# **SIEMENS**



Operating Instructions

# **SINAMICS**

**SINAMICS G120 und G120P** 

Low voltage converters Built-in and wall mounting units with CU230P-2 Control Units

Edition 02/2023

# **SIEMENS**

# Changes in the current edition

| edition                            |    |
|------------------------------------|----|
| Fundamental safety instructions    | 1  |
| Introduction                       | 2  |
| Description                        | 3  |
| Installing                         | 4  |
| Commissioning                      | 5  |
| Uploading the converter settings   | 6  |
| Protecting the converter settings  | 7  |
| Advanced commissioning             | 8  |
| Alarms, faults and system messages | 9  |
| Corrective maintenance             | 10 |
| Technical data                     | 11 |

**Appendix** 

**SINAMICS** 

SINAMICS G120, G120P Converter with CU230P-2 Control Units

**Operating Instructions** 

Edition 02/2023, Firmware V4.7 SP14

#### Legal information

#### Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.

#### **DANGER**

indicates that death or severe personal injury will result if proper precautions are not taken.



#### WARNING

indicates that death or severe personal injury may result if proper precautions are not taken.



#### CAUTION

indicates that minor personal injury can result if proper precautions are not taken.

#### NOTICE

indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

#### **Qualified Personnel**

The product/system described in this documentation may be operated only by personnel qualified for the specific task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

#### **Proper use of Siemens products**

Note the following:



#### WARNING

Siemens products may only be used for the applications described in the catalog and in the relevant technical documentation. If products and components from other manufacturers are used, these must be recommended or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and maintenance are required to ensure that the products operate safely and without any problems. The permissible ambient conditions must be complied with. The information in the relevant documentation must be observed.

#### **Trademarks**

All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

#### **Disclaimer of Liability**

We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.

# Changes in the current edition

### Essential changes with respect to Edition 10/2020

#### **New functions**

SINAMICS G115D converter now supports the extended function 'Safety Limited Speed (SLS)' with the firmware version V4.7 SP14.

Overview of new and modified function in firmware V4.7 SP14:



# **Table of contents**

|   | Changes               | in the current edition                                             | 3  |
|---|-----------------------|--------------------------------------------------------------------|----|
| 1 | Fundame               | ental safety instructions                                          | 13 |
|   | 1.1                   | General safety instructions                                        | 13 |
|   | 1.2                   | Equipment damage due to electric fields or electrostatic discharge | 20 |
|   | 1.3                   | Warranty and liability for application examples                    | 21 |
|   | 1.4                   | Security information                                               | 22 |
|   | 1.5                   | Residual risks of power drive systems                              | 23 |
| 2 | Introduct             | tion                                                               | 25 |
|   | 2.1                   | About the Manual                                                   | 25 |
|   | 2.2                   | Guide through the manual                                           | 26 |
| 3 | Description           | on                                                                 | 29 |
|   | 3.1                   | Intended use                                                       |    |
|   | 3.2                   | OpenSSL                                                            | 30 |
|   | 3.3                   | Transferring OpenOSS license terms to a PC                         | 31 |
|   | 3.4                   | Identifying the converter                                          | 32 |
|   | 3.5                   | Directives and standards                                           | 33 |
|   | 3.6                   | Control Units                                                      | 35 |
|   | 3.7<br>3.7.1<br>3.7.2 | Power Module                                                       | 37 |
|   | 3.7.2                 | Components for the Power Modules                                   |    |
|   | 3.8.1                 | Accessories for shielding                                          |    |
|   | 3.8.2                 | Line filter                                                        |    |
|   | 3.8.3<br>3.8.4        | Line reactor                                                       |    |
|   | 3.8.5                 | ((dv/dt filter plus VPL PM240-2))                                  |    |
|   | 3.8.6                 | Sine-wave filter                                                   |    |
|   | 3.8.7                 | dv/dt filter                                                       |    |
|   | 3.8.8                 | Braking Module and braking resistor                                |    |
|   | 3.8.9                 | Control Unit Adapter Kit CUA20                                     |    |
|   | 3.9                   | Motors and multi-motor drives that can be operated                 | 61 |
| 4 | Installing            | ]                                                                  | 63 |
|   | 4.1                   | Installing the label for the North American market                 | 63 |
|   | 4.2                   | EMC-compliant setup of the machine or plant                        |    |
|   | 4.2.1                 | Control cabinet                                                    | 65 |

| 4.2.2<br>4.2.3                                                                                                                                                               | Cables Electromechanical components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 4.3                                                                                                                                                                          | Installing reactors, filters and braking resistors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70                                      |
| 4.4<br>4.4.1<br>4.4.2<br>4.4.3<br>4.4.4<br>4.4.5<br>4.4.6<br>4.4.7<br>4.4.8                                                                                                  | Installing Power Modules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 71<br>71<br>72<br>74<br>77<br>79<br>80  |
| 4.5<br>4.5.1.1<br>4.5.1.2<br>4.5.1.3<br>4.5.2<br>4.5.3<br>4.5.4<br>4.5.5<br>4.5.6<br>4.5.7<br>4.5.8<br>4.5.9                                                                 | Connecting the line supply and motor  Permissible line supplies  TN line system  IT system  Requirements for the protective conductor  Connecting the converter with the PM230 Power Module IP55  Connecting the converter with the PM230 Power Module  Connecting the converter with the PM330 Power Module  Connecting the converter with the PM240P-2 Power Module  Connecting a converter with the PM240P-2 Power Module  Connecting the converter with the PM240P-2 Power Module  Connecting the converter with the PM250 Power Module  Connecting the motor to the converter in a star or delta connection                                                                                       | 90 91 93 94 95 102 104 105 117          |
| 4.6<br>4.6.1<br>4.6.2<br>4.6.3<br>4.6.4<br>4.6.5<br>4.6.6<br>4.6.7<br>4.6.8<br>4.6.9<br>4.6.10<br>4.6.11<br>4.6.12<br>4.6.13<br>4.6.13.1<br>4.6.13.2<br>4.6.13.3<br>4.6.13.4 | Connecting the interfaces for the converter control Plugging the Control Unit onto the Power Module Overview of the interfaces Fieldbus interface allocation  Terminal strips Factory interface settings Default setting of the interfaces Additional digital inputs and outputs on PM330 Power Modules Safe Torque Off (STO) safety function Application examples for "Safe Torque Off" Wiring terminal strips Connecting the temperature contact of the braking resistor Fieldbus interfaces Connecting the converter to PROFINET Communication via PROFINET IO and Ethernet Connecting the PROFINET cable to the converter What do you have to set for communication via PROFINET? Installing GSDML | 115 119 120 124 144 146 153 157 157 159 |
| 4.6.14<br>4.6.14.1<br>4.6.14.2<br>4.6.14.3<br>4.6.14.4                                                                                                                       | Connecting the converter to PROFIBUS  Connecting the PROFIBUS cable to the converter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 160<br>161<br>161<br>162                |

| 5 | Commissi           | ioning                                                            | 165 |
|---|--------------------|-------------------------------------------------------------------|-----|
|   | 5.1                | Commissioning guidelines                                          | 165 |
|   | 5.2                | Tools to commission the converter                                 | 166 |
|   | 5.3                | Preparing for commissioning                                       | 168 |
|   | 5.3.1              | Collecting motor data                                             | 168 |
|   | 5.3.2              | Forming DC link capacitors                                        |     |
|   | 5.3.3              | Converter factory setting                                         | 172 |
|   | 5.4                | Quick commissioning using the BOP-2 operator panel                |     |
|   | 5.4.1              | Inserting the BOP-2                                               |     |
|   | 5.4.2              | Starting quick commissioning                                      |     |
|   | 5.4.3              | Quick commissioning with application classes                      |     |
|   | 5.4.3.1            | Overview                                                          |     |
|   | 5.4.3.2<br>5.4.3.3 | Select the application class                                      |     |
|   | 5.4.3.4            | Standard Drive Control                                            |     |
|   | 5.4.3.5            | Expert                                                            |     |
|   | 5.4.3.3<br>5.4.4   | Identifying the motor data and optimizing the closed-loop control |     |
|   |                    | ·                                                                 |     |
|   | 5.5                | Quick commissioning with a PC                                     |     |
|   | 5.5.1              | Creating a project                                                |     |
|   | 5.5.2              | Transfer converters connected via USB into the project            | 196 |
|   | 5.5.3              | Go online and start the commissioning Wizard                      |     |
|   | 5.5.4<br>5.5.5     | Commissioning wizard                                              |     |
|   | 5.5.6              | Dynamic Drive Control                                             |     |
|   | 5.5.7              | Expert                                                            |     |
|   | 5.5.8              | Identify motor data                                               |     |
|   | 5.6                | Restoring the factory settings                                    |     |
|   | 5.7                | Series commissioning                                              | 211 |
|   | 5.8                | Handling the BOP 2 operator panel                                 | 212 |
|   | 5.8.1              | Switching the motor on and off                                    |     |
|   | 5.8.2              | Changing parameter values                                         |     |
|   | 5.8.3              | Changing indexed parameters                                       |     |
|   | 5.8.4              | Entering the parameter number directly                            | 216 |
|   | 5.8.5              | Entering the parameter value directly                             | 217 |
|   | 5.8.6              | Why can a parameter value not be changed?                         | 218 |
| 6 | Uploading          | g the converter settings                                          | 219 |
|   | 6.1                | Uploading to the memory card                                      | 220 |
|   | 6.1.1              | Recommended memory cards                                          | 220 |
|   | 6.1.2              | Automatic upload                                                  |     |
|   | 6.1.3              | Message for a memory card that is not inserted                    |     |
|   | 6.1.4              | Manual upload with Startdrive                                     |     |
|   | 6.1.5              | Manual upload with BOP-2                                          |     |
|   | 6.1.6              | Safely removing a memory card using the BOP-2                     |     |
|   | 6.1.7              | Safely remove the memory card with Startdrive                     | 225 |
|   | 6.2                | Uploading to the BOP-2                                            | 227 |
|   | 6.3                | Upload to a PC using Startdrive                                   | 228 |

|   | 6.4       | More options for the upload                                             | 229 |
|---|-----------|-------------------------------------------------------------------------|-----|
| 7 | Protectin | ng the converter settings                                               | 231 |
|   | 7.1       | Write protection                                                        | 231 |
|   | 7.2       | Know-how protection                                                     | 233 |
|   | 7.2.1     | Know-how protection                                                     | 233 |
|   | 7.2.2     | Extending the exception list for know-how protection                    | 237 |
|   | 7.2.3     | Activating and deactivating know-how protection                         | 238 |
| 8 | Advance   | ed commissioning                                                        | 241 |
|   | 8.1       | Overview of the converter functions                                     | 241 |
|   | 8.2       | Brief description of the parameters                                     | 244 |
|   | 8.3       | Sequence control when switching the motor on and off                    | 245 |
|   | 8.4       | Adapt the default setting of the terminal strip                         | 248 |
|   | 8.4.1     | Digital inputs                                                          |     |
|   | 8.4.2     | Analog inputs as digital inputs                                         |     |
|   | 8.4.3     | Digital outputs                                                         | 252 |
|   | 8.4.4     | Analog inputs                                                           | 254 |
|   | 8.4.5     | Adjusting characteristics for analog input                              |     |
|   | 8.4.6     | Setting the deadband                                                    |     |
|   | 8.4.7     | Analog outputs                                                          |     |
|   | 8.4.8     | Adjusting characteristics for analog output                             | 260 |
|   | 8.5       | Safe Torque Off (STO) safety function                                   |     |
|   | 8.5.1     | Safe Torque Off (STO) safety function                                   |     |
|   | 8.5.2     | Setting the feedback signal for Safe Torque Off                         |     |
|   | 8.6       | Controlling clockwise and counter-clockwise rotation via digital inputs |     |
|   | 8.6.1     | Two-wire control, ON/reverse                                            |     |
|   | 8.6.2     | Two-wire control, clockwise/counterclockwise rotation 1                 |     |
|   | 8.6.3     | Two-wire control, clockwise/counterclockwise rotation 2                 |     |
|   | 8.6.4     | Three-wire control, enable/clockwise/counterclockwise rotation          |     |
|   | 8.6.5     | Three-wire control, enable/ON/reverse                                   | 276 |
|   | 8.7       | Drive control via PROFIBUS or PROFINET                                  |     |
|   | 8.7.1     | Receive data and send data                                              |     |
|   | 8.7.2     | Telegrams                                                               |     |
|   | 8.7.3     | Parameter channel                                                       |     |
|   | 8.7.4     | Examples                                                                |     |
|   | 8.7.5     | Expanding or freely interconnecting telegrams                           |     |
|   | 8.7.6     | Device-to-device communication                                          |     |
|   | 8.7.7     | Acyclically reading and writing converter parameters                    |     |
|   | 8.8       | Drive control via USS                                                   |     |
|   | 8.9       | Drive control via Modbus RTU                                            |     |
|   | 8.10      | Drive control via Ethernet/IP                                           |     |
|   | 8.11      | Drive control via BACnet MS/TP                                          | 307 |
|   | 8.12      | Drive control via P1                                                    |     |
|   | 8.13      | Jogging                                                                 | 311 |

| 8.14                                                                                               | Switching over the drive control (command data set)                                                                                                        | 313               |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 8.15<br>8.15.1                                                                                     | Free function blocksOverview                                                                                                                               |                   |
| 8.16<br>8.16.1<br>8.16.2<br>8.16.3<br>8.16.4                                                       | Physical units  Motor standard  Unit system  Technological unit of the technology controller  Setting the system of units and technology unit              | 317<br>317<br>319 |
| 8.17<br>8.17.1<br>8.17.2<br>8.17.3<br>8.17.4                                                       | Setpoints                                                                                                                                                  | 323<br>324<br>325 |
| 8.18<br>8.18.1<br>8.18.2<br>8.18.3<br>8.18.4<br>8.18.5<br>8.18.6                                   | Setpoint processing Overview Invert setpoint Enable direction of rotation Skip frequency bands and minimum speed. Speed limitation Ramp-function generator |                   |
| 8.19<br>8.19.1<br>8.19.2                                                                           | PID technology controller<br>Autotuning the PID technology controller<br>Adapting Kp and Tn                                                                | 347               |
| 8.20                                                                                               | Free technology controllers                                                                                                                                | 352               |
| 8.21                                                                                               | Multi-zone control                                                                                                                                         | 354               |
| 8.22                                                                                               | Cascade control                                                                                                                                            | 357               |
| 8.23                                                                                               | Real time clock (RTC)                                                                                                                                      | 361               |
| 8.24                                                                                               | Time switch (DTC)                                                                                                                                          | 363               |
| 8.24                                                                                               | Motor control                                                                                                                                              |                   |
| 8.25.1<br>8.25.2<br>8.25.2.1<br>8.25.2.2<br>8.25.2.3<br>8.25.2.4<br>8.25.3<br>8.25.3.1<br>8.25.3.2 | Reactor, filter and cable resistance at the converter output                                                                                               |                   |
| 8.26<br>8.26.1<br>8.26.2<br>8.26.3<br>8.26.4<br>8.26.5                                             | Electrically braking the motor  Electrical braking  DC braking  Compound braking  Dynamic braking  Braking with regenerative feedback to the line          |                   |
| 8 27                                                                                               | Overcurrent protection                                                                                                                                     | 307               |

|    | 8.28                                                                       | Converter protection using temperature monitoring                                 | 393                             |
|----|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------|
|    | 8.29                                                                       | Motor protection with temperature sensor                                          | 396                             |
|    | 8.30                                                                       | Motor protection by calculating the temperature                                   | 398                             |
|    | 8.31                                                                       | How do I achieve a motor overload protection in accordance with IEC/UL 61800-5-1? | 400                             |
|    | 8.32                                                                       | Motor and converter protection by limiting the voltage                            | 401                             |
|    | 8.33<br>8.33.1<br>8.33.2<br>8.33.3<br>8.33.4<br>8.33.5<br>8.33.6           | Monitoring the driven load                                                        | 404<br>404<br>405<br>406<br>408 |
|    | 8.34                                                                       | Flying restart – switching on while the motor is running                          | 412                             |
|    | 8.35                                                                       | Automatic restart                                                                 | 414                             |
|    | 8.36                                                                       | Kinetic buffering (Vdc min control)                                               | 417                             |
|    | 8.37                                                                       | Essential service mode                                                            | 419                             |
|    | 8.38                                                                       | Efficiency optimization                                                           | 423                             |
|    | 8.39                                                                       | Bypass                                                                            | 426                             |
|    | 8.40                                                                       | Hibernation mode                                                                  | 430                             |
|    | 8.41                                                                       | Line contactor control                                                            | 434                             |
|    | 8.42                                                                       | Calculating the energy saving for fluid flow machines                             | 436                             |
|    | 8.43                                                                       | Switchover between different settings                                             | 438                             |
| 9  | Alarms, fau                                                                | ults and system messages                                                          | 441                             |
|    | 9.1                                                                        | Operating states indicated via LEDs                                               | 442                             |
|    | 9.2                                                                        | System runtime                                                                    | 445                             |
|    | 9.3                                                                        | Identification & maintenance data (I&M)                                           | 446                             |
|    | 9.4                                                                        | Alarms, alarm buffer, and alarm history                                           | 447                             |
|    | 9.5                                                                        | Faults, alarm buffer and alarm history                                            | 450                             |
|    | 9.6                                                                        | List of alarms and faults                                                         | 453                             |
| 10 | Corrective                                                                 | maintenance                                                                       | 461                             |
|    | 10.1                                                                       | Replace Control Unit                                                              | 463                             |
|    | 10.2<br>10.2.1<br>10.2.2<br>10.2.3<br>10.2.4<br>10.2.5<br>10.2.6<br>10.2.7 | Downloading the converter settings                                                | 465<br>465<br>466<br>467<br>470 |
|    | 10.2.7                                                                     | Dominous month the reading startaine minimum.                                     | 175                             |

