length	m	30
Encoder system power supply		
Voltage	V _{DC}	5
Current	A _{DC}	0.35
Encoder frequency that can be evaluated	kHz	≤ 500
(f _{encoder})		
Protective ground conductor connection	At the housing w	vith M4 screw
Weight	kg	0.31

Note

Current controller clock cycle

For a current controller clock cycle of 31.25 μs , an SME20 with article number 6SL3055-0AA00-5EA3 must be used.

The maximum cable length for the encoder system interface depends on the current consumption of the encoder system and the cross-section of the wire in the cable. However, the maximum length is 30 m. The figure below applies to encoder systems that operate in the supply voltage range between 4.75 V and 5.25 V. The sample parameters shown are 0.28 mm² cross-section (0.14 mm² supply plus 0.14 mm² Remote Sense wires) and 0.64 mm² (0.5 mm² supply plus 0.14 mm² Remote Sense wires).

Encoder power consumption AG [A]

Figure 9-32 Max. cable length as a function of the current drawn by the encoder system

In addition to the encoder systems for the supply voltage range of 4.75 V to 5.25 V in the diagram above, encoder systems are also available for the extended range down to 3.6 V. These are generally operable using encoder system cables up to 30 m in length, provided that the total cross-section of the supply plus Remote Sense wires does not fall below 0.14 mm².

9.9 Sensor Module External SME25

9.9.1 Description

Direct encoder systems outside the cabinet can be connected to the Sensor Module External SME25. The SME25 evaluates these encoder systems and converts the calculated values to DRIVE-CLiQ.

Following encoder systems are connectable to absolute encoders:

- Absolute encoder EnDat 2.1 (with SIN/COS incremental signals 1 Vpp)
- Absolute encoder EnDat 2.2 with order designation EnDat01 or EnDat02

- Absolute encoder SSI (with 5 V supply)
- Absolute encoder SSI (with 5 V supply) with SIN/COS incremental signals 1 Vpp Neither motor nor encoder data are saved in the SME25.

9.9.2 Interface description

9.9.2.1 Overview

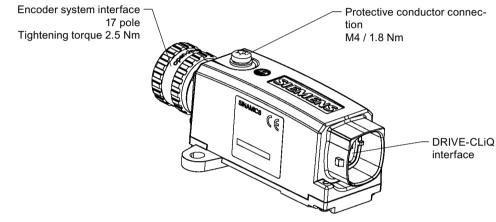


Figure 9-33 Interface description SME25

9.9.2.2 DRIVE-CLiQ interface

Table 9-30	DRIVE-CLiQ	interface
------------	------------	-----------

	Pin	Signal name	Technical specifications
	1	ТХР	Transmit data +
	2	TXN	Transmit data -
1ª E L	3	RXP	Receive data +
	4	Reserved, do not use	-
	5	Reserved, do not use	-
	6	RXN	Receive data -
	7	Reserved, do not use	-
	8	Reserved, do not use	-
	A	+ (24 V)	Power supply
	В	M (0 V)	Electronics ground

	Pin	Signal name	Technical specifications
Connector type			
Current consumption, maximum 0.25 A			

The blanking cover for the DRIVE-CLiQ port to secure the degree of protection IP 67 is not included in the scope of delivery.

Blanking covers (6 units), article number: 6SL3066-4CA01-0AA0

Note

Only MOTION-CONNECT DRIVE-CLiQ cables may be used for connections. The maximum cable length is 100 m for MOTION-CONNECT 500, and 75 m for MOTION-CONNECT 800PLUS cables.

9.9.2.3 Encoder system interface

	Pin	Signal name	Technical data
Α	1	Р5	Encoder power supply
	2	Reserved, do not use	-
	3	Reserved, do not use	-
$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	Μ	Ground, encoder power supply
	5	Reserved, do not use	-
	6	Reserved, do not use	-
	7	Р5	Encoder power supply
	8	Clock	Clock, EnDat interface, SSI clock
	9	Clock*	Inverted clock, EnDat interface, inverted SSI clock
	10	М	Ground, encoder power supply
	11	Housing potential	-
	12	В	Incremental signal B
	13	В*	Inverse incremental signal B
	14	Data	Data, EnDat interface, SSI data
	15	A	Incremental signal A
	16	A*	Inverse incremental signal A
	17	Data*	Inverse data, EnDat interface, Inverse SSI data
Connector kit:	nnector kit: 17 pole, article number: 6FX2003-0SA17		
Blanking plate for encoder system interface: Pöppelmann GmbH & Co. KG, Lohne, Article number: GPN 300 F211			

Table 9-31	Encoder system	interface SME25
------------	----------------	-----------------

9.9.3 Connection example

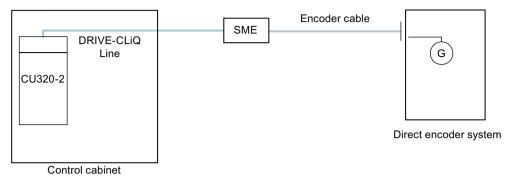


Figure 9-34 Connection of a direct encoder system via a Sensor Module External (SME)

9.9.4 Dimension drawing

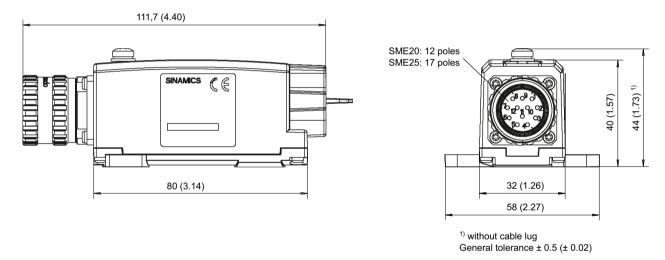
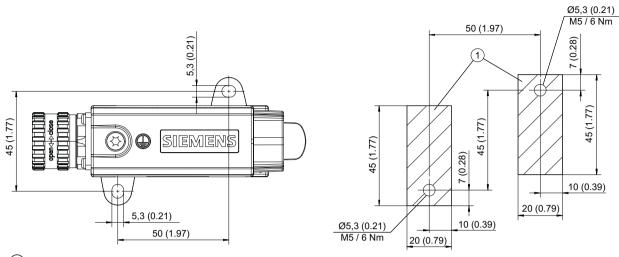



Figure 9-35 Dimension drawing of the Sensor Module External SME25, all data in mm and (inches)

9.9.5 Installation

① Contact surface

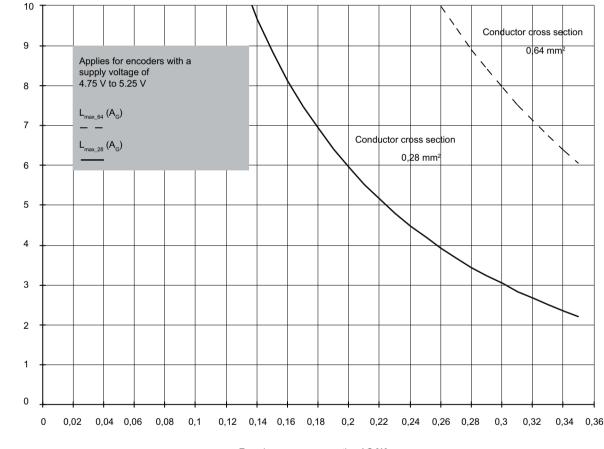
Figure 9-36 Drilling pattern for installing the SME20/SME25

Installation

- 1. Place the drilling pattern on the mounting surface. Make sure that the contact surface is bare, unpainted metal.
- 2. Drill two holes with Ø 5.3 or M5 threaded holes according to the drilling pattern.
- 3. Fix the Sensor Module to the mounting surface. The tightening torque is 6 Nm (53.1 lbf in).

9.9.6 Technical data

Table 9-32 Technical data


6SL3055-0AA00-5HA.	Unit	Value
Electronics power supply		
Voltage	V _{DC}	24 (20.4 28.8)
Current (without encoder system)	A _{DC}	≤ 0.15
Current (with encoder system)	A _{DC}	≤ 0.25
Power loss	W	≤ 4
Max. cable length	m	30
Encoder system power supply		
Voltage	V _{DC}	5
Current	A _{DC}	0.35
Encoder frequency that can be evaluated	kHz	≤ 500
(f _{encoder})		
SSI/EnDat baud rate	kBd	100
Protective ground conductor connection	At the housing with M4 screw	
Weight	kg	0.31

Note

Current controller clock cycle

For a current controller clock cycle of 31.25 $\mu s,$ an SME25 with article number 6SL3055-0AA00-5HA3 must be used.

The maximum cable length for the encoder system interface depends on the current consumption of the encoder system and the cross-section of the wire in the cable. However, the maximum length is 30 m. The figure below applies to encoder systems that operate in the supply voltage range between 4.75 V and 5.25 V. The sample parameters shown are 0.28 mm² cross-section (0.14 mm² supply plus 0.14 mm² Remote Sense wires) and 0.64 mm² (0.5 mm² supply plus 0.14 mm² Remote Sense wires).

Encoder power consumption AG [A]

Figure 9-37 Max. cable length as a function of the current drawn by the encoder system

In addition to the encoder systems for the supply voltage range of 4.75 V to 5.25 V in the diagram above, encoder systems are also available for the extended range down to 3.6 V. These are generally operable using encoder system cables up to 30 m in length, provided that the total cross-section of the supply plus Remote Sense wires does not fall below 0.14 mm².

9.10 Sensor Module External SME120

9.10.1 Description

Direct encoder systems outside the cabinet can be connected to the Sensor Module External SME120. The SME120 evaluates these encoder systems and converts the calculated values to DRIVE-CLiQ. Neither motor nor encoder data are saved in the SME120. Incremental direct encoder systems with SIN/COS (1 Vpp) and reference signal can be connected.

An SME120 is always used when the temperature signals of the motors do not have safe electrical separation or where this separation is not possible.

The SME120 is especially used for linear motor applications. A Hall sensor box can be connected to determine the commutation position of a linear motor.

9.10.2 Safety instructions for Sensor Modules External

The safety instructions listed here also apply to the "General safety instructions" and the "Safety instructions for Sensor Modules and encoders", especially for SME12 \square Sensor Modules External ($\square = 0$ or 5).

A Sensor Module External SME12 is a device belonging to safety class I.

MARNING WARNING

Improper handling of an SME12

When an SME12^[] is incorrectly used and handled, protective devices can be disabled, which means that death or severe injury can occur on touching.

- It is mandatory that you connect a protective conductor with a minimum cross-section of 2.5 mm² in order to guarantee safe electrical separation.
- In order to ensure degree of protection IP67, close all connections, even connections that are not used, with connectors or suitable sealing caps. You must observe the specified torques.
- Before commissioning, always replace the plastic covers of connections X100 to X500 using the corresponding connectors, as otherwise the Sensor Modules External SME12 will not conform to degree of protection IP67.
- Under no circumstances open the Sensor Modules, as this can mean that they are no longer properly sealed! Only a certified SIEMENS service center should carry out repair and maintenance work.
- If it appears that the Sensor Module packaging has been damaged by water, do not commission the Sensor Module.

NOTICE

Damage caused by connecting a grounded encoder system power supply

The devices can be damaged by connecting encoder systems with grounded encoder system power supplies.

• Only connect those encoder systems where the power supply is **not** grounded.