| 10                               | ).3                                                        | Replacing a Power Module                                                                                                                                                                                                                                                                                                                                                      | 476                                                         |
|----------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 10                               | ).4                                                        | PROFINET device name                                                                                                                                                                                                                                                                                                                                                          | 478                                                         |
| 10<br>10<br>10                   | 0.5<br>0.5.1<br>0.5.2<br>0.5.3<br>0.5.4<br>0.5.5           | Firmware upgrade and downgrade  Overview  Preparing the memory card  Upgrading the firmware  Firmware downgrade  Correcting an unsuccessful firmware upgrade or downgrade                                                                                                                                                                                                     | 479<br>480<br>481<br>483                                    |
| 10                               | ).6                                                        | If the converter no longer responds                                                                                                                                                                                                                                                                                                                                           | 486                                                         |
| 11 Te                            | chnical da                                                 | ıta                                                                                                                                                                                                                                                                                                                                                                           | 489                                                         |
| 11                               | .1                                                         | Technical data, CU230P-2 Control Unit                                                                                                                                                                                                                                                                                                                                         | 489                                                         |
| 11                               | .2                                                         | Overload capability of the converter                                                                                                                                                                                                                                                                                                                                          | 492                                                         |
| 11<br>11<br>11<br>11             |                                                            | Technical data, PM230 Power Module  Ambient conditions                                                                                                                                                                                                                                                                                                                        | 493<br>495<br>496<br>500<br>501                             |
| 11<br>11<br>11<br>11<br>11       | .4<br>.4.1<br>.4.2<br>.4.3<br>.4.4<br>.4.5<br>.4.6<br>.4.7 | Technical Data, PM240P-2 Power Module  Ambient conditions  General technical data, 400 V converters  Specific technical data, 400 V converters  Current derating depending on the pulse frequency, 400 V converters  General technical data, 690 V converters  Specific technical data, 690 V converters  Current derating depending on the pulse frequency, 690 V converters | 507<br>509<br>510<br>512<br>513<br>514                      |
|                                  | .5<br>.5.1<br>.5.2                                         | Technical data, PM330 Power Module                                                                                                                                                                                                                                                                                                                                            | 518                                                         |
| 11<br>11<br>11<br>11<br>11<br>11 |                                                            | Technical data, PM240-2 Power Module  Ambient conditions                                                                                                                                                                                                                                                                                                                      | 529<br>531<br>532<br>539<br>540<br>541<br>549<br>550<br>551 |
| 11<br>11                         |                                                            | Technical data, PM250 Power Module                                                                                                                                                                                                                                                                                                                                            | 555<br>557                                                  |

|   | 11.8           | Data regarding the power loss in partial load operation                                                       | 561 |
|---|----------------|---------------------------------------------------------------------------------------------------------------|-----|
|   | 11.9<br>11.9.1 | Restrictions for special ambient conditions  Permissible line supplies dependent on the installation altitude |     |
|   |                |                                                                                                               |     |
|   | 11.10          | Protecting persons from electromagnetic fields                                                                | 564 |
| Α | Appendix       | <b></b>                                                                                                       | 565 |
|   | A.1            | New and extended functions                                                                                    | 565 |
|   | A.1.1          | Firmware version 4.7 SP14                                                                                     | 565 |
|   | A.1.2          | Firmware version 4.7 SP13                                                                                     | 565 |
|   | A.1.3          | Firmware version 4.7 SP10                                                                                     | 566 |
|   | A.1.4          | Firmware version 4.7 SP9                                                                                      | 568 |
|   | A.1.5          | Firmware version 4.7 SP6                                                                                      | 570 |
|   | A.1.6          | Firmware version 4.7 SP3                                                                                      | 571 |
|   | A.1.7          | Firmware version 4.7                                                                                          | 573 |
|   | A.1.8          | Firmware version 4.6 SP6                                                                                      |     |
|   | A.1.9          | Firmware version 4.6                                                                                          | 575 |
|   | A.1.10         | Firmware version 4.5                                                                                          | 576 |
|   | A.2            | Interconnecting signals in the converter                                                                      | 577 |
|   | A.2.1          | Fundamentals                                                                                                  | 577 |
|   | A.2.2          | Application example                                                                                           | 579 |
|   | A.3            | Manuals and technical support                                                                                 | 581 |
|   | A.3.1          | Overview of the manuals                                                                                       | 581 |
|   | A.3.2          | Configuring support                                                                                           | 584 |
|   | A.3.3          | Product Support                                                                                               |     |
|   | Indov          |                                                                                                               | F07 |

**Fundamental safety instructions** 

#### 1.1 **General safety instructions**



#### WARNING

#### Electric shock and danger to life due to other energy sources

Touching live components can result in death or severe injury.

- Only work on electrical devices when you are qualified for this job.
- Always observe the country-specific safety rules.

Generally, the following steps apply when establishing safety:

- 1. Prepare for disconnection. Notify all those who will be affected by the procedure.
- 2. Isolate the drive system from the power supply and take measures to prevent it being switched back on again.
- 3. Wait until the discharge time specified on the warning labels has elapsed.
- 4. Check that there is no voltage between any of the power connections, and between any of the power connections and the protective conductor connection.
- 5. Check whether the existing auxiliary supply circuits are de-energized.
- 6. Ensure that the motors cannot move.
- 7. Identify all other dangerous energy sources, e.g. compressed air, hydraulic systems, or water. Switch the energy sources to a safe state.
- 8. Check that the correct drive system is completely locked.

After you have completed the work, restore the operational readiness in the inverse sequence.



#### **▲** WARNING

#### Risk of electric shock and fire from supply networks with an excessively high impedance

Excessively low short-circuit currents can lead to the protective devices not tripping or tripping too late, and thus causing electric shock or a fire.

- In the case of a conductor-conductor or conductor-ground short-circuit, ensure that the short-circuit current at the point where the converter is connected to the line supply at least meets the minimum requirements for the response of the protective device used.
- You must use an additional residual-current device (RCD) if a conductor-ground short circuit does not reach the short-circuit current required for the protective device to respond. The required short-circuit current can be too low, especially for TT supply systems.

#### 1.1 General safety instructions





#### **▲** WARNING

#### Risk of electric shock and fire from supply networks with an excessively low impedance

Excessively high short-circuit currents can lead to the protective devices not being able to interrupt these short-circuit currents and being destroyed, and thus causing electric shock or a fire.

Ensure that the prospective short-circuit current at the line terminal of the converter does not exceed the breaking capacity (SCCR or Icc) of the protective device used.





#### WARNING

#### Electric shock if there is no ground connection

For missing or incorrectly implemented protective conductor connection for devices with protection class I, high voltages can be present at open, exposed parts, which when touched, can result in death or severe injury.

Ground the device in compliance with the applicable regulations.





#### WARNING

#### Electric shock due to connection to an unsuitable power supply

When equipment is connected to an unsuitable power supply, exposed components may carry a hazardous voltage. Contact with hazardous voltage can result in severe injury or death.

Only use power supplies that provide SELV (Safety Extra Low Voltage) or PELV- (Protective Extra Low Voltage) output voltages for all connections and terminals of the electronics modules.





#### **WARNING**

#### Electric shock due to equipment damage

Improper handling may cause damage to equipment. For damaged devices, hazardous voltages can be present at the enclosure or at exposed components; if touched, this can result in death or severe injury.

- Ensure compliance with the limit values specified in the technical data during transport, storage and operation.
- Do not use any damaged devices.





#### ♠ WARNING

#### Electric shock due to unconnected cable shield

Hazardous touch voltages can occur through capacitive cross-coupling due to unconnected cable shields.

• As a minimum, connect cable shields and the conductors of power cables that are not used (e.g. brake cores) at one end at the grounded housing potential.





#### **WARNING**

### Arcing when a plug connection is opened during operation

Opening a plug connection when a system is operation can result in arcing that may cause serious injury or death.

• Only open plug connections when the equipment is in a voltage-free state, unless it has been explicitly stated that they can be opened in operation.





#### ♠ WARNING

#### Electric shock due to residual charges in power components

Because of the capacitors, a hazardous voltage is present for up to 5 minutes after the power supply has been switched off. Contact with live parts can result in death or serious injury.

• Wait for 5 minutes before you check that the unit really is in a no-voltage condition and start work.

#### **NOTICE**

#### Damage to equipment due to unsuitable tightening tools.

Unsuitable tightening tools or fastening methods can damage the screws of the equipment.

- Only use screw inserts that exactly match the screw head.
- Tighten the screws with the torque specified in the technical documentation.
- Use a torque wrench or a mechanical precision nut runner with a dynamic torque sensor and speed limitation system.
- Adjust the tools used regularly.

#### **NOTICE**

#### Property damage due to loose power connections

Insufficient tightening torques or vibration can result in loose power connections. This can result in damage due to fire, device defects or malfunctions.

- Tighten all power connections to the prescribed torque.
- Check all power connections at regular intervals, particularly after equipment has been transported.

#### 1.1 General safety instructions



#### WARNING

#### Electromagnetic interference due to inadequate shield support

A lack of adequate shield support for the power cables can cause malfunctions and impermissibly high levels of interference.

- Use the shield connection plates supplied or recommended.
- Use the shield connection clips recommended.



#### **WARNING**

#### Spread of fire from built-in devices

Built-in devices can cause a fire and a pressure wave in the event of a fault. Fire and smoke can escape from the control cabinet and cause serious personal injury and property damage.

- Install built-in appliances in a robust metal control cabinet that is suitable for protecting people from fire and smoke.
- Only operate built-in devices with the control cabinet doors closed.
- Ensure that smoke can only escape via controlled and monitored paths.



#### **WARNING**

#### Active implant malfunctions due to electromagnetic fields

Converters generate electromagnetic fields (EMF) in operation. Electromagnetic fields may interfere with active implants, e.g. pacemakers. People with active implants in the immediate vicinity of an converter are at risk.

- As the operator of an EMF-emitting installation, assess the individual risks of persons with active implants.
- Observe the data on EMF emission provided in the product documentation.



#### CAUTION

#### Symptomatic respiratory and skin reaction to chemicals

A newly purchased product might contain traces of substances that are identified as sensitizers.

Sensitizers are substances which can cause sensitization in the lungs and skin after exposure to them.

Once sensitized, individuals can have severe reactions to further exposure, even in small amounts. In the most extreme cases, individuals might develop asthma or dermatitis respectively.

If the product has a strong smell, keep it in a well-ventilated area for 14 days.

#### **▲** WARNING

#### Unexpected machine movement caused by radio devices or mobile phones

Using radio devices, cellphones, or mobile WLAN devices in the immediate vicinity of the components can result in equipment malfunction. Malfunctions may impair the functional safety of machines and can therefore put people in danger or lead to property damage.

- Therefore, if you move closer than 20 cm to the components, be sure to switch off radio devices, cellphones or WLAN devices.
- Use the "SIEMENS Industry Online Support app" only on equipment that has already been switched off.

#### NOTICE

#### Damage to motor insulation due to excessive voltages

When operated on systems with grounded line conductors or in the event of a ground fault in the IT system, the motor insulation can be damaged by the higher voltage against ground. If you use motors that have insulation that is not designed for operation with grounded line conductors, you must perform the following measures:

- IT system: Use a ground fault monitor and eliminate the fault as quickly as possible.
- TN or TT systems with grounded line conductor: Use an isolating transformer on the line side.



#### WARNING

#### Fire due to inadequate ventilation clearances

Inadequate ventilation clearances can cause overheating of components with subsequent fire and smoke. This can cause severe injury or even death. This can also result in increased downtime and reduced service lives for devices/systems.

Ensure compliance with the specified minimum clearance as ventilation clearance for the respective component.

#### **NOTICE**

#### Overheating due to inadmissible mounting position

The device may overheat and therefore be damaged if mounted in an inadmissible position.

Only operate the device in admissible mounting positions.

#### 1.1 General safety instructions

#### WARNING

#### Unrecognized dangers due to missing or illegible warning labels

Dangers might not be recognized if warning labels are missing or illegible. Unrecognized dangers may cause accidents resulting in serious injury or death.

- Check that the warning labels are complete based on the documentation.
- Attach any missing warning labels to the components, where necessary in the national language.
- Replace illegible warning labels.

#### NOTICE

#### Device damage caused by incorrect voltage/insulation tests

Incorrect voltage/insulation tests can damage the device.

 Before carrying out a voltage/insulation check of the system/machine, disconnect the devices as all converters and motors have been subject to a high voltage test by the manufacturer, and therefore it is not necessary to perform an additional test within the system/machine.



#### WARNING

#### Unexpected movement of machines caused by inactive safety functions

Inactive or non-adapted safety functions can trigger unexpected machine movements that may result in serious injury or death.

- Observe the information in the appropriate product documentation before commissioning.
- Carry out a safety inspection for functions relevant to safety on the entire system, including all safety-related components.
- Ensure that the safety functions used in your drives and automation tasks are adjusted and activated through appropriate parameterizing.
- Perform a function test.
- Only put your plant into live operation once you have guaranteed that the functions relevant to safety are running correctly.

#### Note

### Important Safety instructions for Safety Integrated

If you want to use Safety Integrated functions, you must observe the Safety instructions in the Safety Integrated documentation.

## **MARNING**

#### Malfunctions of the machine as a result of incorrect or changed parameter settings

As a result of incorrect or changed parameterization, machines can malfunction, which in turn can lead to injuries or death.

- Protect the parameterization against unauthorized access.
- Handle possible malfunctions by taking suitable measures, e.g. emergency stop or emergency off.

1.2 Equipment damage due to electric fields or electrostatic discharge

# 1.2 Equipment damage due to electric fields or electrostatic discharge

Electrostatic sensitive devices (ESD) are individual components, integrated circuits, modules or devices that may be damaged by either electric fields or electrostatic discharge.



#### NOTICE

#### Equipment damage due to electric fields or electrostatic discharge

Electric fields or electrostatic discharge can cause malfunctions through damaged individual components, integrated circuits, modules or devices.

- Only pack, store, transport and send electronic components, modules or devices in their original packaging or in other suitable materials, e.g conductive foam rubber of aluminum foil.
- Only touch components, modules and devices when you are grounded by one of the following methods:
  - Wearing an ESD wrist strap
  - Wearing ESD shoes or ESD grounding straps in ESD areas with conductive flooring
- Only place electronic components, modules or devices on conductive surfaces (table with ESD surface, conductive ESD foam, ESD packaging, ESD transport container).

## 1.3 Warranty and liability for application examples

Application examples are not binding and do not claim to be complete regarding configuration, equipment or any eventuality which may arise. Application examples do not represent specific customer solutions, but are only intended to provide support for typical tasks.

As the user you yourself are responsible for ensuring that the products described are operated correctly. Application examples do not relieve you of your responsibility for safe handling when using, installing, operating and maintaining the equipment.

#### 1.4 Security information

#### Security information 1.4

Siemens provides products and solutions with industrial security functions that support the secure operation of plants, systems, machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial security concept. Siemens' products and solutions constitute one element of such a concept.

Customers are responsible for preventing unauthorized access to their plants, systems, machines and networks. Such systems, machines and components should only be connected to an enterprise network or the internet if and to the extent such a connection is necessary and only when appropriate security measures (e.g. firewalls and/or network segmentation) are in place.

For additional information on industrial security measures that may be implemented, please

https://www.siemens.com/industrialsecurity.

Siemens' products and solutions undergo continuous development to make them more secure. Siemens strongly recommends that product updates are applied as soon as they are available and that the latest product versions are used. Use of product versions that are no longer supported, and failure to apply the latest updates may increase customer's exposure to cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed under

https://www.siemens.com/cert.

Further information is provided on the Internet:

Industrial Security Configuration Manual (https://support.industry.siemens.com/cs/ww/en/ view/108862708)



#### **▲** WARNING

#### Unsafe operating states resulting from software manipulation

Software manipulations, e.g. viruses, Trojans, or worms, can cause unsafe operating states in your system that may lead to death, serious injury, and property damage.

- Keep the software up to date.
- Incorporate the automation and drive components into a holistic, state-of-the-art industrial security concept for the installation or machine.
- Make sure that you include all installed products into the holistic industrial security concept.
- Protect files stored on exchangeable storage media from malicious software by with suitable protection measures, e.g. virus scanners.
- On completion of commissioning, check all security-related settings.