9.10.3 Interface description

9.10.3.1 Overview

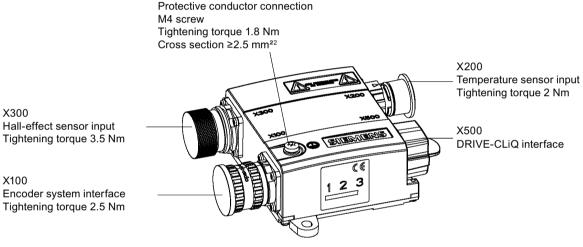


Figure 9-38 Interface description, SME120

X100 encoder system interface 9.10.3.2

	Pin	Signal name	Technical data	
	1	B*	Inverse incremental signal B	
Δ	2	P5	Encoder power supply	
8 9 1	3	R	Reference signal R	
7 12 10 2	4	R*	Inverse reference signal R	
	5	A	Incremental signal A	
6 11 3	6	A*	Inverse incremental signal A	
5 4	7	Reserved, do not use	-	
	8	В	Incremental signal B	
	9	Reserved, do not use	-	
	10	M	Ground, encoder power supply	
	11	M	Ground, encoder power supply	
	12	P5	Encoder power supply	
onnector kit:	12 pole, article number: 6FX2003-0SA12			

Table 9-33 X100: Encoder system interface

X200 thermistor sensor input 9.10.3.3

Table 9-34	X200: Temperature sensor input
------------	--------------------------------

	Pin	Function	Technical data
00	1	-Temp ¹⁾	Temperature sensor connection Pt1000 / KTY84-130 / PTC / bi-
	2	+Temp ¹⁾	metallic switch with NC contact for linear and torque motor applications, connect the KTY84-130 or Pt1000 motor temperature sensor here
0	3	+Temp ¹⁾	Temperature sensor connection Pt1000 / KTY84-130 / PTC / bi-
	4	-Temp ¹⁾	metallic switch with NC contact for linear and torque motor applications, connect the PTC triple element 1 or bimetallic switch here
	5	+Temp ¹⁾	Temperature sensor connection Pt1000 / KTY84-130 / PTC / bi-
000	6	-Temp ¹⁾	metallic switch with NC contact for torque motor applications, connect the PTC triple element 2 here
Connector kit:	6+1-pole, article number: 6FX2003-0SU07		
Measuring current via temper	erature sensor connection: 2 mA		

¹⁾ Accuracy of the temperature measurement (temperature sensor, including evaluation):

- Pt1000: ±5 °C (Pt1000 tolerance class B acc. to DIN EN 60751)

- KTY: ±7 °C

- PTC: ±5 °C

NOTICE

Damage to motor in the event of incorrectly connected KTY temperature sensor

If a KTY temperature sensor is connected with incorrect polarity, it is not possible to detect when the motor overheats. Overheating can cause damage to the motor.

• Connect a KTY temperature sensor with the correct polarity.

NOTICE

Overheating of the motor through jumpering the temperature sensor connections

Jumpering temperature sensor connections "+Temp" and "-Temp" results in incorrect measurement results. Damage to the motor can result if overheating is not detected.

When using several temperature sensors, separately connect the individual sensors to "+Temp" and "-Temp".

9.10.3.4 X300 hall sensor input

•

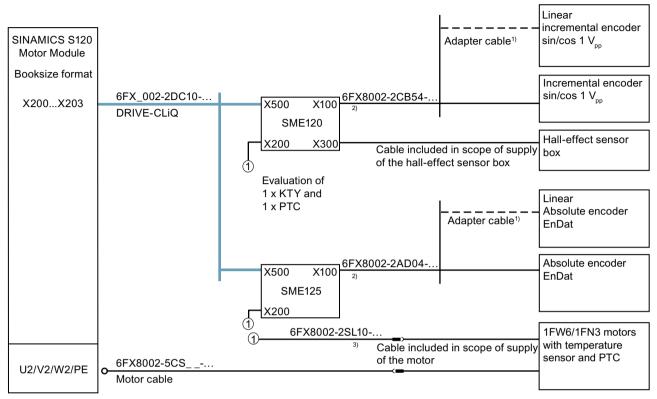
Table 9-35	X300: Hall sensor input
------------	-------------------------

	Pin	Signal name	Technical data
	1	С	Absolute track signal C
	2	C*	Inverse absolute track signal C
	3	P5	Encoder power supply
$\frac{2}{2}$	4	Μ	Ground, encoder power supply
	5	D	Absolute track signal D
	6	D*	Inverse absolute track signal D
9 0 7	7	Not assigned	-
	8	Not assigned	-
	9	Ground	Ground (for internal shield)

9.10.3.5 X500 DRIVE-CLiQ interface

	Pin	Signal name	Technical data			
	1	ТХР	Transmit data +			
P	2	TXN	Transmit data -			
1° E L	3	RXP	Receive data +			
	4	Reserved, do not use	-			
	5	Reserved, do not use	-			
	6	RXN	Receive data -			
	7	Reserved, do not use	-			
	8	Reserved, do not use	-			
	A	+ (24 V)	Power supply			
	В	M (0 V)	Electronics ground			
Connector type	DRIVE-CLi	DRIVE-CLiQ socket				
Power consur	Power consumption max. 0.30 A					

Table 9-36 X500: DRIVE-CLiQ interface

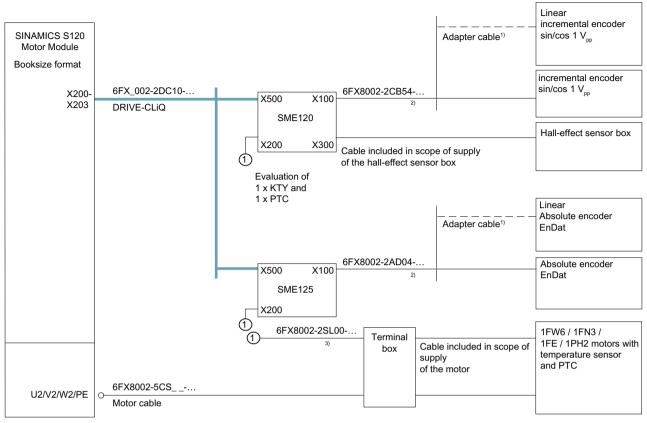

The blanking cover for the DRIVE-CLiQ port to secure the degree of protection IP 67 is not included in the scope of delivery.

Blanking covers (6 units), article number: 6SL3066-4CA01-0AA0

Note

Only MOTION-CONNECT DRIVE-CLiQ cables may be used for connections. The maximum cable length is 100 m for MOTION-CONNECT 500, and 75 m for MOTION-CONNECT 800PLUS cables.

9.10.4 Connection examples

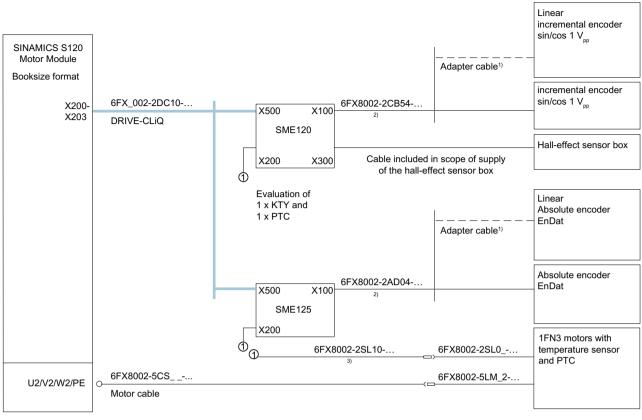


¹⁾ Cable can be ordered from the manufacturer of the linear scale

²⁾ Maximum encoder cable length, see diagram in Chapter "Technical data"

³⁾ Maximum cable length between SME and motor connection: 10 m

Figure 9-39 Connecting motor encoders via SME for motors without a DRIVE-CLiQ interface and molded connecting cables with terminated cable ends

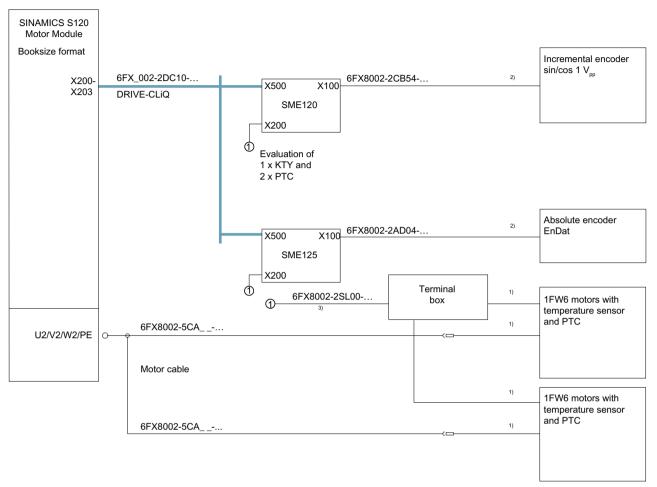


¹⁾ Cable can be ordered from the manufacturer of the linear scale

²⁾ Maximum encoder cable length, see diagram in Chapter "Technical data"

³⁾ Maximum cable length between SME and motor connection: 10 m

Figure 9-40 Connecting motor encoders via SME for motors without a DRIVE-CLiQ interface and molded connecting cables with open cable ends

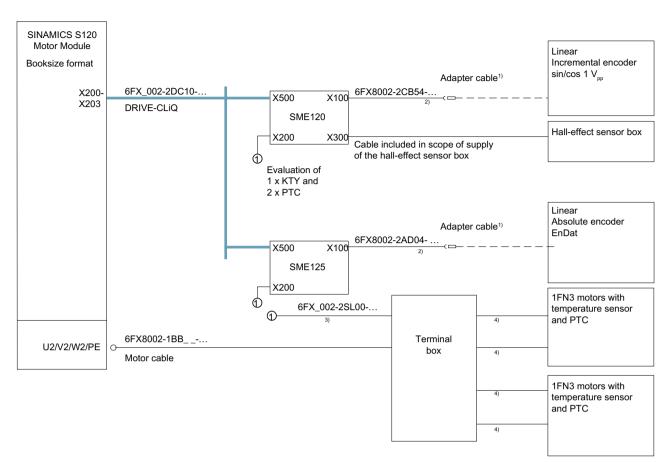


¹⁾ Cable can be ordered from the manufacturer of the linear scale

²⁾ Maximum encoder cable length, see diagram in Chapter "Technical data"

³⁾ Maximum cable length between SME and motor connection: 10 m

Figure 9-41 Connecting motor encoders via SME for motors without a DRIVE-CLiQ interface, with an integrated 2-hole terminal box


Connection examples for motors connected in parallel

¹⁾ Cable included in the scope of supply of the motor

²⁾ Maximum encoder cable length, see diagram in Chapter "Technical data"

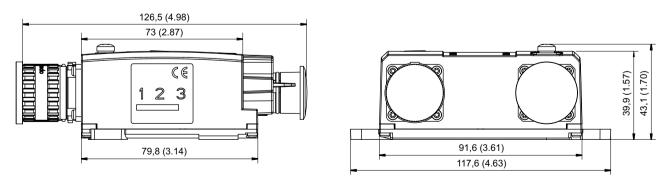
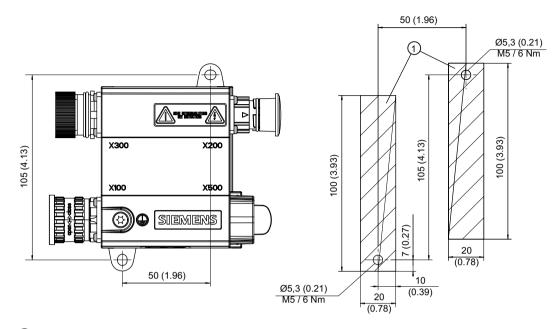

³⁾ Maximum cable length between SME and motor connection: 10 m

Figure 9-42 Connecting motor encoders via SME for torque motors connected in parallel without a DRIVE-CLiQ interface


- ¹⁾ Cable can be ordered from the manufacturer of the linear scale
- ²⁾ Maximum encoder cable length, see diagram in Chapter "Technical data"
- ³⁾ Maximum cable length between SME and motor connection: 10 m
- ⁴⁾ Cables are included in the scope of supply of motors without terminal boxes. 6FX8002-2SL0_-... cables are to be used for motors with 2-hole terminal boxes.
- Figure 9-43 Connecting motor encoders via SME for linear motors connected in parallel without a DRIVE-CLiQ interface

9.10.5 Dimension drawing

9.10.6 Installation

1 Contact surface Figure 9-45 Hole drilling pattern for installation

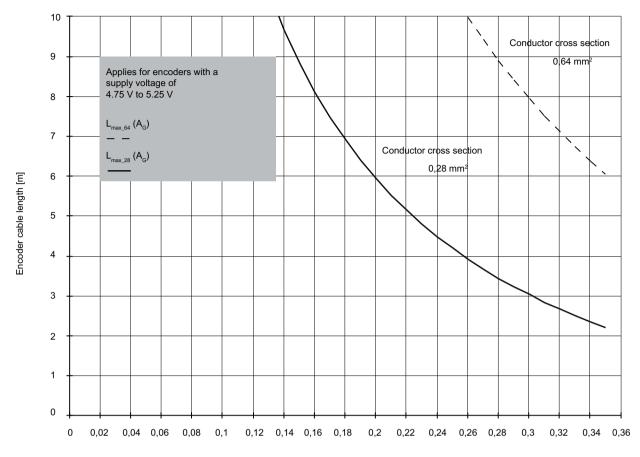
Installation

- 1. Place the drilling pattern on the mounting surface. Make sure that the contact surface is bare, unpainted metal.
- 2. Drill two holes with Ø 5.3 or M5 threaded holes according to the drilling pattern.
- 3. Fix the Sensor Module to the mounting surface. The tightening torque is 6 Nm (53.1 lbf in).

9.10.7 Technical data

6SL3055-0AA00-5JA	Unit	Value
Electronics power supply		
Voltage	V _{DC}	24 (20.4 28.8)
Current (without encoder system)	A _{DC}	≤ 0.20
Current (with encoder system)	A _{DC}	≤ 0.30
Power loss	W	≤ 4.5
Max. cable length	m	30
Encoder system power supply		
Voltage	V _{DC}	5
Current	A _{DC}	0.35
Encoder frequency that can be evaluated	kHz	≤ 500
(f _{encoder})		
Protective ground conductor connection	At the housing	with M4 screw
Weight	kg	0.7

Note


Current controller clock cycle

For a current controller clock cycle of 31.25 $\mu s,$ an SME120 with article number 6SL3055-0AA00-5JA3 must be used.

Note

In order to guarantee the degree of protection, all of the plug connectors must be correctly screwed into place and appropriately locked.

The maximum cable length for the encoder system interface depends on the current consumption of the encoder system and the cross-section of the wire in the cable. However, the maximum length is 30 m. The figure below applies to encoder systems that operate in the supply voltage range between 4.75 V and 5.25 V. The sample parameters shown are 0.28 mm² cross-section (0.14 mm² supply plus 0.14 mm² Remote Sense wires) and 0.64 mm² (0.5 mm² supply plus 0.14 mm² Remote Sense wires).

Encoder power consumption AG [A]

Figure 9-46 Max. cable length as a function of the current drawn by the encoder system

In addition to the encoder systems for the supply voltage range of 4.75 V to 5.25 V in the diagram above, encoder systems are also available for the extended range down to 3.6 V. These are generally operable using encoder system cables up to 30 m in length, provided that the total cross-section of the supply plus Remote Sense wires does not fall below 0.14 mm².

9.11 Sensor Module External SME125

9.11.1 Description

Direct encoder systems outside the cabinet can be connected to the Sensor Module External SME125. The SME125 evaluates these encoder systems and converts the calculated values to DRIVE-CLiQ.

This component is always used when the temperature signals of the motors do not have safe electrical separation or where this separation is not possible. SME125 is mainly used in linear motor applications.

Following encoder systems are connectable to absolute encoders:

- Absolute encoder EnDat 2.1 (with SIN/COS incremental signals 1 Vpp)
- Absolute encoder EnDat 2.2 with order designation EnDat01 or EnDat02
- Absolute encoder SSI (with 5 V supply)
- Absolute encoder SSI (with 5 V supply) with SIN/COS incremental signals 1 Vpp

Neither motor nor encoder data are saved in the SME125.

9.11.2 Safety instructions for Sensor Modules External

The safety instructions listed here also apply to the "General safety instructions" and the "Safety instructions for Sensor Modules and encoders", especially for SME12 Sensor Modules External ($\Box = 0$ or 5).

A Sensor Module External SME12[□] is a device belonging to safety class I.

M WARNING

Improper handling of an SME12

When an SME12^[] is incorrectly used and handled, protective devices can be disabled, which means that death or severe injury can occur on touching.

- It is mandatory that you connect a protective conductor with a minimum cross-section of 2.5 mm² in order to guarantee safe electrical separation.
- In order to ensure degree of protection IP67, close all connections, even connections that are not used, with connectors or suitable sealing caps. You must observe the specified torques.
- Before commissioning, always replace the plastic covers of connections X100 to X500 using the corresponding connectors, as otherwise the Sensor Modules External SME12 will not conform to degree of protection IP67.
- Under no circumstances open the Sensor Modules, as this can mean that they are no longer properly sealed! Only a certified SIEMENS service center should carry out repair and maintenance work.
- If it appears that the Sensor Module packaging has been damaged by water, do not commission the Sensor Module.

NOTICE

Damage caused by connecting a grounded encoder system power supply

The devices can be damaged by connecting encoder systems with grounded encoder system power supplies.

• Only connect those encoder systems where the power supply is **not** grounded.

9.11.3 Interface description

9.11.3.1 Overview

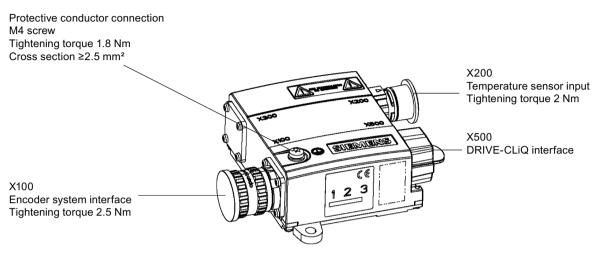


Figure 9-47 Interface description, SME125

9.11.3.2 X100 encoder system interface

	Pin	Signal name	Technical data		
	1	P5	Encoder power supply		
\cap	2	Reserved, do not use	-		
	3	Reserved, do not use	-		
$\begin{pmatrix} 2 & 12 & 0 \\ 3 & 13 & 16 & 9 \end{pmatrix}$	4	M	Ground, encoder power supply		
$\left(\begin{pmatrix} 3 & 13 & 0 & 16 & 9 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 17 & 0 \\ 0 & 0 & 17 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \right)$	5	Reserved, do not use	-		
4 14 15 8 5 0 7	6	Reserved, do not use	-		
5 0 7	7	P5	Encoder power supply		
	8	Clock	Clock, EnDat interface, SSI clock		
	9	Clock*	Inverted clock, EnDat interface, inverted SSI clock		
	10	M	Ground, encoder power supply		
	11	Housing potential	-		
	12	В	Incremental signal B		
	13	B*	Inverse incremental signal B		
	14	Data	Data, EnDat interface, SSI data		
	15	A	Incremental signal A		
	16	A*	Inverse incremental signal A		
	17	Data*	Inverse data, EnDat interface, Inverse SSI data		
Connector kit:	17 pole, article number: 6FX2003-0SA17				
	Blanking plate for encoder system interface: Pöppelmann GmbH & Co. KG, Lohne, Article number: GPN 300 F211				

Table 9-38 X100: Encoder system interface

9.11.3.3 X200 thermistor sensor input

Table 9-39X200: Temperature sensor input

	Pin	Function	Technical data
0	1	-Temp ¹⁾	Temperature sensor connection Pt1000 / KTY84-130 / PTC / bi-
	2	+Temp ¹⁾	metallic switch with NC contact for linear and torque motor applications, connect the KTY84-130 or Pt1000 motor temperature sensor here
		Temperature sensor connection Pt1000 / KTY84-130 / PTC / bi-	
	4	-Temp ¹⁾	metallic switch with NC contact for linear and torque motor applications, connect the PTC triple element 1 or bimetallic switch here
5032	5	+Temp ¹⁾	Temperature sensor connection Pt1000 / KTY84-130 / PTC / bi-
	6	-Temp ¹⁾	metallic switch with NC contact for torque motor applications, connect the PTC triple element 2 here

	Pin	Function	Technical data
Connector kit:	6+1-pole, article number: 6FX2003-0SU07		
Measuring current via temperature sensor connection: 2 mA			

¹⁾ Accuracy of the temperature measurement (temperature sensor, including evaluation):

- Pt1000: ±5 °C (Pt1000 tolerance class B acc. to DIN EN 60751)

- KTY: ±7 °C

- PTC: ±5 °C

NOTICE

Damage to motor in the event of incorrectly connected KTY temperature sensor

If a KTY temperature sensor is connected with incorrect polarity, it is not possible to detect when the motor overheats. Overheating can cause damage to the motor.

• Connect a KTY temperature sensor with the correct polarity.

NOTICE

Overheating of the motor through jumpering the temperature sensor connections

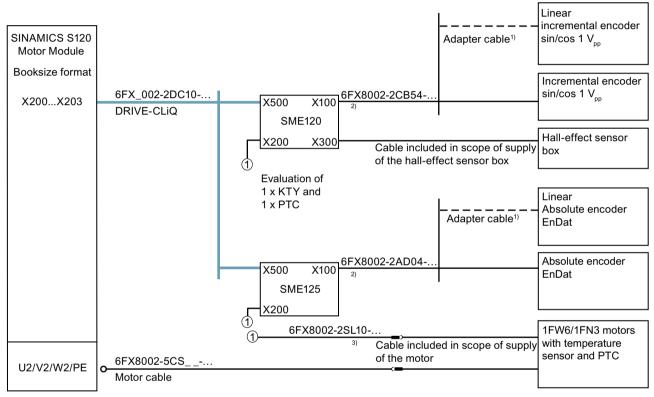
Jumpering temperature sensor connections "+Temp" and "-Temp" results in incorrect measurement results. Damage to the motor can result if overheating is not detected.

 When using several temperature sensors, separately connect the individual sensors to "+Temp" and "-Temp".

9.11.3.4 X500 DRIVE-CLiQ interface

	Pin	Signal name	Technical data		
	1	ТХР	Transmit data +		
	2	TXN	Transmit data -		
	3	RXP	Receive data +		
	4	Reserved, do not use	-		
	5	Reserved, do not use	-		
	6	RXN	Receive data -		
	7	Reserved, do not use	-		
	8	Reserved, do not use	-		
	A	+ (24 V)	Power supply		
	В	M (0 V)	Electronics ground		
Connector	DRIVE-CLiQ socket				
type					
Power consum	Power consumption max. 0.30 A				

Table 9-40 X500: DRIVE-CLiQ interface

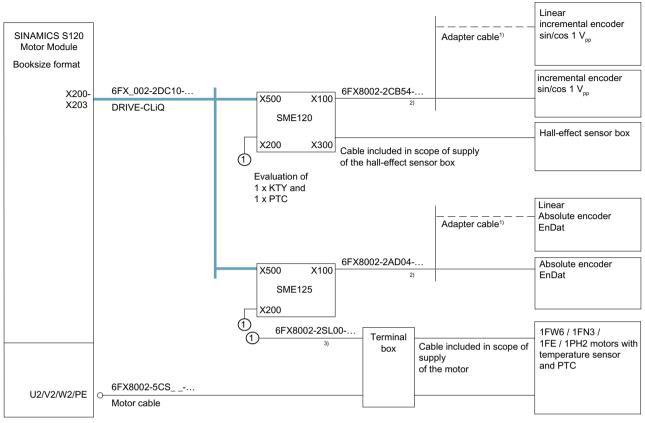

The blanking cover for the DRIVE-CLiQ port to secure the degree of protection IP 67 is not included in the scope of delivery.

Blanking covers (6 units), article number: 6SL3066-4CA01-0AA0

Note

Only MOTION-CONNECT DRIVE-CLIQ cables may be used for connections. The maximum cable length is 100 m for MOTION-CONNECT 500, and 75 m for MOTION-CONNECT 800PLUS cables.