## 1.5 Residual risks of power drive systems

When assessing the machine or system-related risk in accordance with the respective local regulations (e.g. EC Machinery Directive), the machine manufacturer or system integrator must take into account the following residual risks emanating from the control and drive components of a drive system:

- 1. Unintentional movements of driven machine or system components during commissioning, operation, maintenance, and repairs caused by, for example,
  - Hardware faults and/or software errors in the sensors, control system, actuators, and connections
  - Response times of the control system and of the drive
  - Operation and/or environmental conditions outside the specification
  - Condensation/conductive contamination
  - Parameterization, programming, cabling, and installation errors
  - Use of wireless devices/mobile phones in the immediate vicinity of electronic components
  - External influences/damage
  - X-ray, ionizing radiation and cosmic radiation
- 2. Unusually high temperatures, including open flames, as well as emissions of light, noise, particles, gases, etc., can occur inside and outside the components under fault conditions caused by, for example:
  - Component failure
  - Software errors
  - Operation and/or environmental conditions outside the specification
  - External influences/damage
- 3. Hazardous shock voltages caused by, for example:
  - Component failure
  - Influence during electrostatic charging
  - Induction of voltages in moving motors
  - Operation and/or environmental conditions outside the specification
  - Condensation/conductive contamination
  - External influences/damage
- 4. Electrical, magnetic and electromagnetic fields generated in operation that can pose a risk to people with a pacemaker, implants or metal replacement joints, etc., if they are too close
- 5. Release of environmental pollutants or emissions as a result of improper operation of the system and/or failure to dispose of components safely and correctly

#### 1.5 Residual risks of power drive systems

- 6. Influence of network-connected communication systems, e.g. ripple-control transmitters or data communication via the network
- 7. Motors for use in potentially explosive areas:
  When moving components such as bearings become worn, this can cause enclosure components to exhibit unexpectedly high temperatures during operation, creating a hazard in areas with a potentially explosive atmosphere.

For more information about the residual risks of the drive system components, see the relevant sections in the technical user documentation.

Introduction

#### 2.1 About the Manual

#### Who requires the operating instructions and what for?

These operating instructions primarily address fitters, commissioning engineers and machine operators. The operating instructions describe the devices and device components and enable the target groups being addressed to install, connect-up, set, and commission the converters safely and in the correct manner.

#### What is described in the operating instructions?

These operating instructions provide a summary of all of the information required to operate the converter under normal, safe conditions.

The information provided in the operating instructions has been compiled in such a way that it is sufficient for all standard applications and enables drives to be commissioned as efficiently as possible. Where it appears useful, additional information for entry level personnel has been added.

The operating instructions also contain information about special applications. Since it is assumed that readers already have a sound technical knowledge of how to configure and parameterize these applications, the relevant information is summarized accordingly. This relates, e.g. to operation with fieldbus systems.

#### What is the meaning of the symbols in the manual?

Reference to further information in the manual

Download from the Internet

DVD that can be ordered

End of a handling instruction.





Examples of converter function symbols

# 2.2 Guide through the manual

| Chapter                       | In this section you will find answers to the following questions:                                                               |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Description (Page 29)         | How is the converter marked?                                                                                                    |
|                               | Which components make up the converter?                                                                                         |
|                               | Which optional components are available for the converter?                                                                      |
|                               | What is the purpose of the optional components?                                                                                 |
|                               | Which motors can be fed from the converter?                                                                                     |
|                               | Which commissioning tools are there?                                                                                            |
| Installing (Page 63)          | Which sequence is recommended when installing the converter?                                                                    |
|                               | What does EMC-compliant installation actually mean?                                                                             |
|                               | Which options are available to install optional components below the converter?                                                 |
|                               | What are the converter dimensions?                                                                                              |
|                               | Which mounting and installation materials are required when installing the converter?                                           |
|                               | To which line supplies can the converter be connected?                                                                          |
|                               | How is the converter connected to the line supply?                                                                              |
|                               | How is the braking resistor connected to the converter?                                                                         |
|                               | Which terminals and fieldbus interfaces does the converter have?                                                                |
|                               | What are the interface functions?                                                                                               |
| Commissioning (Page 165)      | Which motor data is required for commissioning                                                                                  |
|                               | How is the converter set in the factory?                                                                                        |
|                               | What is the commissioning procedure?                                                                                            |
|                               | How do you restore the converter factory settings?                                                                              |
| Uploading the converter set-  | Why is it necessary to back up the converter settings?                                                                          |
| tings (Page 219)              | Which options are available to back up the settings?                                                                            |
|                               | How does the data backup function?                                                                                              |
|                               | How do you prevent the converter settings from being changed?                                                                   |
|                               | How do you prevent the converter settings from being read out?                                                                  |
| Protecting the converter set- | How do I protect the converter settings against manipulation?                                                                   |
| tings (Page 231)              | How do I protect my know-how, which is embedded in the converter settings, so that it cannot be copied by unauthorized persons? |
| Advanced commissioning        | Which functions are included in the converter firmware?                                                                         |
| (Page 241)                    | How are the functions set?                                                                                                      |
| Corrective maintenance        | What is the meaning of the LEDs provided on the converter?                                                                      |
| (Page 461)                    | How does the system runtime respond?                                                                                            |
|                               | How does the converter save alarms and faults?                                                                                  |
|                               | What do the converter alarms and faults mean?                                                                                   |
|                               | How are converter faults resolved?                                                                                              |
|                               | Which I&M data is saved in the converter?                                                                                       |

| Chapter                   | In this section you will find answers to the following questions:                                    |
|---------------------------|------------------------------------------------------------------------------------------------------|
| Alarms, faults and system | How are converter components replaced?                                                               |
| messages (Page 441)       | How is the firmware version of the converter changed?                                                |
|                           | What must be done after a converter replacement if the safety functions of the converter are active? |
| Technical data (Page 489) | What is the converter technical data?                                                                |
|                           | What do "High Overload" and "Low Overload" mean?                                                     |
|                           | What effect do the installation altitude or ambient temperature have on the converter, for example?  |
| Appendix (Page 565)       | What are the new functions of the current firmware?                                                  |
|                           | How is the converter operated using the BOP-2 Operator Panel?                                        |
|                           | How can signal interconnections be changed in the converter firmware?                                |
|                           | What does "BiCo technology" mean?                                                                    |
|                           | Where can I find additional information about the converter?                                         |

2.2 Guide through the manual

Description

#### 3.1 Intended use

#### Use for the intended purpose

The converter described in this manual is a device to control a three-phase motor. The converter is designed for installation in electrical installations or machines.

It has been approved for industrial and commercial use on industrial networks. Additional measures have to be taken when connected to public grids.

The technical specifications and information about connection conditions are indicated on the rating plate and in the operating instructions.

#### Use of third-party products

This document contains recommendations relating to third-party products. Siemens accepts the fundamental suitability of these third-party products.

You can use equivalent products from other manufacturers.

Siemens does not accept any warranty for the properties of third-party products.

## 3.2 OpenSSL

#### 3.2 **OpenSSL**

### **Use of OpenSSL**

This product contains software developed in the OpenSSL project for use within the OpenSSL toolkit.

This product contains cryptographic software created by Eric Young.

This product contains software developed by Eric Young.

Further information is provided on the Internet:



OpenSSL (https://www.openssl.org/)



Cryptsoft (mailto:eay@cryptsoft.com)

## 3.3 Transferring OpenOSS license terms to a PC

#### Requirement

You have an empty memory card and a reader for the memory card.

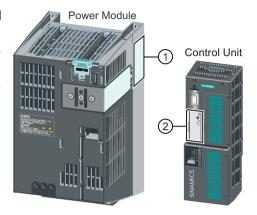
#### **Procedure**

#### **Procedure**

To transfer OpenOSS license terms to a PC, proceed as follows:

- 1. Switch off the converter power supply.
- 2. Insert an empty memory card into the card slot of the converter.

  Overview of the interfaces (Page 118)
- 3. Switch on the converter power supply.
- 4. The converter writes file "Read\_OSS.ZIP" to the memory card within approximately 30 seconds.
- 5. Switch off the converter power supply.
- 6. Withdraw the memory card from the converter.
- 7. Insert the memory card into the card reader of a PC.
- 8. Please read the license terms.


3.4 Identifying the converter

## 3.4 Identifying the converter

#### Main components of the converter

Each SINAMICS G120 converter comprises a Control Unit and a Power Module.

- The Control Unit controls and monitors the connected motor.
- The Power Module provides the connections for line supply and motor.



The following data is provided on the Power Module type plate (1):

- Designation, e.g. PM240-2 Power Module
- Technical specifications: voltage and current
- Article number, e.g. 6SL3210-1PE21-1UL0
- Version, e.g. A02

The following data can be found on the Control Unit type plate (2):

- Designation, e.g. Control Unit CU240E-2 DP-F
- Article number, e.g. 6SL3244-0BB13-1PA0
- Version, e.g. A02 (hardware), 4.7 (firmware)

#### **Further converter components**

The following components are available so that you can adapt the converter to different applications and ambient conditions:

- Line filter (Page 44)
- Line reactor (Page 46)
- Cutput reactor (Page 48)
- Sine-wave filter (Page 55)
- dv/dt filter (Page 57)
- Praking Module and braking resistor (Page 58)
- Control Unit Adapter Kit CUA20 (Page 60)

#### 3.5 Directives and standards

#### Description

The following directives and standards are relevant for the converters:



#### **European Low Voltage Directive**

The converters fulfill the requirements stipulated in the Low-Voltage Directive 2014/35/EU, if they are covered by the application area of this directive.

#### **European Machinery Directive**

The converters fulfill the requirements stipulated in the Machinery Directive 2006/42/EC, if they are covered by the application area of this directive.

However, the use of the converters in a typical machine application has been fully assessed for compliance with the main regulations in this directive concerning health and safety.

#### Directive 2011/65/EU

The converter fulfills the requirements of Directive 2011/65/EU relating to the restriction of the use of certain hazardous substances in electrical and electronic devices (RoHS).

#### **European EMC Directive**

The compliance of the converter with the regulations of the Directive 2014/30/EU has been verified through full compliance with IEC/EN 61800-3.



#### **Underwriters Laboratories (North American market)**

Converters provided with one of the test symbols displayed fulfill the requirements stipulated for the North American market as a component of drive applications, and are appropriately listed.







#### **EMC requirements for South Korea**

The converters with the KC marking on the rating plate satisfy the EMC requirements for South Korea.



#### **Eurasian conformity**

The converters comply with the requirements of the Russia/Belarus/Kazakhstan customs union (EAC).



#### Australia and New Zealand (RCM formerly C-Tick)

The converters showing the test symbols fulfill the EMC requirements for Australia and New Zealand.

#### 3.5 Directives and standards

#### Immunity to voltage drop of semiconductor process equipment.

The converters comply with the requirements of standard SEMI F47-0706.

#### **DNV-GL**

The SINAMICS CUA20 Control Unit Adapter Kit facilitates DNV-GL-certified cabinet designs.

#### China RoHS

The converters comply with the China-RoHs directive. Further information is provided on the Internet:



China RoHS (https://support.industry.siemens.com/cs/ww/en/view/109738656)

#### **Quality systems**

Siemens AG employs a quality management system that meets the requirements of ISO 9001 and ISO 14001.

#### **Further information**

#### Certificates for download

- EC Declaration of Conformity: (https://support.industry.siemens.com/cs/ww/en/view/ 58275445)
- Certificates for the relevant directives, prototype test certificates, manufacturers declarations and test certificates for functions relating to functional safety ("Safety Integrated"): (http://support.automation.siemens.com/WW/view/en/22339653/134200)
- Certificates for products that were certified by UL: (http://database.ul.com/cgi-bin/XYV/ template/LISEXT/1FRAME/index.html)
- Certificates for products that were certified by TÜV SÜD: (https://www.tuev-sued.de/ industrie konsumprodukte/zertifikatsdatenbank)

#### Standards that are not relevant



The converters do not fall in the area of validity of the China Compulsory Certification (CCC).

## 3.6 Control Units



The Control Units differ with regard to the type of fieldbus.

| Designation    | Article number     | Fieldbus                          |
|----------------|--------------------|-----------------------------------|
| CU230P-2 HVAC  | 6SL3243-0BB30-1HA3 | USS, Modbus RTU, BACnet MS/TP, P1 |
| CU230P-2 DP    | 6SL3243-0BB30-1PA3 | PROFIBUS DP                       |
| CU230P-2 PN    | 6SL3243-0BB30-1FA0 | PROFINET IO, EtherNet/IP          |
| CU230P-2 BT 1) | 6SL3243-6BB30-1HA3 | USS, Modbus RTU, BACnet MS/TP, P1 |

<sup>1)</sup> Exclusive version for Siemens IC BT

## Shield connection kit for the Control Unit

The shield connection kit is an optional component. The shield connection kit comprises the following components:

- Shield plate
- Elements for optimum shield support and strain relief of the signal and communication cables

Table 3-1 Article Nos.

| Shield connection kit 1 for the CU230P-2 Control Units with all fieldbus interfaces except for PROFINET. | 6SL3264-1EA00-0FA0 |
|----------------------------------------------------------------------------------------------------------|--------------------|
| Shield connection kit 3 for the CU230P-2 and CU240E-2 Control Units with PROFINET interface.             | 6SL3264-1EA00-0HB0 |

### 3.7 Power Module

## 3.7 Power Module

Important data on the Power Modules is provided in this section. Further information is contained in the Hardware Installation Manual of the Power Module.

Overview of the manuals (Page 581)

All power data refers to rated values or to power for operation with low overload (LO).

### Which Power Module can I use with the Control Unit?

Power module for the SINAMICS G120P

PM230
 PM240P-2
 PM330

Power module for the SINAMICS G120

PM240-2
 PM250

## 3.7.1 Power module for the SINAMICS G120P



Figure 3-1 PM230, 3-phase 400 VAC, degree of protection IP55 / UL Type 12

## PM230 for pumps and fan applications

The PM230 Power Module is suitable for cabinet-free installation.

Table 3-2 3-phase 380 VAC ... 480 VAC, article number 6SL3223-0DE...

| Frame size |                | FSA    | FSB   | FSC     | FSD     | FSE   | FSF   |
|------------|----------------|--------|-------|---------|---------|-------|-------|
| Power (kW) | Filter Class A | 0.37 3 | 4 7.5 | 11 18.5 | 22 30   | 37 45 | 55 90 |
|            | Filter Class B | 0.37 3 | 4 7.5 | 11 15   | 18.5 30 | 37 45 | 55 90 |

### 3.7 Power Module



Figure 3-2 Examples of Power Modules with IP20 degree of protection

## PM230, 3-phase 400 VAC in IP20 degree of protection for pump and fan applications

The PM230 Power Module in IP20 degree of protection is available without a filter or with an integrated class A line filter.

Table 3-3 3-phase 380 VAC ... 480 VAC, article numbers: 6SL3210-1NE...

| Frame size | FSA    | FSB   | FSC     | FSD   | FSE   | FSF   |
|------------|--------|-------|---------|-------|-------|-------|
| Power (kW) | 0.37 3 | 4 7.5 | 11 18.5 | 22 37 | 45 55 | 75 90 |

## PM240P-2 for pump and fan applications

The PM240P-2 Power Module is available without a filter or with an integrated class A line filter.

Table 3-4 3-phase 380 VAC ... 480 VAC, article number 6SL3210-1RE...

| Frame size | FSD   | FSE   | FSF    |
|------------|-------|-------|--------|
| Power (kW) | 22 37 | 45 55 | 75 132 |

Table 3-5 3-phase 500 VAC ... 690 VAC, article number 6SL3210-1RH...

| Frame size | FSD   | FSE   | FSE    |
|------------|-------|-------|--------|
| Power (kW) | 11 37 | 45 55 | 75 132 |

## PM330 for pump, fan and compressor applications



Figure 3-3 PM330 for pump and fan applications

The PM330 Power Module is available as an unfiltered device. External line filters are available as an option, see Section

Table 3-6 3-phase 380 VAC ... 480 VAC, article numbers: 6SL3310-1PE...

| Frame size | GX      | НХ      | JX      |
|------------|---------|---------|---------|
| Power (kW) | 160 250 | 315 400 | 450 560 |

Table 3-7 3-phase 500 VAC ... 690 VAC, article numbers: 6SL3310-1PG...

| Frame size | НХ      | JX      |
|------------|---------|---------|
| Power (kW) | 315 450 | 500 630 |

### 3.7 Power Module



Figure 3-4 Examples of Power Modules with Push-Through technology FSA  $\dots$  FSC

## PM230 in Push-Through technology for pump and fan applications

The PM230 Power Module is available without a filter or with integrated class A line filter.

Table 3-8 3-phase 380 VAC ... 480 VAC, article number 6SL3211-1NE...

| Frame size | FSA | FSB | FSC  |
|------------|-----|-----|------|
| Power (kW) | 3   | 7.5 | 18.5 |

### 3.7.2 Power module for the SINAMICS G120

## PM240-2 for standard applications

The PM240-2 Power Module is available without a filter or with an integrated class A line filter. The PM240-2 permits dynamic braking via an external braking resistor.

Table 3-9 1-phase/3-phase 200 VAC ... 240 VAC, article number 6SL3210-1PB... and 6SL3210-1PC...

| Frame size | FSA       | FSB     | FSC     | FSD     | FSE   | FSF   |
|------------|-----------|---------|---------|---------|-------|-------|
| Power (kW) | 0.55 0.75 | 1.1 2.2 | 3.0 4.0 | 11 18.5 | 22 30 | 37 55 |

Table 3-10 3-phase 380 VAC ... 480 VAC, article number 6SL3210-1PE...

| Frame size | FSA      | FSB     | FSC   | FSD     | FSE   | FSF    | FSG     |
|------------|----------|---------|-------|---------|-------|--------|---------|
| Power (kW) | 0.55 3.0 | 4.0 7.5 | 11 15 | 18.5 37 | 45 55 | 75 132 | 160 250 |

Table 3-11 3-phase 500 VAC ... 690 VAC, article number 6SL3210-1PH...

| Frame size | FSD   | FSE   | FSF    | FSG     |
|------------|-------|-------|--------|---------|
| Power (kW) | 11 37 | 45 55 | 75 132 | 160 250 |

## PM240-2 with Push-Through technology for standard applications

The PM240-2 Power Module is available with Push-Through technology without a filter or with an integrated class A line filter. The PM240-2 allows dynamic braking using an external braking resistor.

Table 3-12 1-phase/3-phase 200 VAC ... 240 VAC, article number 6SL3211-1PB...

| Frame size | FSA  | FSB | FSC | FSD  | FSE | FSF |
|------------|------|-----|-----|------|-----|-----|
| Power (kW) | 0.75 | 2.2 | 4.0 | 18.5 | 30  | 55  |

Table 3-13 3-phase 380 VAC ... 480 VAC, article number 6SL3211-1PE...

| Frame size | FSA | FSB | FSC | FSD | FSE | FSF |
|------------|-----|-----|-----|-----|-----|-----|
| Power (kW) | 3.0 | 7.5 | 15  | 37  | 55  | 132 |

Table 3-14 3 AC 500 V ... 690 V, Article No. 6SL3211-1PH...

| Frame size | FSD | FSE | FSF |
|------------|-----|-----|-----|
| Power (kW) | 37  | 55  | 132 |

### 3.7 Power Module

## PM250 for standard applications with energy recovery

The PM250 Power Module is available without a filter or with integrated class A line filter. The PM250 permits dynamic braking with energy recovery into the line supply.

Table 3-15 3-phase 380 VAC ... 480 VAC, article number 6SL3225-0BE...

| Frame size | FSC    | FSD     | FSE   | FSF   |
|------------|--------|---------|-------|-------|
| Power (kW) | 7.5 15 | 18.5 30 | 37 45 | 55 90 |

## 3.8.1 Accessories for shielding

### Shield connection kit

Establish the shield and strain relief for the power connections using the shield connection kit.

The shield connection kit comprises a shield plate and serrated strips with screws.

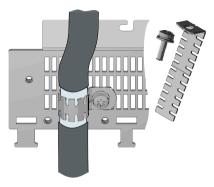



Table 3-16 Article numbers for the shield connection kit

| Frame size | PM250 Power Module | PM230, PM240-2               | PM240P-2                    |
|------------|--------------------|------------------------------|-----------------------------|
| FSA        | 6SL3262-1AA00-0BA0 | The shield connection kit is |                             |
| FSB        | 6SL3262-1AB00-0DA0 | included in the scope of de- |                             |
| FSC        | 6SL3262-1AC00-0DA0 | livery                       |                             |
| FSD        | 6SL3262-1AD00-0DA0 |                              | The lower shield connec-    |
| FSE        | 6SL3262-1AD00-0DA0 |                              | tion kit is included in the |
| FSF        | 6SL3262-1AF00-0DA0 |                              | scope of delivery           |

## 3.8.2 Line filter

With a line filter, the converter can achieve a higher radio interference class.

### NOTICE

### Overloading the line filter when connected to line supplies that are not permissible

The line filter is only suitable for operation on TN or TT line supplies with a grounded neutral point. If operated on other line supplies, the line filter will be thermally overloaded and will be damaged.

• For converters equipped with line filter, only connect to TN or TT line supplies with a grounded neutral point.

## External line filters for PM230, 380 V ... 480 V (IP20)

| Power | Module                                                                                                                                                       | Power         | Line filter according to<br>EN 61800-3 Category C1 |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------|--|
| FSA   | 6SL3210-1NE11-3UG1,<br>6SL3210-1NE11-7UG1,<br>6SL3210-1NE12-2UG1,<br>6SL3210-1NE13-1UG1,<br>6SL3210-1NE14-1UG1,<br>6SL3210-1NE15-8UG1,<br>6SL3211NE17-7UG1 . | 0.37 kW 3 kW  | 6SL3203-0BE17-7BA0                                 |  |
| FSB   | 6SL3210-1NE21-0UG1,<br>6SL3210-1NE21-3UG1,<br>6SL3211NE21-8UG1                                                                                               | 4 kW 7.5 kW   | 6SL3203-0BE21-8BA0                                 |  |
| FSC   | 6SL3210-1NE22-6UG1,<br>6SL3210-1NE23-2UG1,<br>6SL3211NE23-8UG1                                                                                               | 11 kW 18.5 kW | 6SL3203-0BE23-8BA0                                 |  |
| FSD   | 6SL3210-1NE24-5UL0,<br>6SL3210-1NE26-0UL0                                                                                                                    | 22 kW 30 kW   | 6SL3203-0BE27-5BA0                                 |  |
| FSE   | 6SL3210- 1NE27-5UL0, 6SL3210-<br>1NE28-8UL0                                                                                                                  | 37 kW 45 kW   | 6SL3203-0BE31-1BA0                                 |  |
| FSF   | 6SL3210-1NE31-1UL0,<br>6SL3210-1NE31-5UL0                                                                                                                    | 55 kW 75 kW   | 6SL3203-0BE31-8BA0                                 |  |

## External line filters for PM330, 380 V ... 480 V

| Powe | r Module                                  | Power         | Line filter according to EN 61800-3 Category C2 |
|------|-------------------------------------------|---------------|-------------------------------------------------|
| GX   | 6SL3310-1PE33-0AA0,<br>6SL3310-1PE33-7AA0 | 160 kW 200 kW | 6SL3000-0BE33-1AA0                              |
|      | 6SL3310-1PE34-6AA0                        | 250 kW        | 6SL3000-0BE35-0AA0                              |

| Power N | <i>l</i> odule                                                   | Power         | Line filter according to<br>EN 61800-3 Category C2 |
|---------|------------------------------------------------------------------|---------------|----------------------------------------------------|
| HX      | 6SL3310-1PE35-8AA0,<br>6SL3310-1PE36-6AA0,<br>6SL3310-1PE37-4AA0 | 315 kW 400 kW | 6SL3760-0MR00-0AA0                                 |
| JX      | 6SL3310-1PE38-4AA0,<br>6SL3310-1PE38-8AA0,<br>6SL3310-1PE41-0AA0 | 450 kW 560 kW |                                                    |

## External line filters for the PM330 Power Module, 500 V $\dots$ 690 V

| Power N | <i>l</i> odule                                                                          | Power         | Line filter according to<br>EN 61800-3 Category C2 |
|---------|-----------------------------------------------------------------------------------------|---------------|----------------------------------------------------|
| HX      | 6SL3310-1PG33-7AA0,<br>6SL3310-1PG34-0AA0,<br>6SL3310-1PG34-5AA0,<br>6SL3310-1PG35-2AA0 | 315 kW 450 kW | 6SL3760-0MS00-0AA0                                 |
| JX      | 6SL3310-1PG35-8AA0,<br>6SL3310-1PG36-5AA0,<br>6SL3310-1PG37-2AA0                        | 500 kW 630 kW | 6SL3760-0MS00-0AA0                                 |

## **External line filters for PM250**

| Power N | <i>l</i> odule                                                   | Power          | Class B line filter according to EN55011: 2009 |
|---------|------------------------------------------------------------------|----------------|------------------------------------------------|
| FSC     | 6SL3225-0BE25-5AA0,<br>6SL3225-0BE27-5AA0,<br>6SL3225-0BE31-1AA0 | 7.5 kW 15.0 kW | 6SL3203-0BD23-8SA0                             |

#### 3.8.3 Line reactor

The line reactor supports the overvoltage protection, smoothes the harmonics in the line supply and bridges commutation dips. For the Power Modules subsequently listed, a line reactor is suitable in order to dampen the specified effects.

The figure on the right-hand side shows as example the line reactors for the PM240-2 Power Modules, FSB.



The line requirements for deployment of a line reactor depends on the Power Module:



Technical data (Page 489)

### Line reactors for PM330, 380 V ... 480 V

| Power | Module                                    | Power         | Line reactor       |
|-------|-------------------------------------------|---------------|--------------------|
| GX    | 6SL3310-1PE33-0AA0                        | 160 kW        | 6SL3000-0CE33-3AA0 |
|       | 6SL3310-1PE33-7AA0                        | 200 kW        | 6SL3000-0CE35-1AA0 |
|       | 6SL3310-1PE34-6AA0                        | 250 kW        |                    |
| HX    | 6SL3310-1PE35-8AA0                        | 315 kW        | 6SL3000-0CE36-3AA0 |
|       | 6SL3310-1PE36-6AA0                        | 355 kW        | 6SL3000-0CE37-7AA0 |
|       | 6SL3310-1PE37-4AA0                        | 400 kW        |                    |
| JX    | 6SL3310-1PE38-4AA0                        | 450 kW        | 6SL3000-0CE38-7AA0 |
|       | 6SL3310-1PE38-8AA0,<br>6SL3310-1PE41-0AA0 | 500 kW 560 kW | 6SL3000-0CE41-0AA0 |

### Line reactors for PM330 Power Modules, 500 V ... 690 V

| Power | Module                                                           | Power         | Line reactor       |
|-------|------------------------------------------------------------------|---------------|--------------------|
| HX    | 6SL3310-1PG33-7AA0,<br>6SL3310-1PG34-0AA0,<br>6SL3310-1PG34-5AA0 | 315 kW 400 kW | 6SL3000-0CH34-8AA0 |
|       | 6SL3310-1PG35-2AA0                                               | 450 kW        | 6SL3000-0CH36-0AA0 |
| JX    | 6SL3310-1PG35-8AA0                                               | 500 kW        | 6SL3000-0CH36-0AA0 |
|       | 6SL3310-1PG36-5AA0,<br>6SL3310-1PG37-2AA0                        | 560 kW 630 kW | 6SL3000-0CH38-4AA0 |

#### Line reactors for PM240-2 Power Modules

A line reactor is not required.

## Line reactors for PM240-2, 380 V ... 480 V

| Power | Module                                                                 | Power          | Line reactor       |
|-------|------------------------------------------------------------------------|----------------|--------------------|
| FSA   | 6SL3210-1PE11-8 . L1,<br>6SL3210-1PE12-3 . L1,<br>6SL3210-1PE13-2 . L1 | 0.55 kW 1.1 kW | 6SL3203-0CE13-2AA0 |
| FSB   | 6SL3210-1PE14-3 . L1,<br>6SL3211PE16-1 . L1,<br>6SL3211PE18-0 . L1     | 1.5 kW 3 kW    | 6SL3203-0CE21-0AA0 |
| FSC   | 6SL3210-1PE21-1 . L0,<br>6SL3210-1PE21-4 . L0,<br>6SL3211PE21-8 . L0   | 4 kW 7.5 kW    | 6SL3203-0CE21-8AA0 |
|       | 6SL3210-1PE22-7 . LO,<br>6SL3211PE23-3 . LO                            | 11 kW 15 kW    | 6SL3203-0CE23-8AA0 |

FSD ... FSG: A line reactor is not required.

# Line reactors for PM240-2 Power Module, 500 V $\dots$ 690 V

A line reactor is not required.

## Line reactors for PM240-2, 200 V ... 240 V

| Power | Module                                                               | Power           | Line reactor       |
|-------|----------------------------------------------------------------------|-----------------|--------------------|
| FSA   | 6SL3210-1PB13-0 . L0,<br>6SL3210-1PB13-8 . L0                        | 0.55 kW 0.75 kW | 6SL3203-0CE13-2AA0 |
| FSB   | 6SL3210-1PB15-5 . L0,<br>6SL3210-1PB17-4 . L0,<br>6SL3211PB21-0 . L0 | 1.1 kW 2.2 kW   | 6SL3203-0CE21-0AA0 |
| FSC   | 6SL3210-1PB21-4 . LO,<br>6SL3211PB21-8 . LO                          | 3 kW 4 kW       | 6SL3203-0CE21-8AA0 |
|       | 6SL3211PC22-2 . L0,<br>6SL3210-1PC22-8 . L0                          | 5.5 kW 7.5 kW   | 6SL3203-0CE23-8AA0 |

FSD ... FSF: A line reactor is not required.

## 3.8.4 Output reactor

Output reactors reduce the voltage stress on the motor windings and the load placed on the converter as a result of capacitive recharging currents in the cables.

An output reactor is required for the following motor cable lengths:

- For PM330 Power Module:
  - > 100 m shielded
  - ≥ 200 m unshielded
- All other Power Modules:
  - ≥ 50 m shielded
  - ≥ 100 m unshielded

The figure on the right-hand side shows as example the output reactors for PM240-2 Power Modules, FSB and FSC.



### NOTICE

### The output reactor is damaged if the converter pulse frequency is too high

The output reactors are designed for a specific pulse frequency. The output reactor can overheat if the converter is operated with excessive pulse frequencies. Excessively high temperatures damage the output reactor.

- Operate the converter only with an output reactor with the permissible pulse frequencies:
  - PM330 Power Modules HX and JX: Pulse frequency ≤ 2.5 kHz
  - All other Power Modules: Pulse frequency ≤ 4 kHz

### Output reactors for PM230 Power Modules (IP55/UL Type 12)

| Power | Module                                                                                                                                            | Power           | Output reactor     |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|
| FSA   | 6SL3223-0DE13-7 . A0,<br>6SL3223-0DE15-5 . A0,<br>6SL3223-0DE17-5 . A0,<br>6SL3223-0DE21-1 . A0,<br>6SL3223-0DE21-5 . A0,<br>6SL3223-0DE22-2 . A0 | 0.37 kW 2.2 kW  | 6SL3202-0AE16-1CA0 |
|       | 6SL3223-0DE23-0 . A0                                                                                                                              | 3.0 kW          | 6SL3202-0AE18-8CA0 |
| FSB   | 6SL3223-0DE24-0 . A0,<br>6SL3223-0DE25-5 . A0,<br>6SL3223-0DE27-5 . A0,                                                                           | 4.0 kW 7.5 kW   | 6SL3202-0AE21-8CA0 |
| FSC   | 6SL3223-0DE31-1 . A0,<br>6SL3223-0DE31-5 . A0,<br>6SL3223-0DE31-8 . A0                                                                            | 11.0 kW 18.5 kW | 6SL3202-0AE23-8CA0 |
| FSD   | 6SL3223-0DE32-2 . A0                                                                                                                              | 22 kW           | 6SE6400-3TC03-8DD0 |
|       | 6SL3223-0DE33-0 . A0                                                                                                                              | 30 kW           | 6SE6400-3TC05-4DD0 |
| FSE   | 6SL3223-0DE33-7 . A0                                                                                                                              | 37 kW           | 6SE6400-3TC08-0ED0 |
|       | 6SL3223-0DE34-5 . A0                                                                                                                              | 45 kW           | 6SE6400-3TC07-5ED0 |

| Power | Module               | Power | Output reactor     |
|-------|----------------------|-------|--------------------|
| FSF   | 6SL3223-0DE35-5 . A0 | 55 kW | 6SE6400-3TC14-5FD0 |
|       | 6SL3223-0DE37-5 . A0 | 75 kW | 6SE6400-3TC15-4FD0 |
|       | 6SL3223-0DE38-8 . A0 | 90 kW | 6SE6400-3TC14-5FD0 |

## Output reactors for PM230 Power Modules (IP20)

| Power N | Module                                                                                                                                       | Power           | Output reactor     |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|
| FSA     | 6SL3210-1NE11-3 . G1<br>6SL3210-1NE11-7 . G1<br>6SL3210-1NE12-2 . G1<br>6SL3210-1NE13-1 . G1<br>6SL3210-1NE14-1 . G1<br>6SL3210-1NE15-8 . G1 | 0.37 kW 2.2 kW  | 6SL3202-0AE16-1CA0 |
|         | 6SL3210-1NE17-7 . G1                                                                                                                         | 3.0 kW          | 6SL3202-0AE18-8CA0 |
| FSB     | 6SL3210-1NE21-0 . G1<br>6SL3210-1NE21-3 . G1<br>6SL3210-1NE21-8 . G1                                                                         | 4.0 kW 7.5 kW   | 6SL3202-0AE21-8CA0 |
| FSC     | 6SL3210-1NE22-6 . G1<br>6SL3210-1NE23-2 . G1<br>6SL3210-1NE23-8 . G1                                                                         | 11.0 kW 18.5 kW | 6SL3202-0AE23-8CA0 |
| FSD     | 6SL3210-1NE24-5 . L0                                                                                                                         | 22 kW           | 6SE6400-3TC03-8DD0 |
|         | 6SL3210-1NE26-0 . L0                                                                                                                         | 30 kW           | 6SE6400-3TC05-4DD0 |
| FSE     | 6SL3210-1NE27-5 . L0                                                                                                                         | 37 kW           | 6SE6400-3TC08-0ED0 |
|         | 6SL3210-1NE28-8 . L0                                                                                                                         | 45 kW           | 6SE6400-3TC07-5ED0 |
| FSF     | 6SL3210-1NE31-1 . L0                                                                                                                         | 55 kW           | 6SE6400-3TC14-5FD0 |
|         | 6SL3210-1NE31-5 . L0                                                                                                                         | 75 kW           | 6SE6400-3TC15-4FD0 |

## Output reactors for PM230 push-through Power Modules

| Power M | /lodule              | Power   | Output reactor     |
|---------|----------------------|---------|--------------------|
| FSA     | 6SL3211-1NE17-7 . G1 | 3.0 kW  | 6SL3202-0AE18-8CA0 |
| FSB     | 6SL3211-1NE21-8 . G1 | 7.5 kW  | 6SL3202-0AE21-8CA0 |
| FSC     | 6SL3211-1NE23-8 . G1 | 18.5 kW | 6SL3202-0AE23-8CA0 |