9.11.4 Connection examples

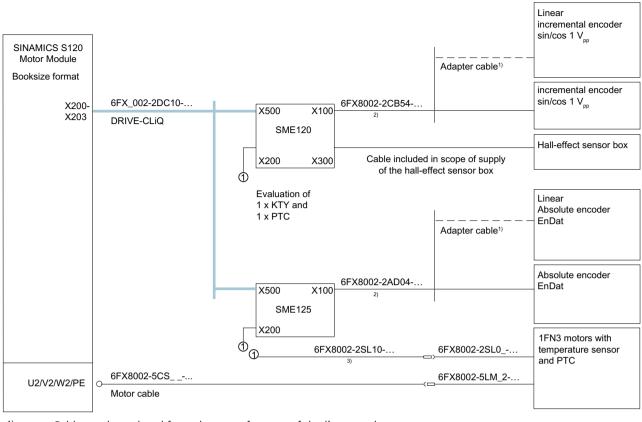


¹⁾ Cable can be ordered from the manufacturer of the linear scale

²⁾ Maximum encoder cable length, see diagram in Chapter "Technical data"

³⁾ Maximum cable length between SME and motor connection: 10 m

Figure 9-48 Connecting motor encoders via SME for motors without a DRIVE-CLiQ interface and molded connecting cables with terminated cable ends

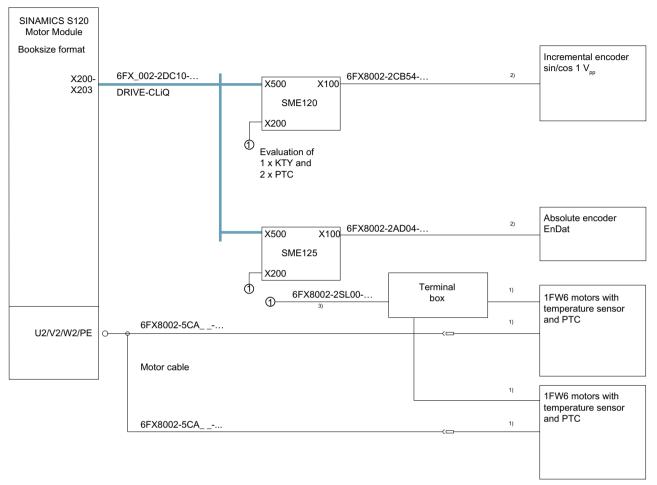


¹⁾ Cable can be ordered from the manufacturer of the linear scale

²⁾ Maximum encoder cable length, see diagram in Chapter "Technical data"

³⁾ Maximum cable length between SME and motor connection: 10 m

Figure 9-49 Connecting motor encoders via SME for motors without a DRIVE-CLiQ interface and molded connecting cables with open cable ends

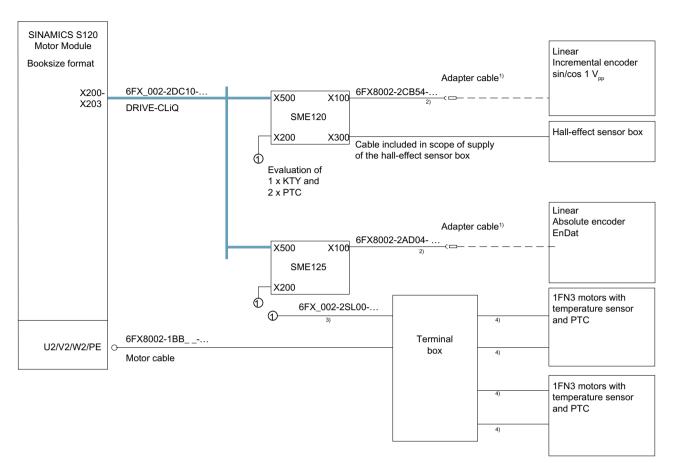


¹⁾ Cable can be ordered from the manufacturer of the linear scale

²⁾ Maximum encoder cable length, see diagram in Chapter "Technical data"

³⁾ Maximum cable length between SME and motor connection: 10 m

Figure 9-50 Connecting motor encoders via SME for motors without a DRIVE-CLiQ interface, with an integrated 2-hole terminal box


Connection examples for motors connected in parallel

¹⁾ Cable included in the scope of supply of the motor

²⁾ Maximum encoder cable length, see diagram in Chapter "Technical data"

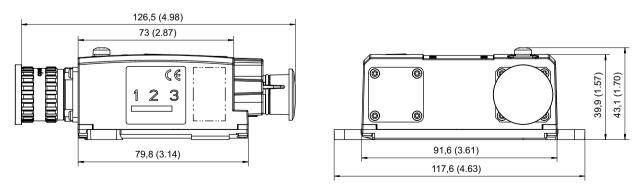
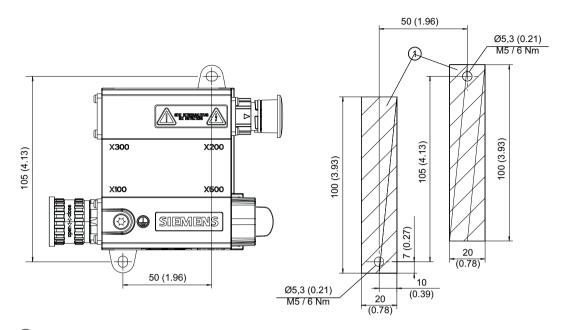

³⁾ Maximum cable length between SME and motor connection: 10 m

Figure 9-51 Connecting motor encoders via SME for torque motors connected in parallel without a DRIVE-CLiQ interface


- ¹⁾ Cable can be ordered from the manufacturer of the linear scale
- ²⁾ Maximum encoder cable length, see diagram in Chapter "Technical data"
- ³⁾ Maximum cable length between SME and motor connection: 10 m
- ⁴⁾ Cables are included in the scope of supply of motors without terminal boxes. 6FX8002-2SL0_-... cables are to be used for motors with 2-hole terminal boxes.
- Figure 9-52 Connecting motor encoders via SME for linear motors connected in parallel without a DRIVE-CLiQ interface

9.11.5 Dimension drawing

9.11.6 Installation

1 Contact surface Figure 9-54 Hole drilling pattern for installation

Installation

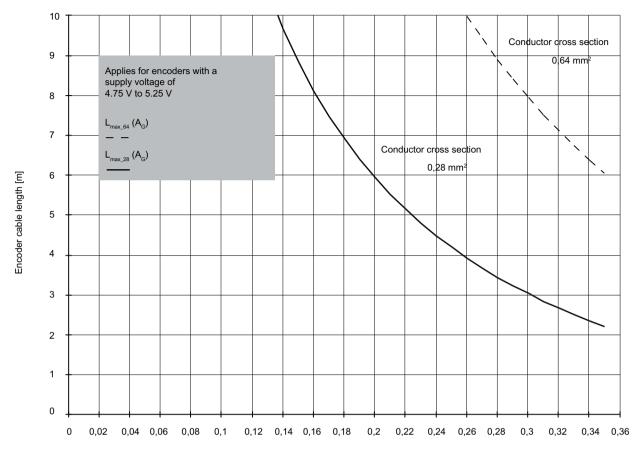
- 1. Place the drilling pattern on the mounting surface. Make sure that the contact surface is bare, unpainted metal.
- 2. Drill two holes with Ø 5.3 or M5 threaded holes according to the drilling pattern.
- 3. Fix the Sensor Module to the mounting surface. The tightening torque is 6 Nm (53.1 lbf in).

9.11.7 Technical data

6SL3055-0AA00-5KA	Unit	Value
Electronics power supply Voltage Current (without encoder system) Current (with encoder system) Power loss Max. cable length	V _{DC} A _{DC} A _{DC} W m	24 (20.4 28.8) ≤ 0.20 ≤ 0.30 ≤ 4.5 30
Encoder system power supply Voltage Current	V _{DC} A _{DC}	5 0.35
Encoder frequency that can be evaluated $(f_{encoder})$	kHz	≤ 500

6SL3055-0AA00-5KA	Unit	Value
SSI/EnDat baud rate	kBd	100
Protective ground conductor connection	At the housing with M4 screw	
Weight	kg	0.7

Note


Current controller clock cycle

For a current controller clock cycle of 31.25 $\mu s,$ an SME125 with article number 6SL3055-0AA00-5KA3 must be used.

Note

In order to guarantee the degree of protection, all of the plug connectors must be correctly screwed into place and appropriately locked.

The maximum cable length for the encoder system interface depends on the current consumption of the encoder system and the cross-section of the wire in the cable. However, the maximum length is 30 m. The figure below applies to encoder systems that operate in the supply voltage range between 4.75 V and 5.25 V. The sample parameters shown are 0.28 mm² cross-section (0.14 mm² supply plus 0.14 mm² Remote Sense wires) and 0.64 mm² (0.5 mm² supply plus 0.14 mm² Remote Sense wires).

Encoder power consumption AG [A]

Figure 9-55 Max. cable length as a function of the current drawn by the encoder system

In addition to the encoder systems for the supply voltage range of 4.75 V to 5.25 V in the diagram above, encoder systems are also available for the extended range down to 3.6 V. These are generally operable using encoder system cables up to 30 m in length, provided that the total cross-section of the supply plus Remote Sense wires does not fall below 0.14 mm².

9.12 DRIVE-CLiQ encoder

9.12.1 Description

The DRIVE-CLiQ encoder is available as an absolute encoder with integrated DRIVE-CLiQ interface. The multiturn design of the encoder senses absolute position values extending over 4096 revolutions. The single-turn design senses the absolute position within a revolution.

The most important advantages are:

- Automatic commissioning via DRIVE-CLiQ
- High operating temperatures of 100 °C are possible

- Integrated diagnostics concept
- Safety-related applications possible with Safety Integrated

Table 9-42 Encoder for mounting with DRIVE-CLiQ

Article No.	Description
6FX2001-5FD13-1AA0	Absolute encoder with DRIVE-CLiQ, single-turn, synchro flange VW 6 mm
6FX2001-5QD13-1AA0	Absolute encoder with DRIVE-CLiQ, single-turn, clamping flange VW 10 mm
6FX2001-5VD13-1AA0	Absolute encoder with DRIVE-CLiQ, single-turn, hollow shaft 10 mm
6FX2001-5WD13-1AA0	Absolute encoder with DRIVE-CLiQ, Single-turn, hollow shaft 12 mm
6FX2001-5FD25-1AA0	Absolute encoder with DRIVE-CLiQ, Multiturn, synchro flange VW 6 mm
6FX2001-5QD25-1AA0	Absolute encoder with DRIVE-CLiQ, Multiturn, clamping flange VW 10 mm
6FX2001-5VD25-1AA0	Absolute encoder with DRIVE-CLiQ, Multiturn, hollow shaft 10 mm
6FX2001-5WD25-1AA0	Absolute encoder with DRIVE-CLiQ, Multiturn, hollow shaft 12 mm

The rotary encoders for absolute position values with safe single-turn information of series 6FX2001-5.D..-1AA0 with serial DRIVE-CLiQ interface meet the basic requirements of the following standards:

- EN 61508: Part 1-4, SIL 2
- EN ISO 13849-1: 2008, Category 3 PL d
- IEC 61800-5-2 (if applicable)

9.12.2 Interface description

9.12.2.1 Overview

Figure 9-56 DRIVE-CLiQ encoder

9.12.2.2 DRIVE-CLiQ interface

	Pin	Signal name	Technical data
	1	+ (24 V)	Power supply
6 5	2	Reserved, do not use	-
$\begin{pmatrix} 0 & \bullet & \bullet \\ 7 & \bullet & \bullet & 3 \end{pmatrix}$	3	RXP	Receive data +
	4	RXN	Receive data -
	5	M (0 V)	Electronics ground
	6	TXN	Transmit data -
	7	ТХР	Transmit data +
	8	Reserved, do not use	-

Table 9-43 M12 DRIVE-CLiQ interface, 8-pole A-coded / 8-pin

9.12.3 Dimension drawings

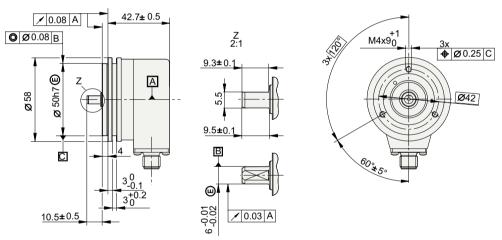


Figure 9-57 Dimension drawing of synchro flange, all data in mm

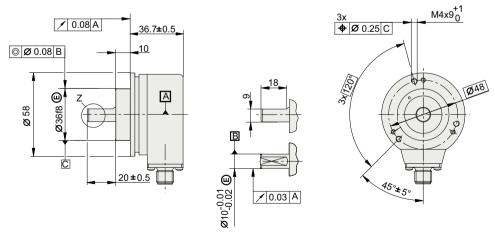


Figure 9-58 Dimension drawing of clamping flange, all data in mm

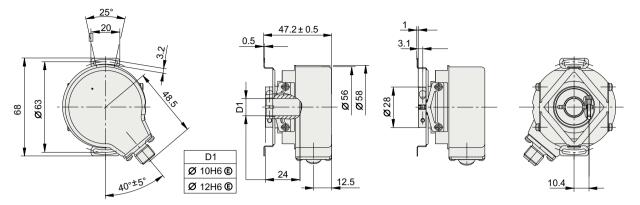


Figure 9-59 Dimension drawing of hollow shaft, all data in mm

9.12.4 Installation

The installation surfaces and screws must be clean and free of grease.