## Output reactors for PM240-2 Power Modules, 380 V ... 480 V

| Power I | Module                                                                                                                   | Power          | Output reactor     |
|---------|--------------------------------------------------------------------------------------------------------------------------|----------------|--------------------|
| FSA     | 6SL3210-1PE11-8 . L1,<br>6SL3210-1PE12-3 . L1,<br>6SL3210-1PE13-2 . L1,<br>6SL3210-1PE14-3 . L1,<br>6SL3210-1PE16-1 . L1 | 0.55 kW 2.2 kW | 6SL3202-0AE16-1CA0 |
|         | 6SL3211PE18-0 . L1                                                                                                       | 3 kW           | 6SL3202-0AE18-8CA0 |

| Power | Module                                                                                     | Power         | Output reactor     |
|-------|--------------------------------------------------------------------------------------------|---------------|--------------------|
| FSB   | 6SL3210-1PE21-1 . LO,<br>6SL3210-1PE21-4 . LO,<br>6SL3211PE21-8 . LO                       | 4 kW 7.5 kW   | 6SL3202-0AE21-8CA0 |
| FSC   | 6SL3210-1PE22-7 . L0,<br>6SL3211PE23-3 . L0                                                | 11 kW 15 kW   | 6SL3202-0AE23-8CA0 |
| FSD   | 6SL3210-1PE23-8 . L0<br>6SL3210-1PE24-5 . L0<br>6SL3210-1PE26-0 . L0<br>6SL3211PE27-5 . L0 | 18.5 kW 37 kW | 6SE6400-3TC07-5ED0 |
| FSE   | 6SL3210-1PE28-8 . L0,<br>6SL3211PE31-1 . L0                                                | 45 kW 55 kW   | 6SE6400-3TC14-5FD0 |
| FSF   | 6SL3210-1PE31-5 . L0                                                                       | 75 kW         |                    |
|       | 6SL3210-1PE31-8 . L0                                                                       | 90 kW         |                    |
|       | 6SL3210-1PE32-1 . L0                                                                       | 110 kW        | 6SL3000-2BE32-1AA0 |
|       | 6SL3211PE32-5 . LO                                                                         | 132 kW        | 6SL3000-2BE32-6AA0 |
| FSG   | 6SL3210-1PE33-0 . L0                                                                       | 160 kW        | 6SL3000-2BE33-2AA0 |
|       | 6SL3210-1PE33-7 . L0                                                                       | 200 kW        | 6SL3000-2BE33-8AA0 |
|       | 6SL3210-1PE34-8 . L0                                                                       | 250 kW        | 6SL3000-2BE35-0AA0 |

## Output reactors for PM240-2 Power Modules, 500 V ... 690 V

| Power N | Module                                        | Power         | Output reactor     |
|---------|-----------------------------------------------|---------------|--------------------|
| FSF     | 6SL3210-1PH28-0 . L0,<br>6SL3210-1PH31-0 . L0 | 75 kW 90 kW   | 6SL3000-2AH31-0AA0 |
|         | 6SL3210-1PH31-2 . L0,<br>6SL3210-1PH31-4 . L0 | 110 kW 132 kW | 6SL3000-2AH31-5AA0 |
| FSG     | 6SL3210-1PH31-7CL0                            | 160 kW        | 6SL3000-2AH31-8AA0 |
|         | 6SL3210-1PH32-1CL0                            | 200 kW        | 6SL3000-2AH32-4AA0 |
|         | 6SL3210-1PH32-5CL0                            | 250 kW        | 6SL3000-2AH32-6AA0 |

## Output reactors for PM240-2 Power Modules, 200 V $\dots$ 240 V

| Power N | 1odule                                                           | Power           | Output reactor     |
|---------|------------------------------------------------------------------|-----------------|--------------------|
| FSA     | 6SL3210-1PB13-0 . LO,<br>6SL3211PB13-8 . LO                      | 0.55 kW 0.75 kW | 6SL3202-0AE16-1CA0 |
| FSB     | 6SL3210-1PB15-5 . LO                                             | 1.1 kW          |                    |
|         | 6SL3210-1PB17-4 . LO                                             | 1.5 kW          | 6SL3202-0AE18-8CA0 |
| FSB     | 6SL3211PB21-0 . L0                                               | 2.2 kW          | 6SL3202-0AE21-8CA0 |
| FSC     | 6SL3210-1PB21-4 . LO,<br>6SL3211PB21-8 . LO                      | 3 kW 4 kW       |                    |
|         | 6SL3211PC22-2 . L0,<br>6SL3210-1PC22-8 . L0                      | 5.5 kw 7.5 kW   | 6SL3202-0AE23-8CA0 |
| FSD     | 6SL3210-1PC24-2UL0,<br>6SL3210-1PC25-4UL0,<br>6SL3210-1PC26-8UL0 | 11 kW 18.5 kW   | 6SE6400-3TC07-5ED0 |

| Power N | /lodule                                                          | Power       | Output reactor     |
|---------|------------------------------------------------------------------|-------------|--------------------|
| FSE     | 6SL3210-1PC28-0UL0,<br>6SL3210-1PC31-1UL0                        | 22 kW 55 kW | 6SE6400-3TC14-5FD0 |
| FSF     | 6SL3210-1PC31-3UL0,<br>6SL3210-1PC31-6UL0,<br>6SL3210-1PC31-8UL0 |             |                    |

## Output reactors for PM330 Power Modules, 380 V ... 480 V

| Power N | Module                                    | Power         | Output reactor     |
|---------|-------------------------------------------|---------------|--------------------|
| GX      | 6SL3310-1PE33-0AA0                        | 160 kW        | 6SL3000-2BE33-2AA0 |
|         | 6SL3310-1PE33-7AA0                        | 200 kW        | 6SL3000-2BE33-8AA0 |
|         | 6SL3310-1PE34-6AA0                        | 250 kW        | 6SL3000-2BE35-0AA0 |
| HX      | 6SL3310-1PE35-8AA0                        | 315 kW        | 6SL3000-2AE36-1AA0 |
|         | 6SL3310-1PE36-6AA0                        | 355 kW        | 6SL3000-2AE38-4AA0 |
|         | 6SL3310-1PE37-4AA0                        | 400 kW        |                    |
| JX      | 6SL3310-1PE38-4AA0,<br>6SL3310-1PE38-8AA0 | 450 kW 500 kW | 6SL3000-2AE41-0AA0 |
|         | 6SL3310-1PE41-0AA0                        | 560 kW        | 6SL3000-2AE41-4AA0 |

## Output reactors for PM330 Power Modules, 500 V ... 690 V

| Power I | Module              | Power         | Output reactors    |
|---------|---------------------|---------------|--------------------|
| JX      | 6SL3310-1PG35-8AA0, | 500 kW 630 kW | 6SL3000-2AE41-0AA0 |
|         | 6SL3310-1PG36-5AA0, |               |                    |
|         | 6SL3310-1PG37-2AA0  |               |                    |

## Output reactors for PM240P-2 Power Modules, 380 V ... 480 V

| Power Module |                      | Power  | Output reactor     |
|--------------|----------------------|--------|--------------------|
| FSD          | 6SL3210-1RE24-5 . L0 | 22 kW  | 6SE6400-3TC03-8DD0 |
|              | 6SL3210-1RE26-0 . L0 | 30 kW  | 6SE6400-3TC07-5ED0 |
|              | 6SL3210-1RE27-5 . L0 | 37 kW  |                    |
| FSE          | 6SL3210-1RE28-8 . L0 | 45 kW  |                    |
|              | 6SL3210-1RE31-1 . L0 | 55 KW  | 6SE6400-3TC14-5FD0 |
| FSF          | 6SL3210-1RE31-5 . L0 | 75 kW  |                    |
|              | 6SL3210-1RE31-8 . L0 | 90 kW  |                    |
|              | 6SL3210-1RE32-1 . L0 | 110 kW | 6SL3000-2BE32-1AA0 |
|              | 6SL3210-1RE32-5 . L0 | 132 kW | 6SL3000-2BE32-6AA0 |

## Output reactors for PM250 Power Module

| Power N | Module                                                                 | Power          | Output reactor     |
|---------|------------------------------------------------------------------------|----------------|--------------------|
| FSC     | 6SL3225-0BE25-5 . A0,<br>6SL3225-0BE27-5 . A0,<br>6SL3225-0BE31-1 . A0 | 7.5 kW 15.0 kW | 6SL3202-0AJ23-2CA0 |
| FSD     | 6SL3225-0BE31-5 . A0                                                   | 18.5 kW        | 6SE6400-3TC05-4DD0 |
|         | 6SL3225-0BE31-8 . A0                                                   | 22 kW          | 6SE6400-3TC03-8DD0 |
|         | 6SL3225-0BE32-2 . A0                                                   | 30 kW          | 6SE6400-3TC05-4DD0 |
| FSE     | 6SL3225-0BE33-0 . A0                                                   | 37 kW          | 6SE6400-3TC08-0ED0 |
|         | 6SL3225-0BE33-7 . A0                                                   | 45 kW          | 6SE6400-3TC07-5ED0 |
| FSF     | 6SL3225-0BE34-5 . A0                                                   | 55 kW          | 6SE6400-3TC14-5FD0 |
|         | 6SL3225-0BE35-5 . A0                                                   | 75 kW          | 6SE6400-3TC15-4FD0 |
|         | 6SL3225-0BE37-5 . A0                                                   | 90 kW          | 6SE6400-3TC14-5FD0 |

## 3.8.5 ((dv/dt filter plus VPL PM240-2))

A combination of dv/dt filter and a voltage peak limiter (VPL) – dv/dt filter plus VPL – is available to suppress voltage peaks.

When using a dv/dt filter plus VPL, observe the following restrictions:

- The output frequency must not exceed 150 Hz.
- The pulse frequency must not exceed 4 kHz.



#### NOTICE

## Damage to the dv/dt filter plus VPL if it is not activated during commissioning

The dv/dt filter plus VPL may be damaged if it is not activated during commissioning.

- Activate the dv/dt filter plus VPL during commissioning via parameter p0230.
- Activate the dv/dt filter plus VPL during commissioning according to the electric specifications.

#### NOTICE

#### Damage to the dv/dt filter plus VPL if the connection to the capacitor is not removed

The dv/dt filter plus VPL may be damaged if the connection to the capacitor of the common mode filter is not removed when the dv/dt filter plus VPL operates in the IT line system.

Further information is provided on the Internet:

• FAQ of dv/dt filter plus VPL (<a href="https://support.industry.siemens.com/cs/ww/en/ps/13224/faq">https://support.industry.siemens.com/cs/ww/en/ps/13224/faq</a>)

For applications in the USA and Canada, you can also use the dv/dt filters plus VPL recommended by Siemens Product Partner for Drive Options. For more information, see the link below:

Voltage limiter and dv/dt filter (<a href="https://www.mdexx.com/wp-content/uploads/2019/11/">https://www.mdexx.com/wp-content/uploads/2019/11/</a> BAF-18-001-76 Instruction manual.pdf)

### dv/dt filters plus VPL for PM240-2 Power Modules, 3 AC 400 V

| Power      | Power Module                               |                | dv/dt filter plus VPL                         |
|------------|--------------------------------------------|----------------|-----------------------------------------------|
|            |                                            |                | Manufacturer: mdexx Magnetronic Devices s.r.o |
| FSD        | 6SL3210-1PE23-8 .L0                        | 18.5 kW        | JTA:TEF1203-0HB                               |
|            | 6SL3210-1PE24-5 .L0<br>6SL3210-1PE26-0 .L0 | 22 kW<br>30 kW | JTA:TEF1203-0JB                               |
| FSD<br>FSE | 6SL3211PE27-5 .L0<br>6SL3210-1PE28-8 .L0   | 37 kW<br>45 kW | JTA:TEF1203-0KB                               |

| Power Module |                                                                 | Power                     | dv/dt filter plus VPL<br>Manufacturer: mdexx Mag-<br>netronic Devices s.r.o |
|--------------|-----------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------|
| FSE<br>FSF   | 6SL3211PE31-1 .L0<br>6SL3210-1PE31-5 .L0                        | 55 kW<br>75 kW            | JTA:TEF1203-0LB                                                             |
| FSF          | 6SL3210-1PE31-8 .L0<br>6SL3210-1PE32-1 .L0<br>6SL3211PE32-5 .L0 | 90 kW<br>110 kW<br>132 kW | JTA:TEF1203-0MB                                                             |

## dv/dt filters plus VPL for PM240-2 Power Modules, 3 AC 690 V

| Power N | <i>l</i> odule                                                    | Power                      | dv/dt filter plus VPL<br>Manufacturer: mdexx Mag-<br>netronic Devices s.r.o |
|---------|-------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------|
| FSD     | 6SL3210-1PH21-4 .L0<br>6SL3210-1PH22-0 .L0<br>6SL3210-1PH22-3 .L0 | 11 kW<br>15 kW<br>18.5 kW  | JTA:TEF1203-0GB                                                             |
|         | 6SL3210-1PH22-7 .L0<br>6SL3210-1PH23-5 .L0<br>6SL3210-1PH24-2 .L0 | 22 kW<br>30 kW<br>37 kW    | JTA:TEF1203-0HB                                                             |
| FSE     | 6SL3210-1PH25-2 .L0<br>6SL3210-1PH26-2 .L0                        | 45 kW<br>55 kW             | JTA:TEF1203-0JB                                                             |
| FSF     | 6SL3210-1PH28-0 .L0<br>6SL3210-1PH31-0 .L0                        | 75 kW<br>90 kW             | JTA:TEF1203-0KB                                                             |
|         | 6SL3210-1PH31-2 .L0<br>6SL3210-1PH31-4 .L0                        | 110 kW<br>132 kW           | JTA:TEF1203-0LB                                                             |
| FSG     | 6SL3210-1PH31-7CL0<br>6SL3210-1PH32-1CL0<br>6SL3210-1PH32-5CL0    | 160 kW<br>200 kW<br>250 kW | JTA:TEF1203-0MB                                                             |

### 3.8.6 Sine-wave filter

The sine-wave filter at the converter output limits the voltage rate-ofrise and the peak voltages at the motor winding. The maximum permissible length of motor feeder cables is increased to 300 m.

The following applies when using a sine-wave filter:

- Operation is only permissible with pulse frequencies from 4 kHz to 8 kHz.
  - From 110 kW power rating of the Power Modules (according to the type plate) only 4 kHz is permissible.
- The converter power is reduced by 5%.
- The maximum output frequency of the converter is 150 Hz at 380 V to 480 V.
- Operation and commissioning may only be performed with the motor connected, as the sine-wave filter is not no-load proof.
- An output reactor is superfluous.