Screw M4 - 8.8 with threadlocker (0.1 < thread friction coefficient < 0.16). Minimum screw-in depth 6 mm. Please observe the hardening time for the threadlocker.

For a permitted surface pressure $P_G \le 280 \text{ N/mm}^2$, use a washer.

For replacement, recut thread M4 and use new screws with threadlocker.

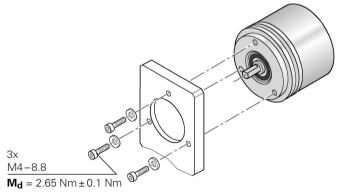
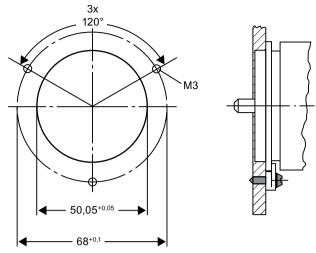



Figure 9-60 Installation: Synchro flange

Installation with clamp straps Figure 9-61

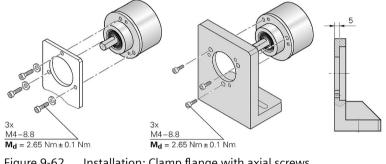


Figure 9-62 Installation: Clamp flange with axial screws

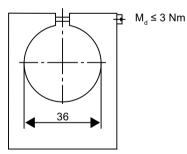


Figure 9-63 Installation: Clamp flange with slotted hole (not suitable for safety-related applications).

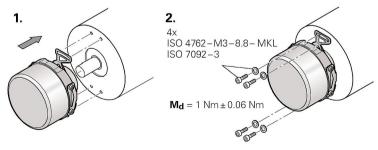


Figure 9-64 Installation: Hollow shaft

Note

Maximum of 4 reuses of screw fastenings

To ensure functional safety, a screw fastening must not be reused more than 4 times.

9.12.4.1 Mounting accessories

Clamp straps and couplings can be supplied as mounting accessories. The clamp straps are used to fix the encoders with a synchronous flange.

Table 9-44Selection and ordering data

Designation	Article No.
Clamp strap for encoder synchro flange (3 items are required)	6FX2001-7KP01
Spring disk coupling Shaft diameter:	6FX2001-7KF10
 6 mm / 6 mm 6 mm / 5 mm 	6FX2001-7KF06
Plug-in coupling Shaft diameter:	6FX2001-7KS06
• 6 mm / 6 mm	6FX2001-7KS10
• 10 mm / 10 mm	

Product name	Unit	Spring disk coupling	Plug-in coupling
Transmission torque, max.	Nm (lbf in)	0.8 (7.1)	0.7 (6.2)
Shaft diameter	mm	6 (both ends) or $d_1 = 6$, $d_2 = 5$	6 (both ends) or 10 (both ends)
Center offset of shafts, max.	mm	0.4	0.5
Axial offset	mm	± 0.4	± 0.5
Angular displacement of shafts, max.	0	3	1
Torsional rigidity	Nm/rad	150	31
Lateral spring stiffness	N/mm	6	10
Moment of inertia	gcm ²	19	20
Max. speed	rpm	12,000	12,000
Operating temperature	°C	-20 to +150	-20 to +80
Weight, approx.	g	16	20

9.12.5 Technical specifications

Design	Unit	Absolute encoder with DRIVE-CLiQ
Operating voltage at encoder	V	10 28.8
Power consumption		
Single-turn	mA	approx. 37
Multiturn	mA	approx. 43
Interface		DRIVE-CLIQ
Transmission rate	Mbit	100
Speed electrically permissible mechanical, max.	rpm	14000
Single-turn Multiturn	rpm rpm	15000 12000
Cable length, max.	m	100
Connection		Radial flange outlet M12
Resolution		
Single-turn	Bit	24
Multiturn	Bit	36 (24-bit single-turn + 12-bit multiturn)
	S/R	
Incremental track	2/14	2048, 1 V _{pp} (encoder internal only)
Code type		
Transmission		DRIVE-CLiQ
	276505	±20
Accuracy Frictional torque	arcsec Nm	±20 ≤ 0.01 (at 20°C)
•		
Starting torque	Nm	≤ 0.01 (at 20°C)
Shaft load capacity of solid shaft		
n > 6000 rpm		axial 10 N / radial 20 N at the shaft end
n ≤ 6000 rpm		axial 40 N / radial 60 N at the shaft end
Shaft diameter		
Synchro flange	mm	6 with flat
Clamp flange	mm	10 with flat
Torque arm hollow shaft	mm	10 or 12
Shaft length		
Synchro flange	mm	10
Clamp flange	mm	20
Angular acceleration, max.	rad/s ²	10 ⁵
Moment of inertia of the rotor		
Solid shaft	kgm ²	2.90 · 10 ⁻⁶
Hollow shaft	kgm ²	4.60 · 10 ⁻⁶
Vibration load		
(55 2000 Hz)		
Solid shaft	m/s ²	≤ 300
Hollow shaft	m/s ²	≤ 150
Shock load (6 ms)		
Solid shaft	m/s ²	≤ 2000
Hollow shaft	m/s ²	≤ 1000
Operating temperature	°C	-30 +100

Table 9-46 Technical data of DRIVE-CLiQ encoders

Design	Unit	Absolute encoder with DRIVE-CLiQ
Degree of protection		IP67 at the frame IP64 at the shaft input
Weight		
Single-turn	kg	0.35
Multiturn	kg	0.35

Cabinet design and electromagnetic compatibility (EMC)

10.1 Information on control cabinet installation and EMC

Information on control cabinet installation and electromagnetic compatibility (EMC), as well as on overcurrent and overvoltage protection, can be found in the following references:

- Components in the booksize format: Reference: SINAMICS S120 Manual for Booksize Power Units
- Components in the blocksize format: Reference: SINAMICS S120 Manual for AC Drives
- Components in the chassis format: Reference: SINAMICS S120 Manual for Chassis Power Units, Air-cooled Reference: SINAMICS S120 Manual for Chassis Power Units, Liquid-cooled
- Requirements to implement EMC: References: EMC Installation Guideline Configuration Manual / Basic system requirements (Article number 6FC5297-0AD30-0.P.)

10.2 Electromagnetic fields in the workplace

The 24 V components, e.g. Control Units, Terminal Modules, Sensor Modules, Hub Modules and Voltage Sensing Modules, do not emit any significant electromagnetic fields.

No minimum clearance has to be maintained for 24 V components.

10.3 Overvoltage protection for 24 V cables

Surge arresters are required for cable lengths > 30 m.

The following Dehn overvoltage protection elements are recommended for protecting the 24 V power supply of the components and the 24 V signal cables against overvoltage:

24 V power supply	24 V signal cables
Manufacturer: Dehn Article: BVT AVD 24 Article number: 918422	For digital inputs and outputs up to 0.1 A Manufacturer: Dehn Article: BXT ML4 BE C 24 and BSP BAS 4 Article numbers: 920364 and 926304
	For digital inputs and outputs up to 0.5 A Manufacturer: Dehn Article: DCO SD2 ME 24 and DCO SD2 MD 24 Article numbers: 917921 and 917941

Table 10-1 Recommendations for overvoltage protection

10.4 Connection systems

The overvoltage protection components must always be placed next to the area to be protected, e.g. at the entry point to the control cabinet. All 24 V cables which exit the protected area must be routed through an overvoltage protector.

Further information about overvoltage protection is provided in the SINAMICS S120 Manual "Booksize Power Units".

10.4 Connection systems

Note

Regarding connection systems, the present manual only contains information on connecting terminals and cable lugs. For detailed information on connection systems, please refer to the "SINAMICS S120 Equipment Manual Booksize Power Units".

10.4.1 Spring-loaded terminals

The type of spring-loaded terminal can be taken from the interface description of the particular component.

Spring-loaded terminal type				
1	Connectable cable cross-sections	Rigid, flexible Flexible with conductor end sleeve without plastic sleeve AWG / kcmil	0.14 0.5 mm ² 0.25 0.5 mm ² 26 20	
	Stripped length	8 mm (0.31 inch)		
2	Connectable cable cross-sections	Flexible Flexible with conductor end sleeve without plastic sleeve Flexible with conductor end sleeve with plastic sleeve AWG / kcmil	0.08 2.5 mm ² 0.25 2.5 mm ² 0.25 1.5 mm ² 28 12	
	Stripped length	8 9 mm (0.31 0.35 inch)		
3	Connectable cable cross-sections	Rigid, flexible Flexible with conductor end sleeve without plastic sleeve Flexible with conductor end sleeve with plastic sleeve AWG / kcmil	0.2 1.5 mm ² 0.25 1.5 mm ² 0.25 0.75 mm ² 24 16	
	Stripped length	10 mm (0.39 inch)		
4	Connectable cable cross-sections	AWG	25 95 mm ² 4 4/0	
	Stripped length	35 mm (1.38 inch)	·	

10.4 Connection systems

Spring-loaded terminal type			
5	Connectable cable cross-sections	Rigid Flexible Flexible with end sleeve without plastic sleeve Flexible with end sleeve with plastic sleeve AWG/kcmil	0.2 10 mm ² 0.2 6 mm ² 0.25 6 mm ² 0.25 4 mm ² 24 8
	Stripped length	15 mm (0.59 inch)	
6	Connectable cable cross-sections	Rigid, flexible Flexible with conductor end sleeve without plastic sleeve Flexible with conductor end sleeve with plastic sleeve AWG / kcmil	0.2 2.5 mm ² 0.25 2.5 mm ² 0.25 1.5 mm ² 24 12
	Stripped length	8 mm (0.31 inch)	
7	Connectable cable cross-sections	Rigid, flexible Flexible with conductor end sleeve without plastic sleeve Flexible with conductor end sleeve with plastic sleeve AWG / kcmil	0.25 1.5 mm ² 0.25 1.5 mm ^{2 1)} 0.25 0.75 mm ² 24 16
	Stripped length	8 mm (0.31 inch)	

¹⁾ The maximum of 1.5 mm² is only possible for trapezoidal crimping Otherwise, the maximum cable cross-sections reduced to 1.0 mm².

10.4.2 Screw terminals

The type of screw terminal can be taken from the interface description of the particular component.

Table 10-3	Connectable conductor cr	ross-sections and tightening	torques for screw terminals

Screw terminal type			
1	Connectable cable cross-sections	Rigid, flexible With end sleeve, without plastic sleeve With end sleeve, with plastic sleeve AWG / kcmil	0.08 1.5 mm ² 0.25 1.5 mm ² 0.25 0.5 mm ² 28 14
	Stripped length	7 mm (0.28 inch)	
	ТооІ	Screwdriver 0.4 x 2.0 mm	
	Tightening torque	0.22 0.25 Nm (1.9 2.2 lbf in)	
1_1	Connectable cable cross-sections	Rigid, flexible With end sleeve, without plastic sleeve With end sleeve, with plastic sleeve AWG / kcmil	0.14 1.5 mm ² 0.25 1.5 mm ² 0.25 0.5 mm ² 26 14
	Stripped length	7 mm (0.28 inch)	
	ТооІ	Screwdriver 0.4 x 2.5 mm	
	Tightening torque	0.22 0.25 Nm (1.9 2.2 lbf in)	

10.4 Connection systems

	w terminal type Connectable cable cross-sections	Divid flowible	0.2 2.5 mm ²
2	Connectable cable cross-sections	Rigid, flexible With end sleeve, without plastic sleeve With end sleeve, with plastic sleeve AWG / kcmil	0.2 2.5 mm ² 0.2 2.5 mm ² 0.2 1.5 mm ² 22 12
	Stripped length	6 7 mm (0.24 0.28 inch)	22 12
	Tool	Screwdriver 0.5 x 3 mm	
	Tightening torque	0.4 0.5 Nm (3.5 4.4 lbf in)	
3	Connectable cable cross-sections	Flexible With end sleeve, without plastic sleeve With end sleeve, with plastic sleeve AWG / kcmil	0.2 2.5 mm ² 0.25 1 mm ² 0.25 1 mm ² 22 12
	Stripped length	9 mm (0.35 inch)	
	ТооІ	Screwdriver 0.6 x 3.5 mm	
	Tightening torque	0.5 0.6 Nm (4.4 5.3 lbf in)	
4	Connectable cable cross-sections	Flexible With end sleeve, without plastic sleeve With end sleeve, with plastic sleeve AWG / kcmil	0.2 4 mm ² 0.25 4 mm ² 0.25 4 mm ² 22 10
	Stripped length	7 mm (0.28 inch)	
	ТооІ	Screwdriver 0.6 x 3.5 mm	
	Tightening torque	0.5 0.6 Nm (4.4 5.3 lbf in)	
5	Connectable cable cross-sections	Flexible With end sleeve, without plastic sleeve With end sleeve, with plastic sleeve AWG / kcmil	0.5 6 mm ² 0.5 6 mm ² 0.5 6 mm ² 20 8
	Stripped length	12 mm (0.47 inch)	
	ТооІ	Screwdriver 1.0 x 4.0 mm	
	Tightening torque	1.2 1.5 Nm (10.6 13.3 lbf in)	
6	Connectable cable cross-sections	Flexible With end sleeve, without plastic sleeve With end sleeve, with plastic sleeve AWG / kcmil	0.5 10 mm ² 0.5 10 mm ² 0.5 10 mm ² 20 6
	Stripped length	11 mm (0.43 inch)	
	ТооІ	Screwdriver 1.0 x 4.0 mm	
	Tightening torque	1.5 1.8 Nm (13.3 15.9)	
7	Connectable cable cross-sections	0.5 16 mm ² (AWG 20 4)	
	Stripped length	14 mm (0.55 inch)	
	ТооІ	Screwdriver 1.0 x 4.0 mm	
	Tightening torque	1.5 1.7 Nm (13.3 15.0 lbf in)	

10.4 Connection systems

10.4.3 Cable lugs

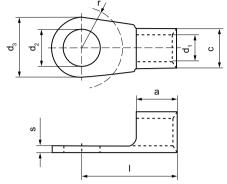


Figure 10-1 Dimension drawing of cable lugs

Table 10-4 Dimensions of cable lugs

Screw/bolt	Cable cross-section [mm ²]	a [mm]	c [mm]	d ₁ [mm]	d₂ [mm]	d₃ [mm]	l [mm]	r [mm]	s [mm]
M4	1 2.5	5	4.5	2.3	4.3	8	12	6.0	0.8
M5	1 2.5	5	4.5	2.3	5.3	10	14	6.5	0.8
M6	1 2.5	5	4.5	2.3	6.5	11	16	7.5	0.8
M8	2.5	5	4.5	2.3	8.4	14	17	10.0	0.8

10.4 Connection systems

A.1 List of abbreviations

Note

The following list of abbreviations includes all abbreviations and their meanings used in the entire SINAMICS family of drives.

Α

Abbreviation	Derivation of abbreviation	Meaning
A	Alarm	Warning
AC	Alternating Current	Alternating current
ADC	Analog Digital Converter	Analog digital converter
AI	Analog Input	Analog input
AIM	Active Interface Module	Active Interface Module
ALM	Active Line Module	Active Line Module
AO	Analog Output	Analog output
AOP	Advanced Operator Panel	Advanced Operator Panel
APC	Advanced Positioning Control	Advanced Positioning Control
AR	Automatic Restart	Automatic restart
ASC	Armature Short-Circuit	Armature short-circuit
ASCII	American Standard Code for Information Interchange	American coding standard for the exchange of infor- mation
AS-i	AS-Interface (Actuator Sensor Interface)	AS-Interface (open bus system in automation tech- nology)
ASM	Asynchronmotor	Induction motor
AVS	Active Vibration Suppression	Active load vibration damping
AWG	American Wire Gauge	American Wire Gauge (Standard for cross-sections of cables)

В

Abbreviation	Derivation of abbreviation	Meaning
BB	Betriebsbedingung	Operation condition
BERO	-	Contactless proximity switch
BI	Binector Input	Binector input
BIA	Berufsgenossenschaftliches Institut für Arbeitssicherheit	BG Institute for Occupational Safety and Health
BICO	Binector Connector Technology	Binector connector technology

A.1 List of abbreviations

Abbreviation	Derivation of abbreviation	Meaning
BLM	Basic Line Module	Basic Line Module
BO	Binector Output	Binector output
ВОР	Basic Operator Panel	Basic operator panel

С

Abbreviation	Derivation of abbreviation	Meaning
С	Capacitance	Capacitance
C	-	Safety message
CAN	Controller Area Network	Serial bus system
CBC	Communication Board CAN	Communication Board CAN
CBE	Communication Board Ethernet	PROFINET communication module (Ethernet)
CD	Compact Disc	Compact disc
CDS	Command Data Set	Command data set
CF Card	CompactFlash Card	CompactFlash card
CI	Connector Input	Connector input
CLC	Clearance Control	Clearance control
CNC	Computerized Numerical Control	Computer-supported numerical control
СО	Connector Output	Connector output
CO/BO	Connector Output/Binector Output	Connector/binector output
COB-ID	CAN Object-Identification	CAN Object Identification
CoL	Certificate of License	Certificate of License
COM	Common contact of a change-over relay	Center contact of a change-over contact
COMM	Commissioning	Commissioning
СР	Communication Processor	Communications processor
CPU	Central Processing Unit	Central processing unit
CRC	Cyclic Redundancy Check	Cyclic redundancy check
CSM	Control Supply Module	Control Supply Module
CU	Control Unit	Control Unit
CUA	Control Unit Adapter	Control Unit Adapter
CUD	Control Unit DC	Control Unit DC

D

Abbreviation	Derivation of abbreviation	Meaning	
DAC	Digital Analog Converter	Digital analog converter	
DC	Direct Current	Direct current	
DCB	Drive Control Block	Drive Control Block	
DCBRK	DC Brake	DC braking	
DCC	Drive Control Chart	Drive Control Chart	
DCN	Direct Current Negative	Direct current negative	
DCP	Direct Current Positive	Direct current positive	

Abbreviation	Derivation of abbreviation	Meaning
DDC	Dynamic Drive Control	Dynamic Drive Control
DDS	Drive Data Set	Drive Data Set
DHCP	Dynamic Host Configuration Protocol	Dynamic Host Configuration Protocol (Communica- tion protocol)
DI	Digital Input	Digital input
DI/DO	Digital Input/Digital Output	Digital input/output, bidirectional
DIN	Deutsches Institut für Normung	Deutsches Institut für Normung (German Institute for Standardization)
DMC	DRIVE-CLiQ Hub Module Cabinet	DRIVE-CLiQ Hub Module Cabinet
DME	DRIVE-CLiQ Hub Module External	DRIVE-CLiQ Hub Module External
DMM	Double Motor Module	Double Motor Module
DO	Digital Output	Digital output
DO	Drive Object	Drive object
DP	Decentralized Peripherals	Distributed I/O
DPRAM	Dual Ported Random Access Memory	Dual-Port Random Access Memory
DQ	DRIVE-CLIQ	DRIVE-CLIQ
DRAM	Dynamic Random Access Memory	Dynamic Random Access Memory
DRIVE-CLiQ	Drive Component Link with IQ	Drive Component Link with IQ
DSC	Dynamic Servo Control	Dynamic Servo Control
DSM	Doppelsubmodul	Double submodule
DTC	Digital Time Clock	Timer

Ε

Abbreviation	Derivation of abbreviation	Meaning
EASC	External Armature Short-Circuit	External armature short-circuit
EDS	Encoder Data Set	Encoder data set
EEPROM	Electrically Erasable Programmable Read-Only Memory	Electrically Erasable Programmable Read-Only Mem- ory
EGB	Elektrostatisch gefährdete Baugruppen	Electrostatic sensitive devices
EIP	EtherNet/IP	EtherNet Industrial Protocol (real-time Ethernet)
ELCB	Earth Leakage Circuit Breaker	Residual current operated circuit breaker
ELP	Earth Leakage Protection	Ground-fault monitoring
EMC	Electromagnetic Compatibility	Electromagnetic compatibility
EMF	Electromotive Force	Electromotive force
ЕМК	Elektromotorische Kraft	Electromotive force
EMV	Elektromagnetische Verträglichkeit	Electromagnetic compatibility
EN	Europäische Norm	European standard
EnDat	Encoder-Data-Interface	Encoder interface
EP	Enable Pulses	Pulse enable
EPOS	Einfachpositionierer	Basic positioner
ES	Engineering System	Engineering system
ESB	Ersatzschaltbild	Equivalent circuit diagram

A.1 List of abbreviations

Abbreviation	Derivation of abbreviation	Meaning
ESD	Electrostatic Sensitive Devices	Electrostatic sensitive devices
ESM	Essential Service Mode	Essential service mode
ESR	Extended Stop and Retract	Extended stop and retract

F

Abbreviation	Derivation of abbreviation	Meaning
F	Fault	Fault
FAQ	Frequently Asked Questions	Frequently Asked Questions
FBLOCKS	Free Blocks	Free function blocks
FCC	Function Control Chart	Function control chart
FCC	Flux Current Control	Flux current control
FD	Function Diagram	Function diagram
F-DI	Failsafe Digital Input	Fail-safe digital input
F-DO	Failsafe Digital Output	Fail-safe digital output
FEPROM	Flash-EPROM	Non-volatile write and read memory
FG	Function Generator	Function generator
FI	-	Fault current
FOC	Fiber-Optic Cable	Fiber-optic cable
FP	Funktionsplan	Function diagram
FPGA	Field Programmable Gate Array	Field Programmable Gate Array
F-PLC	Fail-safe PLC	Fail-safe PLC
FW	Firmware	Firmware

G

Abbreviation	Derivation of abbreviation	Meaning
GB	Gigabyte	Gigabyte
GC	Global Control	Global control telegram (broadcast telegram)
GND	Ground	Reference potential for all signal and operating vol- tages, usually defined as 0 V (also referred to as M)
GSD	Gerätestammdaten	Device master data: Describe the features of a PRO- FIBUS slave
GSV	Gate Supply Voltage	Gate supply voltage
GUID	Globally Unique Identifier	Globally Unique Identifier

Н

Abbreviation	Derivation of abbreviation	Meaning
HF	High frequency	High frequency
HFD	Hochfrequenzdrossel	Radio frequency reactor
HLA	Hydraulic Linear Actuator	Hydraulic linear actuator

Abbreviation	Derivation of abbreviation	Meaning
HLG	Hochlaufgeber	Ramp-function generator
НМ	Hydraulic Module	Hydraulic Module
НМІ	Human Machine Interface	Human Machine Interface
HTL	High-Threshold Logic	Logic with high interference threshold
НТТР	Hypertext Transfer Protocol	Hypertext Transfer Protocol (communication proto- col)
НТТР	Hypertext Transfer Protocol Secure	Hypertext Transfer Protocol Secure (communication protocol)
HW	Hardware	Hardware