### Sine-wave filter for PM240-2 Power Module, 380 V ... 480 V

| Power Module |                                               | Power         | Sine-wave filter   |
|--------------|-----------------------------------------------|---------------|--------------------|
| FSD          | 6SL3210-1PE23-8 . L0,<br>6SL3210-1PE24-5 . L0 | 18.5 kW 22 kW | 6SL3202-0AE24-6SA0 |
|              | 6SL3210-1PE26-0 . L0                          | 30 kW         | 6SL3202-0AE26-2SA0 |
|              | 6SL3211PE27-5 . L0                            | 37 kW         | 6SL3202-0AE28-8SA0 |
| FSE          | 6SL3210-1PE28-8 . L0                          | 45 kW         |                    |
|              | 6SL3211PE31-1 . LO                            | 55 kW         | 6SL3202-0AE31-5SA0 |
| FSF          | 6SL3210-1PE31-5 . L0                          | 75 kW         |                    |
|              | 6SL3210-1PE31-8 . L0                          | 90 kW         | 6SL3202-0AE31-8SA0 |
|              | 6SL3210-1PE32-1 . L0,<br>6SL3211PE32-5 . L0   | 110 kW 132 kW | 6SL3000-2CE32-3AA0 |
| FSG          | 6SL3210-1PE33-0 . L0                          | 160 kW        | 6SL3000-2CE32-8AA0 |
|              | 6SL3210-1PE33-7 . LO                          | 200 kW        | 6SL3000-2CE33-3AA0 |
|              | 6SL3210-1PE34-8 . L0                          | 250 kW        | 6SL3000-2CE34-1AA0 |

### Sine-wave filter for PM240-2 Power Module, 200 V ... 240 V

| Power Module |                                         | Power       | Sine-wave filter   |
|--------------|-----------------------------------------|-------------|--------------------|
| FSD          | 6SL3210-1PC24-2UL0                      | 11 kW       | 6SL3202-0AE24-6SA0 |
|              | 6SL3210-1PC25-4UL0                      | 15 kW       | 6SL3202-0AE26-2SA0 |
|              | 6SL3211PC26-8UL0                        | 18.5 kW     | 6SL3202-0AE28-8SA0 |
| FSE          | 6SL3210-1PC28-0UL0                      | 22 kW       |                    |
|              | 6SL3211PC31-1UL0                        | 30 kW       | 6SL3202-0AE31-5SA0 |
| FSF          | 6SL3210-1PC31-3UL0                      | 37 kW       |                    |
|              | 6SL3210-1PC31-6UL0,<br>6SL3211PC31-8UL0 | 45 kW 55 kW | 6SL3202-0AE31-8SA0 |

## Sine-wave filter for PM250 Power Module

| Power I | Module                                        | Power           | Sine-wave filter   |
|---------|-----------------------------------------------|-----------------|--------------------|
| FSC     | 6SL3225-0BE25-5 . A0                          | 7.5 kW          | 6SL3202-0AE22-0SA0 |
|         | 6SL3225-0BE27-5 . A0,<br>6SL3225-0BE31-1 . A0 | 11.0 kW 15.0 kW | 6SL3202-0AE23-3SA0 |
| FSD     | 6SL3225-0BE31-5 . A0,<br>6SL3225-0BE31-8 . A0 | 18.5 kW 22 kW   | 6SL3202-0AE24-6SA0 |
|         | 6SL3225-0BE32-2 . A0                          | 30 kW           | 6SL3202-0AE26-2SA0 |
| FSE     | 6SL3225-0BE33-0 . A0,<br>6SL3225-0BE33-7 . A0 | 37 kW 45 kW     | 6SL3202-0AE28-8SA0 |
| FSF     | 6SL3225-0BE34-5 . A0,<br>6SL3225-0BE35-5 . A0 | 55 kW 75 kW     | 6SL3202-0AE31-5SA0 |
|         | 6SL3225-0BE37-5 . A0                          | 90 kW           | 6SL3202-0AE31-8SA0 |

## Sine-wave filter for PM240P-2 Power Module, 380 V ... 480 V

| Power Module |                      | Power  | Sine-wave filter   |
|--------------|----------------------|--------|--------------------|
| FSD          | 6SL3210-1RE24-5 . L0 | 22 kW  | 6SL3202-0AE26-2SA0 |
|              | 6SL3210-1RE26-0 . L0 | 30 kW  | 6SL3202-0AE28-8SA0 |
|              | 6SL3210-1RE27-5 . LO | 37 kW  |                    |
| FSE          | 6SL3210-1RE28-8 . LO | 45 kW  | 6SL3202-0AE31-5SA0 |
|              | 6SL3210-1RE31-1 . LO | 55 KW  |                    |
| FSF          | 6SL3210-1RE31-5 . LO | 75 kW  | 6SL3202-0AE31-8SA0 |
|              | 6SL3210-1RE31-8 . LO | 90 kW  | 6SL3000-2CE32-3AA0 |
|              | 6SL3210-1RE32-1 . LO | 110 kW |                    |
|              | 6SL3210-1RE32-5 . L0 | 132 kW | 6SL3000-2CE32-8AA0 |

## 3.8.7 dv/dt filter

## du/dt filters for the PM330 Power Module, 380 V ... 480 V

A du/dt filter plus VPL (Voltage Peak Limiter) limits the voltage rate of rise du/dt and the voltage peaks at the motor. A du/dt filter plus VPL allows standard motors with standard insulation and without insulated bearings to be operated at the converter.

| Power M | odule                                                            | Power            | du/dt filter plus VPL | du/dt filter compact plus<br>VPL |
|---------|------------------------------------------------------------------|------------------|-----------------------|----------------------------------|
| GX      | 6SL3310-1PE33-0AA0,<br>6SL3310-1PE33-7AA0,<br>6SL3310-1PE34-6AA0 | 160 kW<br>250 kW | 6SL3000-2DE35-0AA0    | 6SL3000-2DE35-0EA0               |
| HX      | 6SL3310-1PE35-8AA0,<br>6SL3310-1PE36-6AA0,<br>6SL3310-1PE37-4AA0 | 315 kW<br>400 kW | 6SL3000-2DE38-4AA0    | 6SL3000-2DE38-4EA0               |
| JX      | 6SL3310-1PE38-4AA0,<br>6SL3310-1PE38-8AA0,<br>6SL3310-1PE41-0AA0 | 450 kW<br>560 kW | 6SL3000-2DE41-4AA0    | 6SL3000-2DE41-4EA0               |

## du/dt filters for the PM330 Power Module, 500 V ... 690 V

| Power M | odule                                     | Power  | du/dt filter plus VPL | du/dt filter compact plus<br>VPL |
|---------|-------------------------------------------|--------|-----------------------|----------------------------------|
| JX      | 6SL3310-1PG35-8AA0,                       | 500 kW | 6SL3000-2DH38-1AA0    | 6SL3000-2DG38-1EA0               |
|         | 6SL3310-1PG36-5AA0,<br>6SL3310-1PG37-2AA0 | 630 kW |                       |                                  |

## 3.8.8 Braking Module and braking resistor

The braking resistor allows loads with a high moment of inertia to be quickly braked. Inverters with power up to 132 kW have an integrated Braking Module that controls the braking resistor.

A Braking Module is available as option for inverters with more power.

An example for a braking resistor is shown at the side.



## **Braking Modules and braking resistors for PM330**

| Powe | er Module                                                        | Power            | Braking Module         | Power | Braking resistor       |
|------|------------------------------------------------------------------|------------------|------------------------|-------|------------------------|
| GX   | 6SL3310-1PE33-0AA0,<br>6SL3310-1PE33-7AA0,<br>6SL3310-1PE34-6AA0 | 160 kW<br>250 kW | 6SL3760-<br>1AE32-6AA0 | 50 kW | 6SE7032-<br>5FS87-2DC0 |
| НХ   | 6SL3310-1PE35-8AA0,<br>6SL3310-1PE36-6AA0,<br>6SL3310-1PE37-4AA0 | 315 kW<br>400 kW |                        |       |                        |
| JX   | 6SL3310-1PE38-4AA0,<br>6SL3310-1PE38-8AA0,<br>6SL3310-1PE41-0AA0 | 450 kW<br>560 kW |                        |       |                        |

### Braking resistors for PM240-2, 380 V ... 480 V

| Power N | Module (                                                                                        | Power          | Braking resistor   |
|---------|-------------------------------------------------------------------------------------------------|----------------|--------------------|
| FSA     | 6SL3210-1PE11-8 . L1,<br>6SL3210-1PE12-3 . L1,<br>6SL3210-1PE13-2 . L1,<br>6SL3210-1PE14-3 . L1 | 0.55 kW 1.5 kW | 6SL3201-0BE14-3AA0 |
|         | 6SL3211PE16-1 . L1,<br>6SL3211PE18-0 . L1                                                       | 2.2 kW 3.0 kW  | 6SL3201-0BE21-0AA0 |
| FSB     | 6SL3210-1PE21-1 . LO,<br>6SL3210-1PE21-4 . LO,<br>6SL3211PE21-8 . LO                            | 4 kW 7.5 kW    | 6SL3201-0BE21-8AA0 |
| FSC     | 6SL3210-1PE22-7 . L0,<br>6SL3211PE23-3 . L0                                                     | 11 kW 15 kW    | 6SL3201-0BE23-8AA0 |
| FSD     | 6SL3210-1PE23-8 . L0,<br>6SL3210-1PE24-5 . L0                                                   | 18.5 kW 22 kW  | JJY:023422620001   |
|         | 6SL3210-1PE26-0 . L0,<br>6SL3210-1PE27-5 . L0                                                   | 30 kW 37 kW    | JJY:023424020001   |
| FSE     | 6SL3210-1PE28-8 . L0,<br>6SL3210-1PE31-1 . L0                                                   | 45 kW 55 kW    | JJY:023434020001   |

| Power N | /lodule                                                          | Power         | Braking resistor   |
|---------|------------------------------------------------------------------|---------------|--------------------|
| FSF     | 6SL3210-1PE31-5 . L0,<br>6SL3210-1PE31-8 . L0,                   | 75 kW 90 kW   | JJY:023454020001   |
|         | 6SL3210-1PE32-1 . L0,<br>6SL3210-1PE32-5 . L0                    | 90 kW 132 kW  | JJY:023464020001   |
| FSG     | 6SL3210-1PE33-0AL0,<br>6SL3210-1PE33-7AL0,<br>6SL3210-1PE34-8AL0 | 160 kW 250 kW | 6SL3000-1BE32-5AA0 |

## Braking resistors for PM240-2, 500 V ... 690 V

| Power N | /lodule                                                                                                                                           | Power         | Braking resistor   |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------|
| FSD     | 6SL3210-1PH21-4 . L0,<br>6SL3210-1PH22-0 . L0,<br>6SL3210-1PH22-3 . L0,<br>6SL3210-1PH22-7 . L0,<br>6SL3210-1PH23-5 . L0,<br>6SL3210-1PH24-2 . L0 | 11 kW 37 kW   | JJY:023424020002   |
| FSE     | 6SL3210-1PH25-2 . L0,<br>6SL3210-1PH26-2 . L0                                                                                                     | 45 kW 55 kW   | JJY:023434020002   |
| FSF     | 6SL3210-1PH28-0 . L0,<br>6SL3210-1PH31-0 . L0,                                                                                                    | 75 kW 90 kW   | JJY:023464020002   |
|         | 6SL3210-1PH31-2 . L0,<br>6SL3210-1PH31-4 . L0                                                                                                     | 110 kW 132 kW | JJY:023464020002   |
| FSG     | 6SL3210-1PH31-7CL0,<br>6SL3210-1PH32-1CL0,<br>6SL3210-1PH32-5CL0                                                                                  | 160 kW 250 kW | 6SL3000-1BH32-5AA0 |

## Braking resistors for PM240-2, 200 V ... 240 V

| Power Module |                                                                      | Power           | Braking resistor  |
|--------------|----------------------------------------------------------------------|-----------------|-------------------|
| FSA          | 6SL3210-1PB13-0 . LO,<br>6SL3211PB13-8 . LO                          | 0.55 kW 0.75 kW | JJY:023146720008  |
| FSB          | 6SL3210-1PB15-5 . L0,<br>6SL3210-1PB17-4 . L0,<br>6SL3211PB21-0 . L0 | 1.1 kW 2.2 kW   | JJY:023151720007  |
| FSC          | 6SL3210-1PB21-4 . LO,<br>6SL3211PB21-8 . LO                          | 3 kW 4 kW       | JJY:02 3163720018 |
|              | 6SL3210-1PC22-2 . L0,<br>6SL3210-1PC22-8 . L0                        | 5.5 kW 7.5 kW   | JJY:023433720001  |
| FSD          | 6SL3210-1PC24-2UL0,<br>6SL3210-1PC25-4UL0,<br>6SL3210-1PC26-8UL0     | 11 kW 18.5 kW   | JJY:023422620002  |
| FSE          | 6SL3210-1PC28-0UL0,<br>6SL3210-1PC31-1UL0                            | 22 kW 30 kW     | JJY:023423320001  |
| FSF          | 6SL3210-1PC31-3UL0,<br>6SL3210-1PC31-6UL0,<br>6SL3210-1PC31-8UL0     | 37 kW 55 kW     | JJY:023434020003  |

## 3.8.9 Control Unit Adapter Kit CUA20

### Overview

When using the CUA20 Control Unit Adapter Kit, the Control Unit can be installed next to the PM240-2 Power Module.

Article No: 6SL3255-0BW01-0NA0

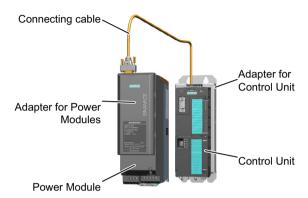



Figure 3-5 Control Unit Adapter Kit CUA20

The SINAMICS CUA20 Control Unit Adapter Kit comprises the following components:

- Adapter which is snapped onto the Power Module
- · Adapter for the Control Unit
- Prefabricated cable to connect the two adapters

#### 3.9 Motors and multi-motor drives that can be operated

### Siemens motors that can be operated

You can connect standard induction motors to the converter.

You can find information on further motors on the Internet:

Motors that can be operated (https://support.industry.siemens.com/cs/ww/en/view/ 100426622)

### Third-party motors that can be operated

You can operate standard asynchronous motors from other manufacturers with the converter:

### NOTICE

### Insulation failure due to unsuitable third-party motor

A higher load occurs on the motor insulation in converter mode than with line operation. Damage to the motor winding may occur as a result.

Please observe the notes in the System Manual "Requirements for third-party motors"

Further information is provided on the Internet:

Requirements for third-party motors (https://support.industry.siemens.com/cs/ww/en/ view/79690594)

### Multi-motor operation

Multi-motor operation involves simultaneously operating several identical motors on one converter. For standard induction motors, multi-motor operation is generally permissible.

Additional preconditions and restrictions relating to multi-motor operation are available on the Internet:



Multi-motor drive (http://support.automation.siemens.com/WW/view/en/84049346)

3.9 Motors and multi-motor drives that can be operated

Installing

## 4.1 Installing the label for the North American market

## Description

DANGER - Risk of electrical shock. Discharge time of DC capacitors to a level below 50V is 5 minutes.

WARNING -The opening of the branch-circuit protective device may be an indication that a fault has been interrupted. To reduce the risk of fire or electrical shock, current carrying parts and other components of the controller should be examined and replaced if damaged. If burnout of the current elements of an overload relay occurs, the complete overload relay must be replaced.

The supply circuit's maximum short circuit current capability and voltage rating depends on type and rating of the overcurrent protection device.

Refer to the user manual for details.

Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electrical Code, the Canadian Electrical Code, Part1, respectively, additional local Codes and the Manufacturer's Instructions.

Integral motor overload protection included. Refer to user manual for initial setting and adjustments.

DANGER - Risque de choc électrique. Une tension dangereuse peut être présentée jusqu'à 5 minutes après avoir coupé l'alimentation.

ATTENTION - Le déclenchement du dispositif de protection du circuit de dérivation peut être dû à une coupure qui résulte d'un courant de défaut. Pour limiter le risque d'incendie ou de choc électrique, examiner les pièces porteuses de courant et les autres éléments du contrôleur et les remplacer s'ils sont endommagés. En cas de grillages de l'élément traversé par le courant dans un relais de surcharge, le relais tout entier doit être remplacé.

Le courant nominal de court-circuit du circuit d'alimentation et sa tension assignée dépendent du type et des caractéristiques assignées du dispositif de protection contre les surcharges. Pour plus de détails, voir manuel

La protection intégrée contre les courts-circuits n'assure pas la protection de la dérivation. La protection de la dérivation doit être exécutée conformément au le National Electrical Code (NEC) ou le Code Canadien de L'électricité, première partie, et dans le respect des prescriptions locales et des instructions du fabricant.

Protection de surcharge moteur incluse. Voir manuel pour les paramètres d'origine et les réglages.

Figure 4-1 Adhesive label with danger and warning notes for North America

The converter is supplied with an adhesive label with danger and warning notes for the North American market.

Attach the adhesive label in the required language to the inside of the control cabinet where it is clearly visible at all times.

## 4.2 EMC-compliant setup of the machine or plant

The converter is designed for operation in industrial environments where strong electromagnetic fields are to be expected.

Reliable and disturbance-free operation is only ensured for EMC-compliant installation.

To achieve this, subdivide the control cabinet and the machine or system into EMC zones:

#### **EMC** zones

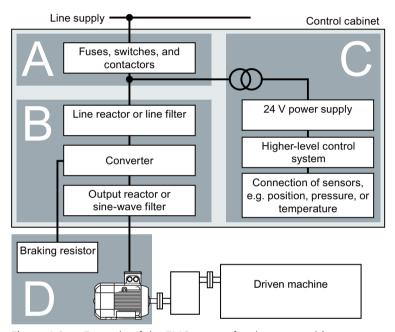



Figure 4-2 Example of the EMC zones of a plant or machine

#### Inside the control cabinet

- Zone A: Line supply connection
- Zone B: Power electronics

  Devices in Zone B generate energy-rich electromagnetic fields.
- Zone C: Control and sensors
   Devices in Zone C do not generate any energy-rich electromagnetic fields themselves, but their functions can be impaired by electromagnetic fields.

#### Outside the control cabinet

Zone D: Motors, braking resistors
 Devices in Zone D generate electromagnetic fields with a significant amount of energy

#### 4.2.1 Control cabinet

- Assign the various devices to zones in the control cabinet.
- Electromagnetically uncouple the zones from each other by means of one of the following actions:
  - Side clearance ≥ 25 cm
  - Separate metal enclosure
  - Large-area partition plates
- Route cables of various zones in separate cable harnesses or cable ducts.
- Install filters or isolation amplifiers at the interfaces of the zones.

### Control cabinet assembly

- Connect the door, side panels, top and base plate of the control cabinet with the control cabinet frame using one of the following methods:
  - Electrical contact surface of several cm<sup>2</sup> for each contact location
  - Several screw connections
  - Short, finely stranded, braided copper wires with cross-sections
     ≥ 95 mm² / 000 (3/0) (-2) AWG
- Install a shield support for shielded cables that are routed out of the control cabinet.
- Connect the PE bar and the shield support to the control cabinet frame through a large surface area to establish a good electrical connection.
- Mount the control cabinet components on a bare metal mounting plate.
- Connect the mounting plate to the control cabinet frame and PE bar and shield support through a large surface area to establish a good electrical connection.
- For screw connections onto painted or anodized surfaces, establish a good conductive contact using one of the following methods:
  - Use special (serrated) contact washers that cut through the painted or anodized surface.
  - Remove the insulating coating at the contact locations.

## Measures required for several control cabinets

- Install equipotential bonding for all control cabinets.
- Screw the frames of the control cabinets together at several locations through a large surface area using serrated washers to establish a good electrical connection.
- In plants and systems where the control cabinets are lined up next to one another, and which are installed in two groups back to back, connect the PE bars of the two cabinet groups at as many locations as possible.