I

Abbreviation	Derivation of abbreviation	Meaning
i. V.	In Vorbereitung	Under development: This property is currently not available
1/0	Input/Output	Input/output
I2C	Inter-Integrated Circuit	Internal serial data bus
IASC	Internal Armature Short-Circuit	Internal armature short-circuit
IBN	Inbetriebnahme	Commissioning
ID	Identifier	Identification
IE	Industrial Ethernet	Industrial Ethernet
IEC	International Electrotechnical Commission	International Electrotechnical Commission
IF	Interface	Interface
IGBT	Insulated Gate Bipolar Transistor	Insulated gate bipolar transistor
IGCT	Integrated Gate-Controlled Thyristor	Semiconductor power switch with integrated con- trol electrode
IL	Impulslöschung	Pulse suppression
IP	Internet Protocol	Internet Protocol
IPO	Interpolator	Interpolator
ISO	Internationale Organisation für Normung	International Standards Organization
IT	Isolé Terre	Non-grounded three-phase line supply
IVP	Internal Voltage Protection	Internal voltage protection

J

Abbreviation	Derivation of abbreviation	Meaning
JOG	Jogging	Jogging

A.1 List of abbreviations

К

Abbreviation	Derivation of abbreviation	Meaning
KDV	Kreuzweiser Datenvergleich	Data cross-check
КНР	Know-how protection	Know-how protection
KIP	Kinetische Pufferung	Kinetic buffering
Кр	-	Proportional gain
KTY84-130	-	Temperature sensor

L

Abbreviation	Derivation of abbreviation	Meaning	
L	L		
L	-	Symbol for inductance	
LED	Light Emitting Diode	Light emitting diode	
LIN	Linearmotor	Linear motor	
LR	Lageregler	Position controller	
LSB	Least Significant Bit	Least significant bit	
LSC	Line-Side Converter	Line-side converter	
LSS	Line-Side Switch	Line-side switch	
LU	Length Unit	Length unit	
LWL	Lichtwellenleiter	Fiber-optic cable	

Μ

Abbreviation	Derivation of abbreviation	Meaning
Μ	-	Symbol for torque
М	Masse	Reference potential for all signal and operating vol- tages, usually defined as 0 V (also referred to as GND)
MB	Megabyte	Megabyte
MCC	Motion Control Chart	Motion Control Chart
MDI	Manual Data Input	Manual data input
MDS	Motor Data Set	Motor data set
MLFB	Maschinenlesbare Fabrikatebezeichnung	Machine-readable product code
MM	Motor Module	Motor Module
MMC	Man-Machine Communication	Man-machine communication
MMC	Micro Memory Card	Micro memory card
MRCD	Modular Residual Current protection Device	Modular Residual Current protection Device
MSB	Most Significant Bit	Most significant bit
MSC	Motor-Side Converter	Motor-side converter
MSCY_C1	Master Slave Cycle Class 1	Cyclic communication between master (class 1) and slave
MSR	Motorstromrichter	Motor-side converter
MT	Messtaster	Probe

Ν

Abbreviation	Derivation of abbreviation	Meaning
N. C.	Not Connected	Not connected
N	No Report	No report or internal message
NAMUR	Interessengemeinschaft Automatisierungstechnik der Prozessindustrie	User association of automation technology in the process industry
NC	Normally Closed (contact)	NC contact
NC	Numerical Control	Numerical control
NEMA	National Electrical Manufacturers Association	Standardization association in USA (United States of America)
NM	Nullmarke	Zero mark
NO	Normally Open (contact)	NO contact
NSR	Netzstromrichter	Line-side converter
NTP	Network Time Protocol	Standard for synchronization of the time of day
NVRAM	Non-Volatile Random Access Memory	Non-volatile read/write memory

0

Abbreviation	Derivation of abbreviation	Meaning
OA	Open Architecture	Software component which provides additional functions for the SINAMICS drive system
OAIF	Open Architecture Interface	Version of the SINAMICS firmware as of which the OA application can be used
OASP	Open Architecture Support Package	Expands the commissioning tool by the correspond- ing OA application
ос	Operating Condition	Operation condition
осс	One Cable Connection	One-cable technology
OEM	Original Equipment Manufacturer	Original equipment manufacturer
OLP	Optical Link Plug	Bus connector for fiber-optic cable
OMI	Option Module Interface	Option Module Interface

Ρ

Abbreviation	Derivation of abbreviation	Meaning	
p	-	Adjustable parameters	
P1	Processor 1	CPU 1	
P2	Processor 2	CPU 2	
РВ	PROFIBUS	PROFIBUS	
PcCtrl	PC Control	Master control	
PD	PROFIdrive	PROFIdrive	
PDC	Precision Drive Control	Precision Drive Control	
PDS	Power unit Data Set	Power unit data set	
PDS	Power Drive System	Drive system	

A.1 List of abbreviations

Abbreviation	Derivation of abbreviation	Meaning
PE	Protective Earth	Protective ground
PELV	Protective Extra Low Voltage	Safety extra-low voltage
PFH	Probability of dangerous failure per hour	Probability of dangerous failure per hour
PG	Programmiergerät	Programming device
PI	Proportional Integral	Proportional integral
PID	Proportional Integral Differential	Proportional integral differential
PLC	Programmable Logical Controller	Programmable logic controller
PLL	Phase-Locked Loop	Phase-locked loop
PM	Power Module	Power Module
PMI	Power Module Interface	Power Module Interface
PMSM	Permanent-magnet synchronous motor	Permanent-magnet synchronous motor
PN	PROFINET	PROFINET
PNO	PROFIBUS Nutzerorganisation	PROFIBUS user organization
PPI	Point to Point Interface	Point-to-point interface
PRBS	Pseudo Random Binary Signal	White noise
PROFIBUS	Process Field Bus	Serial data bus
PS	Power Supply	Power supply
PSA	Power Stack Adapter	Power Stack Adapter
PT1000	-	Temperature sensor
PTC	Positive Temperature Coefficient	Positive temperature coefficient
PTP	Point To Point	Point-to-point
PWM	Pulse Width Modulation	Pulse width modulation
PZD	Prozessdaten	Process data

Q

Abbreviation	Derivation of abbreviation	Meaning
No entries		

R

Abbreviation	Derivation of abbreviation	Meaning
r	-	Display parameters (read-only)
RAM	Random Access Memory	Memory for reading and writing
RCCB	Residual Current Circuit Breaker	Residual current operated circuit breaker
RCD	Residual Current Device	Residual current device
RCM	Residual Current Monitor	Residual current monitor
REL	Reluctance motor textile	Reluctance motor textile
RESM	Reluctance synchronous motor	Synchronous reluctance motor
RFG	Ramp-Function Generator	Ramp-function generator

Abbreviation	Derivation of abbreviation	Meaning
RJ45	Registered Jack 45	Term for an 8-pin socket system for data transmis- sion with shielded or non-shielded multi-wire cop- per cables
RKA	Rückkühlanlage	Cooling unit
RLM	Renewable Line Module	Renewable Line Module
RO	Read Only	Read only
ROM	Read-Only Memory	Read-only memory
RPDO	Receive Process Data Object	Receive Process Data Object
RS232	Recommended Standard 232	Interface standard for cable-connected serial data transmission between a sender and receiver (also known as EIA232)
RS485	Recommended Standard 485	Interface standard for a cable-connected differen- tial, parallel, and/or serial bus system (data transmis- sion between a number of senders and receivers, also known as EIA485)
RTC	Real Time Clock	Real-time clock
RZA	Raumzeigerapproximation	Space-vector approximation

S

Abbreviation	Derivation of abbreviation	Meaning		
S1	-	Continuous operation		
\$3	-	Intermittent duty		
SAM	Safe Acceleration Monitor	Safe acceleration monitoring		
SBC	Safe Brake Control	Safe brake control		
SBH	Sicherer Betriebshalt	Safe operating stop		
SBR	Safe Brake Ramp	Safe brake ramp monitoring		
SBT	Safe Brake Test	Safe brake test		
SCA	Safe Cam	Safe cam		
SCC	Safety Control Channel Safety Control Channel			
SCSE	Single Channel Safety Encoder Single-channel safety encoder			
SD Card	SecureDigital Card	Secure digital memory card		
SDC	Standard Drive Control	Standard Drive Control		
SDI	Safe Direction Safe motion direction			
SE	Sicherer Software-Endschalter Safe software limit switch			
SESM	Separately-excited synchronous motor	Separately excited synchronous motor		
SG	Sicher reduzierte Geschwindigkeit	Safely limited speed		
SGA	Sicherheitsgerichteter Ausgang	Safety-related output		
SGE	Sicherheitsgerichteter Eingang	Safety-related input		
SH	Sicherer Halt	Safe stop		
SI	Safety Integrated Safety Integrated			
SIC	Safety Info Channel Safety Info Channel			
SIL	Safety Integrity Level	Safety Integrity Level		
SITOP	-	Siemens power supply system		

A.1 List of abbreviations

Abbreviation	Derivation of abbreviation	Meaning		
SLA	Safely-Limited Acceleration	Safely limited acceleration		
SLM	Smart Line Module Smart Line Module			
SLP	Safely-Limited Position	Safely Limited Position		
SLS	Safely-Limited Speed	Safely limited speed		
SLVC	Sensorless Vector Control	Sensorless vector control		
SM	Sensor Module	Sensor Module		
SMC	Sensor Module Cabinet	Sensor Module Cabinet		
SME	Sensor Module External	Sensor Module External		
SMI	SINAMICS Sensor Module Integrated	SINAMICS Sensor Module Integrated		
SMM	Single Motor Module	Single Motor Module		
SN	Sicherer Software-Nocken	Safe software cam		
SOS	Safe Operating Stop	Safe operating stop		
SP	Service Pack	Service pack		
SP	Safe Position	Safe position		
SPC	Setpoint Channel	Setpoint channel		
SPI	Serial Peripheral Interface	Serial peripheral interface		
SPS	Speicherprogrammierbare Steuerung	Programmable logic controller		
SS1	Safe Stop 1	Safe Stop 1 (time-monitored, ramp-monitored)		
SS1E	Safe Stop 1 External	Safe Stop 1 with external stop		
SS2	Safe Stop 2	Safe Stop 2		
SS2E	Safe Stop 2 External	Safe Stop 2 with external stop		
SSI	Synchronous Serial Interface	Synchronous serial interface		
SSL	Secure Sockets Layer	Layer Encryption protocol for secure data transfer (no TLS)		
SSM	Safe Speed Monitor Safe feedback from speed monitor			
SSP	SINAMICS Support Package	SINAMICS support package		
STO	Safe Torque Off	Safe torque off		
STW	Steuerwort	Control word		

Т

Abbreviation	Derivation of abbreviation	Meaning	
ТВ	Terminal Board	Terminal Board	
TEC	Technology Extension	Software component which is installed as an addi- tional technology package and which expands the functionality of SINAMICS (previously OA applica- tion)	
TIA	Totally Integrated Automation	Totally Integrated Automation	
TLS	Transport Layer Security	Encryption protocol for secure data transfer (previously SSL)	
ТМ	Terminal Module	Terminal Module	
TN	Terre Neutre	Grounded three-phase line supply	
Tn	-	Integral time	

Abbreviation	Derivation of abbreviation	Meaning	
TPDO	Transmit Process Data Object	Transmit Process Data Object	
TSN	Time-Sensitive Networking	Time-Sensitive Networking	
ТТ	Terre Terre	Grounded three-phase line supply	
TTL	Transistor-Transistor-Logic Transistor-transistor logic		
Tv	-	Rate time	

U

Abbreviation	Derivation of abbreviation Meaning	
UL	nderwriters Laboratories Inc. Underwriters Laboratories Inc.	
UPS	Uninterruptible Power Supply Uninterruptible power supply	
USV	Unterbrechungsfreie Stromversorgung Uninterruptible power supply	
UTC	Universal Time Coordinated	Universal time coordinated