### 4.2 EMC-compliant setup of the machine or plant

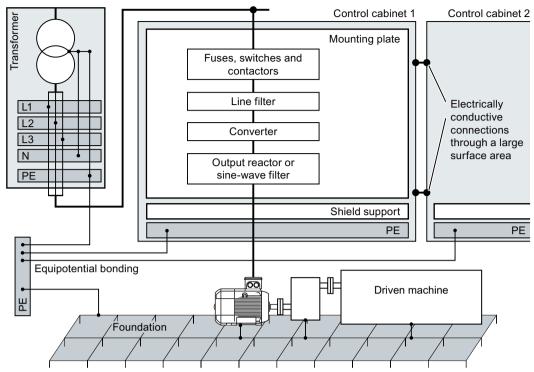



Figure 4-3 Grounding and high-frequency equipotential bonding measures in the control cabinet and in the plant/system

### **Further information**

Additional information about EMC-compliant installation is available in the Internet:

EMC installation guideline (<a href="http://support.automation.siemens.com/WW/view/en/60612658">http://support.automation.siemens.com/WW/view/en/60612658</a>)

### 4.2.2 **Cables**

Cables with a high level of interference and cables with a low level of interference are connected to the converter:

- Cables with a high level of interference:
  - Cable between the line filter and converter
  - Motor cable
  - Cable at the converter DC link connection
  - Cable between the converter and braking resistor
- Cables with a low level of interference:
  - Cable between the line and line filter
  - Signal and data cables

### Cable routing inside the cabinet

- Route the power cables with a high level of interference so that there is a minimum clearance of 25 cm to cables with a low level of interference.
   If the minimum clearance of 25 cm is not possible, insert separating metal sheets between the cables with a high level of interference and cables with a low level of interference.
   Connect these separating metal sheets to the mounting plate to establish a good electrical connection.
- Cables with a high level of interference and cables with a low level of interference may only cross over at right angles:
- Keep all of the cables as short as possible.
- Route all of the cables close to the mounting plates or cabinet frames.
- Route signal and data cables as well as the associated equipotential bonding cables parallel
  and close to one another.
- Twist incoming and outgoing unshielded individual conductors.
   Alternatively, you can route incoming and outgoing conductors in parallel, but close to one another.
- Ground any unused conductors of signal and data cables at both ends.
- Signal and data cables must only enter the cabinet from one side, e.g. from below.
- Use shielded cables for the following connections:
  - Cable between the converter and line filter
  - Cable between the converter and output reactor or sine-wave filter

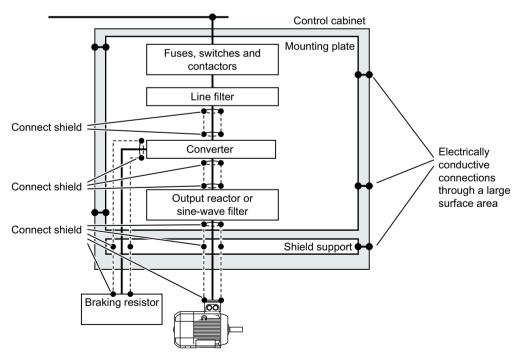



Figure 4-4 Routing converter cables inside and outside a control cabinet

4.2 EMC-compliant setup of the machine or plant

## Routing cables outside the control cabinet

- Maintain a minimum clearance of 25 cm between cables with a high level of interference and cables with a low level of interference.
- Use shielded cables for the following connections:
  - Converter motor cable
  - Cable between the converter and braking resistor
  - Signal and data cables
- Connect the motor cable shield to the motor enclosure using a PG gland that establishes a good electrical connection.

### Requirements relating to shielded cables

- Use cables with finely-stranded, braided shields.
- Connect the shield to at least one end of the cable.

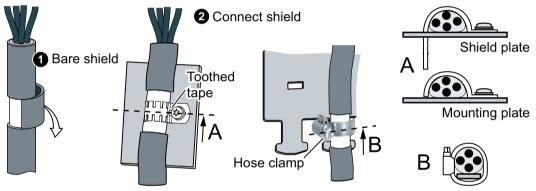



Figure 4-5 Examples for EMC-compliant shield support

- Attach the shield to the shield support directly after the cable enters the cabinet.
- Do not interrupt the shield.
- Only use metallic or metallized plug connectors for shielded data cables.

## 4.2.3 Electromechanical components

## Surge voltage protection circuit

- Connect surge voltage protection circuits to the following components:
  - Coils of contactors
  - Relays
  - Solenoid valves
  - Motor holding brakes
- Connect the surge voltage protection circuit directly at the coil.
- Use RC elements or varistors for AC-operated coils and freewheeling diodes or varistors for DC-operated coils.

4.3 Installing reactors, filters and braking resistors

# 4.3 Installing reactors, filters and braking resistors

## Installing reactors, filters and braking resistors

The following supplementary components may be required depending on the Power Modules and the particular application:

- Line reactors
- Filter
- Braking resistors
- Brake Relay

Installing these components is described in the documentation provided.

## 4.4.1 Basic installation rules for built-in units

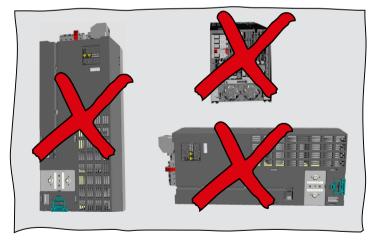
## Protection against the spread of fire

The built-in units may be operated only in closed housings or in higher-level control cabinets with closed protective covers, and when all of the protective devices are used. The installation of the built-in units in a metal control cabinet or protection with another equivalent measure must prevent the spread of fire and emissions outside the control cabinet.

Wall mounting units may be operated outside the control cabinet.

## Protection against condensation or electrically conductive contamination

Protect the converter, e.g. by installing it in a control cabinet with degree of protection IP54 according to IEC 60529 or NEMA 12. Further measures may be necessary for particularly critical operating conditions.


If condensation or conductive pollution can be excluded at the installation site, a lower degree of control cabinet protection may be permitted.

## Installing

Rules for admissible mounting:

• Only mount the Power Module in a vertical position with the motor connectors at the bottom.





- Maintain the minimum clearances to other components.
- Use the specified installation parts and components.
- · Comply with the specified torques.

# 4.4.2 Dimension drawings, drilling dimensions for the PM230 Power Module, IP55

The following dimension drawings are not to scale.

## Frame sizes FSA ... FSC

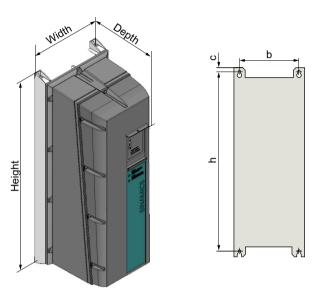



Figure 4-6 Dimension drawing, PM230 Power Module IP55, FSA ... FSC

Table 4-1 Dimensions

| Frame size | Width | Heigh | Depth [mm]             |                                                    |  |  |
|------------|-------|-------|------------------------|----------------------------------------------------|--|--|
|            | [mm]  | t[mm] | Without operator panel | With BOP-2, IOP-2 operator panel or blanking cover |  |  |
| FSA        | 154   | 460   | 249                    | 256                                                |  |  |
| FSB        | 180   | 540   | 249                    | 256                                                |  |  |
| FSC        | 230   | 620   | 249                    | 256                                                |  |  |

Table 4-2 Drilling dimensions, cooling clearances and fixing

| Frame size | Drilling dimensions<br>[mm] |     |    | Cooling a | ir clearan | Screws/torque<br>[Nm] |              |
|------------|-----------------------------|-----|----|-----------|------------|-----------------------|--------------|
|            | b                           | h   | С  | Тор       | Bottom     | Lateral               |              |
| FSA        | 132                         | 445 | 11 | 100       | 100        | 0 1)                  | 4 x M4 / 2.5 |
| FSB        | 158                         | 524 | 11 | 100       | 100        | 0 1)                  | 4 x M4 / 2.5 |
| FSC        | 208                         | 604 | 11 | 125       | 125        | 0 1)                  | 4 x M5 / 3.0 |

<sup>1)</sup> You can mount the Power Modules without any lateral cooling air clearance. For tolerance reasons, we recommend a lateral clearance of approx. 1 mm.

## Frame sizes FSD ... FSF

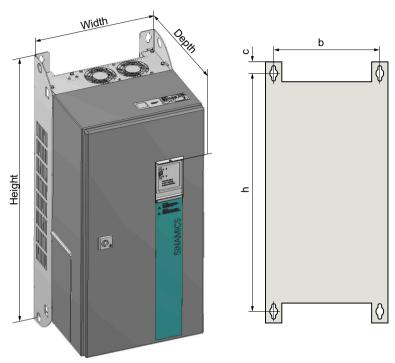



Figure 4-7 Dimension drawing, PM230 Power Module IP55 FSD ... FSF

Table 4-3 Dimensions

| Frame size | Width                              | Heigh | Depth [mm] |                                                    |  |  |
|------------|------------------------------------|-------|------------|----------------------------------------------------|--|--|
|            | [mm] t [mm] Without operator panel |       |            | With BOP-2, IOP-2 operator panel or blanking cover |  |  |
| FSD        | 320                                | 640   | 329        | 336                                                |  |  |
| FSE        | 320                                | 751   | 329        | 336                                                |  |  |
| FSF        | 410                                | 915   | 416        | 423                                                |  |  |

Table 4-4 Drilling dimensions, cooling clearances and fixing

| Frame size | Drilling dimensions<br>[mm] |     |      | Cooling a | air clearan | Screws/torque<br>[Nm] |             |
|------------|-----------------------------|-----|------|-----------|-------------|-----------------------|-------------|
|            | b                           | h   | С    | Тор       | Bottom      | Lateral               |             |
| FSD        | 285                         | 600 | 17.5 | 300       | 300         | 50                    | 4 x M8 / 13 |
| FSE        | 285                         | 710 | 17.5 | 300       | 300         | 50                    | 4 x M8 / 13 |
| FSF        | 370                         | 870 | 17.5 | 350       | 350         | 50                    | 4 x M8 / 13 |

# 4.4.3 Dimension drawings, drilling dimensions for the PM230 Power Module, IP20

The following dimension drawings and drilling patterns are not to scale.

## Frame sizes FSA ... FSC

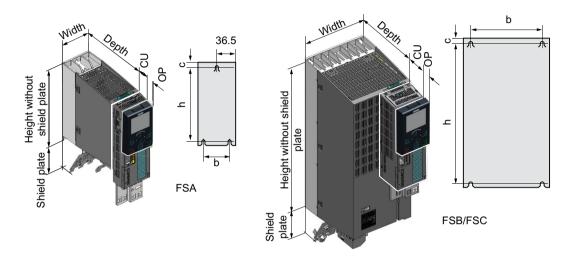



Table 4-5 Dimensions depend on the operator panel (OP) that is inserted

| Frame<br>size | Width<br>[mm] | Heigh                   | t [mm]            | Mounting depth in the cabinet with Control Unit (CU) [mm] 2) |            |  |
|---------------|---------------|-------------------------|-------------------|--------------------------------------------------------------|------------|--|
|               |               | without shield<br>plate | with shield plate | without OP                                                   | with OP 1) |  |
| FSA           | 73            | 196                     | 276               | 224                                                          | 235        |  |
| FSB           | 100           | 292                     | 370               | 224                                                          | 235        |  |
| FSC           | 140           | 355                     | 432               | 224                                                          | 235        |  |

<sup>1)</sup> BOP-2, IOP-2 or blanking cover

Table 4-6 Drilling dimensions, cooling clearances and fixing

| Frame size | Drilling dimensions<br>[mm] |     |   | Cooling a | air clearan | Fixing/torque<br>[Nm] |              |
|------------|-----------------------------|-----|---|-----------|-------------|-----------------------|--------------|
|            | b                           | h   | С | Тор       | Bottom      | Front                 |              |
| FSA        | 62.3                        | 186 | 6 | 80        | 100         |                       | 2 x M4 / 2.5 |
| FSB        | 80                          | 281 | 6 | 80        | 100         |                       | 4 x M4 / 2.5 |
| FSC        | 120                         | 343 | 6 | 80        | 100         |                       | 4 x M5 / 3.0 |

<sup>1)</sup> You can mount the Power Modules without any lateral cooling air clearance. For tolerance reasons, we recommend a lateral clearance of approx. 1 mm.

<sup>&</sup>lt;sup>2)</sup> Power Module depth without Control Unit: 165 mm

## Frame sizes FSD ... FSF



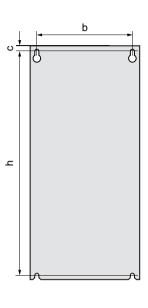


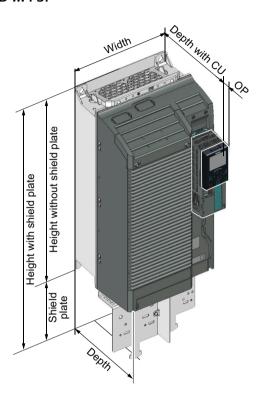

Table 4-7 Dimensions depend on the operator panel (OP) that is inserted 1)

| Frame<br>size           | Width<br>[mm] | Heigh                   | t [mm]            | Mounting depth in the cabinet with Control Unit (CU) [mm] 2) |            |  |  |
|-------------------------|---------------|-------------------------|-------------------|--------------------------------------------------------------|------------|--|--|
|                         |               | without shield<br>plate | with shield plate | without OP                                                   | with OP 1) |  |  |
| FSD with-<br>out filter | 275           | 419                     | 542               | 263                                                          | 274        |  |  |
| FSD with filter         | 275           | 512                     | 635               | 263                                                          | 274        |  |  |
| FSE with-<br>out filter | 275           | 499                     | 622               | 263                                                          | 274        |  |  |
| FSE with filter         | 275           | 635                     | 758               | 263                                                          | 274        |  |  |
| FSF with-<br>out filter | 350           | 634                     | 792               | 375                                                          | 386        |  |  |
| FSF with filter         | 350           | 934                     | 1092              | 375                                                          | 386        |  |  |

<sup>1)</sup> BOP-2, IOP-2 or blanking cover

<sup>&</sup>lt;sup>2)</sup> Power Module depth without Control Unit: FSD, FSE 237 mm, FSF 357 mm

Table 4-8 Drilling dimensions, cooling clearances and fixing


| Frame size         | Drilling dimensions<br>[mm] |     |    | Cooling a | nir clearan | Fixing/torque<br>[Nm] |              |
|--------------------|-----------------------------|-----|----|-----------|-------------|-----------------------|--------------|
|                    | b                           | h   | С  | Тор       | Bottom      | Front                 |              |
| FSD without filter | 235                         | 325 | 11 | 300       | 300         | 100                   | 4 x M6 / 6.0 |
| FSD with filter    | 235                         | 419 | 11 | 300       | 300         | 100                   | 4 x M6 / 6.0 |
| FSE without filter | 235                         | 405 | 11 | 300       | 300         | 100                   | 4 x M6 / 10  |
| FSE with filter    | 235                         | 451 | 11 | 300       | 300         | 100                   | 4 x M6 / 10  |
| FSF without filter | 300                         | 598 | 11 | 350       | 350         | 100                   | 4 x M8 / 13  |
| FSF with filter    | 300                         | 899 | 11 | 350       | 350         | 100                   | 4 x M8 / 13  |

<sup>1)</sup> You can mount the Power Modules without any lateral cooling air clearance. For tolerance reasons, we recommend a lateral clearance of approx. 1 mm.

# 4.4.4 Dimension drawings, drilling dimensions for PM240P-2 Power Modules, IP20

The following dimension drawings and drilling patterns are not to scale.

## Frame sizes FSD ... FSF



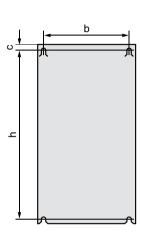



Table 4-9 Dimensions depend on the operator panel (OP) that is inserted 1)

| Frame<br>size | Width<br>[mm] | Heigh                                  | t [mm] | Mounting depth in the cabinet with Control Unit (CU) [mm] <sup>2)</sup> |            |  |
|---------------|---------------|----------------------------------------|--------|-------------------------------------------------------------------------|------------|--|
|               |               | without shield with shield plate plate |        | without OP                                                              | with OP 1) |  |
| FSD           | 200           | 472                                    | 624    | 253                                                                     | 264        |  |
| FSE           | 275           | 551                                    | 728    | 253                                                                     | 264        |  |
| FSF           | 305           | 709 965                                |        | 373                                                                     | 384        |  |

<sup>1)</sup> BOP-2, IOP-2 or blanking cover

<sup>&</sup>lt;sup>2)</sup> Power Module depth without Control Unit: FSD, FSE 237 mm, FSF 357 mm

Table 4-10 Drilling dimensions, cooling clearances and fixing

| Frame | Drilling | dimensio | ns [mm] | Cooling a | air clearance    | Fixing/torque [Nm] |              |
|-------|----------|----------|---------|-----------|------------------|--------------------|--------------|
| size  | h        | b        | С       | Тор       | Top Bottom Front |                    |              |
| FSD   | 430      | 170      | 7       | 300       | 350              | 100                | 4 x M5 / 6.0 |
| FSE   | 509      | 230      | 8.5     | 300       | 350              | 100                | 4 x M6 / 10  |
| FSF   | 680      | 270      | 13      | 300       | 350              | 100                | 4 x M8 / 25  |

The Power Module is designed for mounting without any lateral cooling air clearance. For tolerance reasons, we recommend a lateral clearance of approx. 1 mm.