V

Abbreviation	Derivation of abbreviation	Meaning
VC	Vector Control	Vector control
Vdc	-	DC link voltage
VdcN	-	Partial DC link voltage negative
VdcP	-	Partial DC link voltage positive
VDE	Verband der Elektrotechnik, Elektronik und Informa- tionstechnik	Association of Electrical Engineering, Electronics and Information Technology
VDI	Verein Deutscher Ingenieure	Verein Deutscher Ingenieure [Association of German Engineers]
VPM	Voltage Protection Module	Voltage Protection Module
Vpp	Volt peak to peak	Volt peak to peak
VSM	Voltage Sensing Module Voltage Sensing Module	

W

Abbreviation	Derivation of abbreviation	Meaning
WEA	Wiedereinschaltautomatik	Automatic restart
WZM	Werkzeugmaschine	Machine tool

Х

Abbreviation	Derivation of abbreviation	Meaning
XML	Extensible Markup Language	Extensible markup language (standard language for Web publishing and document management)

A.1 List of abbreviations

Y

Abbreviation	Derivation of abbreviation	Meaning
No entries		

Ζ

Abbreviation	Derivation of abbreviation	Meaning
ZK	Zwischenkreis	DC link
ZM	Zero Mark	Zero mark
ZSW	Zustandswort	Status word

A.2 Documentation overview

SINAMICS	Cumentation/catalogs G110 D 11 - Converter Chassis Units 0.12 kW up to 3 kW			
SINAMICS				
	G120	D 31	- SINAMICS Converters for Single-Axis Drives and SIMOTICS Motors	
	G130, G150	D 11	- Converter Chassis Units	
			- Converter Cabinet Units	
	S120, S150	D 21.3	- SINAMICS S120 Chassis Units and Cabinet Modules	
			- SINAMICS S150 Converter Cabinet Units	
	S120	D 21.4	- SINAMICS S120 and SIMOTICS	
	er/service docu	mentation		
SINAMICS	G110		- Getting Started	
			- Operating Instructions	
			- List Manuals	
	G120		- Getting Started	
			- Operating Instructions	
			- Installation Manuals	
			- Function Manual Safety Integrated - List Manuals	
	G130		- Operating Instructions - List Manual	
	G150		- Operating Instructions	
	0.00		- List Manual	
	GM150,		- Operating Instructions	
	SM120/SM150,		- List Manuals	
	GL150, SL15	0		
	S110		- Equipment Manual	
			- Getting Started	
			- Function Manual	
			- List Manual	
	S120		- Getting Started	
			- Commissioning Manual	
			- Function Manual Drive Functions	
			- Function Manual Communication (from firmware V5.2)	
			- Function Manual Safety Integrated - Function Manual DCC	
			- List Manual	
			- Equipment Manual for Control Units and Supplementary System Components	
			- Equipment Manual for Booksize Power Units	
			- Equipment Manual for Air-Cooled Chassis Power Units	
			- Equipment Manual for Liquid-Cooled Chassis Power Units	
			- Equipment Manual for Water-Cooled Chassis Power Units for Common Cooling Circuits	
			- Equipment Manual Combi	
			- Equipment Manual for Cabinet Modules	
			- Equipment Manual for AC Drives	
			- SINAMICS S120M Equipment Manual Distributed Drive Technology - SINAMICS HLA System Manual Hydraulic Drive	
	S150		- Operating Instructions	
			- List Manual	
	S210		- SINAMICS S210 Operating Instructions	
Motors			- Configuration Manuals, Motors	
General			- Configuration Manual, EMC Installation Guideline	

A.2 Documentation overview

Index

...

"Siemens Industry Online Support" app, 14

Α

Address Setting the PROFIBUS address, 76

В

Basic Operator Panel BOP20, 90

С

CAN CBC10 Communication Board, 95 CBE20 Ethernet Communication Board, 101 Communication PROFIBUS DP, 32 PROFINET, 32 Components Basic Operator Panel BOP20, 90 CAN CBC10 Communication Board, 95 CBE20 Ethernet Communication Board, 101 Control Unit CU320-2 DP, 66 Control Unit CU320-2 PN, 47 DRIVE-CLiQ encoder, 311 DRIVE-CLiQ Hub Module DMC20, 200 DRIVE-CLiQ Hub Module External DME20, 206 Sensor Module Cabinet-Mounted SMC10, 233 Sensor Module Cabinet-Mounted SMC20, 242 Sensor Module Cabinet-Mounted SMC30, 250 Sensor Module Cabinet-Mounted SMC40, 266 Sensor Module External SME120, 287 Sensor Module External SME125, 299 Sensor Module External SME20, 275 Sensor Module External SME25, 281 Terminal Board TB30, 105 Terminal Module TM120, 177 Terminal Module TM15, 117 Terminal Module TM150, 187 Terminal Module TM31, 129 Terminal Module TM41, 145 Terminal Module TM54F, 157 Voltage Sensing Module, 213

Connector coding Terminal Module TM15, 127 Terminal Module TM31, 144 Control Unit CU320-2 DP, 66 LEDs during booting, 82 LEDs during operation, 83, 84 Control Unit CU320-2 PN, 47 LEDs during booting, 62 LEDs during operation, 63, 64

D

Data matrix code, 15 **Diagnostics via LEDs** CAN CBC10 Communication Board, 99 CBE20 Ethernet Communication Board, 102 Control Unit CU320-2 DP, 83, 84 Control Unit CU320-2 PN, 63, 64 DRIVE-CLiQ Hub Module DMC20, 202 Sensor Module Cabinet SMC10, 238 Sensor Module Cabinet SMC20, 247 Sensor Module Cabinet SMC30, 258 Sensor Module Cabinet SMC40, 272 Terminal Module TM120, 183 Terminal Module TM15, 123 Terminal Module TM150, 194 Terminal Module TM31, 140 Terminal Module TM41, 153 Terminal Module TM54F, 172 Voltage Sensing Module VSM10, 222 **Dimension drawings** Control Unit CU320-2 DP, 85 Control Unit CU320-2 PN, 65 DRIVE-CLiQ encoder, 313 DRIVE-CLiQ Hub Module DMC20, 203 DRIVE-CLiQ Hub Module External DME20, 210 Sensor Module Cabinet SMC10, 239 Sensor Module Cabinet SMC20, 248 Sensor Module Cabinet SMC30, 259 Sensor Module Cabinet SMC40, 273 Sensor Module External SME120, 296 Sensor Module External SME125, 308 Sensor Module External SME20, 279 Sensor Module External SME25, 284 Terminal Module TM120, 184 Terminal Module TM15, 124 Terminal Module TM150, 195 Terminal Module TM31, 141 Terminal Module TM41, 154

Terminal Module TM54F, 174 Voltage Sensing Module VSM10, 223 DRIVE-CLiQ, 35 DRIVE-CLiQ encoder, 311 DRIVE-CLiQ Hub Module DMC20, 200 DRIVE-CLiQ Hub Module External DME20, 206

Ε

Electronic rating plate, 35

F

Field of application, 31

I

Installation Basic Operator Panel BOP20, 92 CBE20 Ethernet Communication Board, 105 Communication Board CBC10, 100 Control Unit CU320-2 DP/PN, 86 DRIVE-CLiQ encoder, 314 DRIVE-CLiQ Hub Module DMC20, 203 Sensor Module Cabinet, 240, 248, 260 Sensor Module External SME120, 297 Sensor Module External SME125, 309 Sensor Module External SME20/SME25, 279, 285 Sensor Modules Cabinet SMC40, 273 Terminal Board TB30, 112 Terminal Module TM120, 184 Terminal Module TM150, 196 Terminal Modules, 142, 155, 175 Voltage Sensing Module VSM10, 224 Interface descriptions Basic Operator Panel BOP20, 90 CAN CBC10 Communication Board, 96 CBE20 Ethernet Communication Board, 101 Control Unit CU320-2 DP, 67 Control Unit CU320-2 PN, 49 DRIVE-CLiQ Hub Module DMC20, 200 DRIVE-CLiQ Hub Module External DME20, 207 Sensor Module Cabinet SMC10, 234 Sensor Module Cabinet SMC20, 243 Sensor Module Cabinet SMC30, 251 Sensor Module Cabinet SMC40, 267 Sensor Module External SME120, 288 Sensor Module External SME125, 301 Sensor Module External SME20, 276 Sensor Module External SME25, 282 Terminal Board TB30, 106

Terminal Module TM120, 178 Terminal Module TM15, 118 Terminal Module TM150, 188 Terminal Module TM31, 130 Terminal Module TM41, 146 Terminal Module TM54F, 159 Voltage Sensing Module VSM10, 215 Introduction, 34

L

LEDs CAN CBC10 Communication Board, 99 CBE20 Ethernet Communication Board, 102 Control Unit CU320-2 DP, 83, 84 Control Unit CU320-2 PN, 63, 64 DRIVE-CLiQ Hub Module DMC20, 202 Sensor Module Cabinet SMC10, 238 Sensor Module Cabinet SMC20, 247 Sensor Module Cabinet SMC30, 258 Sensor Module Cabinet SMC40, 272 Terminal Module TM120, 183 Terminal Module TM15, 123 Terminal Module TM150, 194 Terminal Module TM31, 140 Terminal Module TM41, 153 Terminal Module TM54F, 172 Voltage Sensing Module VSM10, 222

Μ

Mounting Terminal Modules, 124

Ρ

Platform Concept, 32 PROFIBUS Setting the address, 76 PROFIBUS DP, 32 PROFINET, 32 Protective conductor connection and shield support DRIVE-CLiQ Hub Module DMC20, 205 Terminal Module TM120, 186 Terminal Module TM15, 126 Terminal Module TM150, 197 Terminal Module TM31, 143 Terminal Module TM41, 156 Terminal Module TM54F, 176 Voltage Sensing Module VSM10, 225

S

Safety instructions Control Units, 46 Hub Modules, 199 Option boards, 95 Sensor Module External, 287, 300 Sensor Modules and encoders, 232 Terminal Modules, 116 Voltage Sensing Modules VSM10, 214 Sensor Module Cabinet-Mounted SMC10, 233 Sensor Module Cabinet-Mounted SMC20, 242 Sensor Module Cabinet-Mounted SMC30, 250 Sensor Module Cabinet-Mounted SMC40, 266 Sensor Module External SME120, 287 Sensor Module External SME125, 299 Sensor Module External SME20, 275 Sensor Module External SME25, 281 Sensor Modules Overview, 230 Siemens Industry Online Support App, 14 Specification of encoder systems and encoders Sensor Module Cabinet SMC30, 262 Switches for PROFIBUS address, 76 System architecture, 35

Т

Technical data CAN CBC10 Communication Board, 100 Control Unit CU320-2 DP, 85 Control Unit CU320-2 PN, 65 DRIVE-CLiQ Hub Module DMC20, 205 DRIVE-CLiQ Hub Module External DME20, 211 Electronics power supply, 39 Sensor Module Cabinet SMC20, 249 Sensor Module Cabinet SMC40, 275 Sensor Module External SME120, 298 Sensor Module External SME125, 309 Sensor Module External SME20, 280 Sensor Module External SME25, 285 Terminal Board TB30, 113 Terminal Module TM120, 186 Terminal Module TM15, 128 Terminal Module TM150, 197 Terminal Module TM31, 145 Terminal Module TM41, 157 Terminal Module TM54F, 176 Voltage Sensing Module VSM10, 226

Technical specifications DRIVE-CLiQ encoder, 317 Sensor Module Cabinet SMC10, 241 Sensor Module Cabinet SMC30, 261 Terminal Board TB30, 105 Terminal Module TM120, 177 Terminal Module TM15, 117 Terminal Module TM150, 187 Terminal Module TM31, 129 Terminal Module TM41, 145 Terminal Module TM54F, 157 Totally Integrated Automation, 32

V

Voltage Sensing Module, 213

W

Websites of third-party companies, 15

Additional information

Siemens: www.siemens.com

Industry Online Support (Service and Support): www.siemens.com/online-support

IndustryMall: www.siemens.com/industrymall

Siemens AG Digital Industries Motion Control P O Box 3180 D-91050 Erlangen Germany