# 4.4.5 Dimension drawings, drilling dimensions for the Power Module PM330, IP20

The following dimension drawings and drilling patterns are not to scale.

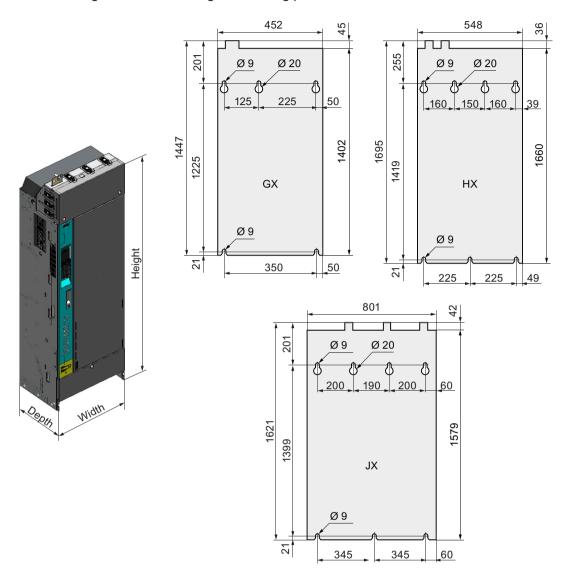



Table 4-11 Dimensions, cooling air clearances [mm] and fastening [Nm]

| Frame size | Dimensions |        |       | C                           | ooling air | ·S | Mounting |               |
|------------|------------|--------|-------|-----------------------------|------------|----|----------|---------------|
|            | Depth      | Height | Width | th Top Bottom Lateral Front |            |    |          | Screws/torque |
| GX         | 328        | 1402   | 452   | 200                         | 200        | 30 | 30       | 5 x M8 / 25   |
| HX         | 393        | 1660   | 548   | 200                         | 250        | 30 | 100      | 7 x M8 / 25   |
| JX         | 393        | 1579   | 801   | 200                         | 250        | 30 | 100      | 7 x M8 / 25   |

# 4.4.6 Dimensioned drawings, drilling dimensions for the PM240-2 Power Module, IP20

The following dimension drawings and drilling patterns are not to scale.

## Frame sizes FSA ... FSC

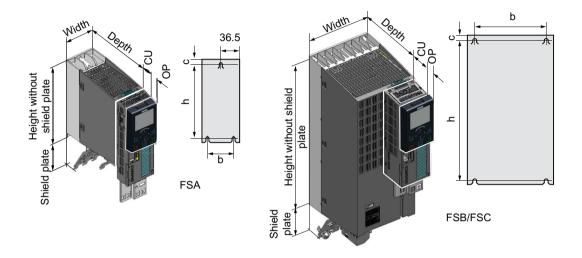
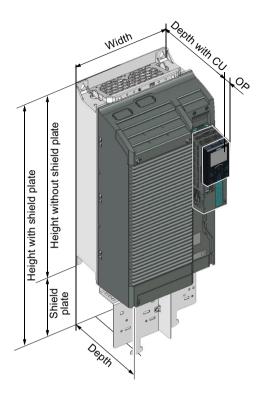



Table 4-12 Dimensions

| Frame<br>size | Width<br>[mm] | Heigh                   | t [mm]               | Mounting dep<br>net with Cont<br>[mr |            | Mount-<br>ing depth<br>with |
|---------------|---------------|-------------------------|----------------------|--------------------------------------|------------|-----------------------------|
|               |               | without<br>shield plate | with shield<br>plate | without OP                           | with OP 1) | CUA20 <sup>2)</sup><br>[mm] |
| FSA           | 73            | 196                     | 276                  | 224                                  | 235        | 194                         |
| FSB           | 100           | 292                     | 370                  | 224                                  | 235        | 194                         |
| FSC           | 140           | 355                     | 432                  | 224                                  | 235        | 194                         |

<sup>1)</sup> BOP-2, IOP-2 or blanking cover

Table 4-13 Drilling dimensions, cooling clearances and fixing


| Frame | Drilling | dimensio | ns [mm] | Cooling a | ir clearance | Fixing/torque [Nm] |              |
|-------|----------|----------|---------|-----------|--------------|--------------------|--------------|
| size  | h        | b        | С       | Тор       | Bottom       | Front              |              |
| FSA   | 186      | 62.3     | 6       | 80        | 100          | 100                | 3 x M4 / 2.5 |
| FSB   | 281      | 80       | 6       | 80        | 100          | 100                | 4 x M4 / 2.5 |
| FSC   | 343      | 120      | 6       | 80        | 100          | 100                | 4 x M5 / 3.5 |

The Power Module is designed for mounting without any lateral cooling air clearance. For tolerance reasons, we recommend a lateral clearance of approx. 1 mm

<sup>&</sup>lt;sup>2)</sup> Control Unit Adapter Kit CUA20

<sup>&</sup>lt;sup>3)</sup> Depth of Power Module without Control Unit: 165 mm

## Frame sizes FSD ... FSF



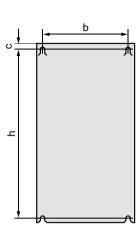



Table 4-14 Dimensions

| Frame<br>size | Width<br>[mm] | Height [mm]             |                      | Mounting dep<br>net with Con<br>[mr | Mounting<br>depth<br>with |                             |
|---------------|---------------|-------------------------|----------------------|-------------------------------------|---------------------------|-----------------------------|
|               |               | without<br>shield plate | with shield<br>plate | without OP                          | with OP 1)                | CUA20 <sup>2)</sup><br>[mm] |
| FSD           | 200           | 472                     | 624                  | 253                                 | 264                       | 237                         |
| FSE           | 275           | 551                     | 728                  | 253                                 | 264                       | 237                         |
| FSF           | 305           | 709                     | 965                  | 373                                 | 384                       | 357                         |
| FSG           | 305           | 1000                    | 1286                 | 373                                 | 384                       | 357                         |

<sup>&</sup>lt;sup>1)</sup> BOP-2, IOP-2 or blanking cover

Table 4-15 Drilling dimensions, cooling clearances and fixing

| Frame | Drilling | dimensio | ns [mm] | Cooling a         | air clearance | Fixing/torque [Nm] |              |
|-------|----------|----------|---------|-------------------|---------------|--------------------|--------------|
| size  | h        | b        | С       | Top <sup>2)</sup> | Bottom 2)     |                    |              |
| FSD   | 430      | 170      | 7       | 300               | 350           | 100                | 4 x M5 / 6.0 |
| FSE   | 509      | 230      | 8.5     | 300               | 350           | 100                | 4 x M6 / 10  |

<sup>2)</sup> Control Unit Adapter Kit CUA20

<sup>&</sup>lt;sup>3)</sup> Depth of Power Module without Control Unit: FSD, FSE 237 mm, FSF, FSG 357 mm

| Frame | Drilling ( | dimensio | ns [mm] | Cooling a | air clearance | Fixing/torque [Nm] |             |
|-------|------------|----------|---------|-----------|---------------|--------------------|-------------|
| size  | h          | b        | С       | Top 2)    | Bottom 2)     |                    |             |
| FSF   | 680        | 270      | 13      | 300       | 350           | 100                | 4 x M8 / 25 |
| FSG   | 970.5      | 265      | 15      | 300       | 350           | 100                | 4 x M8 / 25 |

The Power Module is designed for mounting without any lateral cooling air clearance. For tolerance reasons, we recommend a lateral clearance of approx. 1 mm

<sup>&</sup>lt;sup>2)</sup> The top and bottom cooling air clearances refer to the Power Module without shield plate

# 4.4.7 Dimensioned drawings, drilling dimensions for the PM250 Power Module

The following dimension drawings and drilling patterns are not to scale.

## Frame size FSC

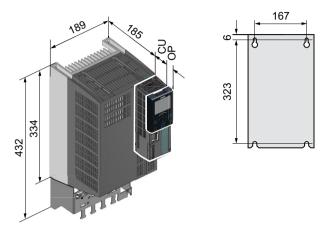



Table 4-16 Dimensions depend on the operator panel (OP) that is inserted

| Frame | Mounting depth in the cabine | t with Control Unit (CU) [mm] |  |  |  |  |  |
|-------|------------------------------|-------------------------------|--|--|--|--|--|
| size  | without OP                   | without OP with OP 1)         |  |  |  |  |  |
| FSC   | 224                          | 235                           |  |  |  |  |  |

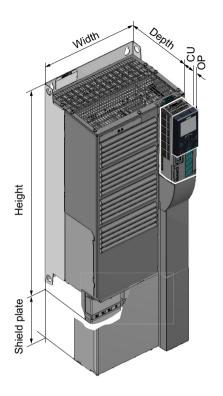

<sup>1)</sup> BOP-2, IOP-2 or blanking cover

Table 4-17 Cooling air clearances and fastening

| Frame | Cooling | air clearances   | [mm] <sup>1)</sup> | Fixing/torque [Nm] |  |
|-------|---------|------------------|--------------------|--------------------|--|
| size  | Тор     | Top Bottom Front |                    |                    |  |
| FSC   | 125     | 125              | 65                 | 4 x M5 / 3         |  |

You can mount the Power Modules without any lateral cooling air clearance. For tolerance reasons, we recommend a lateral clearance of approx. 1 mm.

## Frame sizes FSD ... FSF



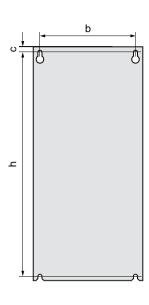



Table 4-18 Dimensions depend on the operator panel (OP) that is inserted 1)

| Frame<br>size           | Width<br>[mm] | Height [mm]             |                   | Mounting depth in<br>Control Unit | the cabinet with (CU) [mm] 2) |
|-------------------------|---------------|-------------------------|-------------------|-----------------------------------|-------------------------------|
|                         |               | without shield<br>plate | with shield plate | without OP                        | with OP 1)                    |
| FSD with-<br>out filter | 275           | 419                     | 542               | 263                               | 274                           |
| FSD with filter         | 275           | 512                     | 635               | 263                               | 274                           |
| FSE with-<br>out filter | 275           | 499                     | 622               | 263                               | 274                           |
| FSE with filter         | 275           | 635                     | 758               | 263                               | 274                           |
| FSF with-<br>out filter | 350           | 634                     | 792               | 375                               | 386                           |
| FSF with filter         | 350           | 934                     | 1092              | 375                               | 386                           |

<sup>1)</sup> BOP-2, IOP-2 or blanking cover

<sup>2)</sup> Power Module depth without Control Unit: FSD, FSE 204 mm, FSF 316 mm

Table 4-19 Drilling dimensions, cooling clearances and fixing

| Frame size         | Drillin | g dimen<br>[mm] | sions | Cooling air clearances<br>[mm] <sup>1)</sup> |        |       | Fixing/torque<br>[Nm] |
|--------------------|---------|-----------------|-------|----------------------------------------------|--------|-------|-----------------------|
|                    | b       | h               | С     | Тор                                          | Bottom | Front |                       |
| FSD without filter | 235     | 325             | 11    | 300                                          | 300    | 65    | 4 x M6 / 6            |
| FSD with filter    | 235     | 419             | 11    | 300                                          | 300    | 65    | 4 x M6 / 6            |
| FSE without filter | 235     | 405             | 11    | 300                                          | 300    | 65    | 4 x M6 / 6            |
| FSE with filter    | 235     | 541             | 11    | 300                                          | 300    | 65    | 4 x M6 / 6            |
| FSF without filter | 300     | 598             | 11    | 350                                          | 350    | 65    | 4 x M8 / 13           |
| FSF with filter    | 300     | 898             | 11    | 350                                          | 350    | 65    | 4 x M8 / 13           |

You can mount the Power Modules without any lateral cooling air clearance. For tolerance reasons, we recommend a lateral clearance of approx. 1 mm.

# 4.4.8 Dimension drawings, drilling dimensions for PM230 and PM240-2 Power Modules utilizing push-through technology

The following dimension drawings and drilling patterns are not to scale.

## Frame sizes FSA ... FSC

Panel thickness of the control cabinet ≤ 3.5 mm

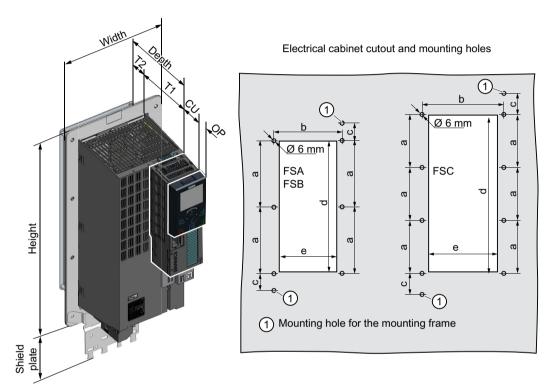



Figure 4-8 Dimension drawing and drilling dimensions for frame sizes FSA ... FSC

Table 4-20 Dimensions depend on the operator panel (OP) that is inserted

| Frame<br>size | Width<br>[mm] | Heigh                   | t [mm]            |            | n in the cabinet with<br>Init (CU) [mm] |
|---------------|---------------|-------------------------|-------------------|------------|-----------------------------------------|
|               |               | without shield<br>plate | with shield plate | without OP | with OP 1)                              |
| FSA           | 126           | 238                     | 322               | 177        | 188                                     |
| FSB           | 154           | 345                     | 430               | 177        | 188                                     |
| FSC           | 200           | 411                     | 500               | 177        | 188                                     |

<sup>1)</sup> BOP-2, IOP-2 or blanking cover

Table 4-21 Cooling air clearances and additional dimensions

| Frame   | Power Module depth [mm] | T1  | T2 | Cooling a | air clearance | es [mm] <sup>1)</sup> |
|---------|-------------------------|-----|----|-----------|---------------|-----------------------|
| size    |                         |     |    | Тор       | Bottom        | Front                 |
| FSA FSC | 171                     | 118 | 53 | 80        | 100           | 100                   |

<sup>&</sup>lt;sup>1)</sup> The Power Module is designed for mounting without any lateral cooling air clearance. For tolerance reasons, we recommend a lateral clearance of 1 mm.

Table 4-22 Electrical cabinet cutout and mounting holes

| Frame Control cabinet cutout [mm] |     |     |      | out [mm] Fixing/torque [Nm |     |               |
|-----------------------------------|-----|-----|------|----------------------------|-----|---------------|
| size                              | a   | b   | С    | d                          | е   |               |
| FSA                               | 103 | 106 | 27   | 198                        | 88  | 8 × M5 / 3.5  |
| FSB                               | 148 | 134 | 34.5 | 304                        | 116 | 8 × M5 / 3.5  |
| FSC                               | 123 | 174 | 30.5 | 365                        | 156 | 10 × M5 / 3.5 |

## Frame sizes FSD ... FSF

Panel thickness of the control cabinet ≤ 3.5 mm

Cutouts of the control cabinet and mounting holes

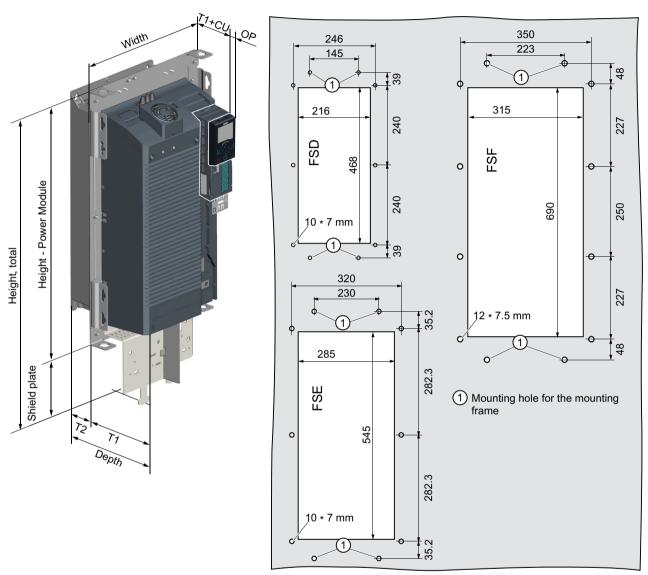



Figure 4-9 Dimension drawing and drilling dimensions for frame sizes FSD ... FSF

Table 4-23 Dimensions depend on the operator panel (OP) that is inserted 1)

| Frame<br>size | Width<br>[mm] | Heigh                   | t [mm]            |            | n in the cabinet with<br>Init (CU) [mm] |
|---------------|---------------|-------------------------|-------------------|------------|-----------------------------------------|
|               |               | without shield<br>plate | with shield plate | without OP | with OP 1)                              |
| FSD           | 276           | 517                     | 650               | 155        | 166                                     |
| FSE           | 355           | 615                     | 722               | 155        | 166                                     |
| FSF           | 385           | 754                     | 1021              | 193        | 204                                     |

<sup>1)</sup> BOP-2, IOP-2 or blanking cover

Table 4-24 Cooling air clearances and additional dimensions

| Frame    | Power Module depth [mm] | T1    | T2    | Cooling air clearances [mm] |        |       |
|----------|-------------------------|-------|-------|-----------------------------|--------|-------|
| size     |                         |       |       | Тор                         | Bottom | Front |
| FSD, FSE | 237                     | 141   | 97.5  | 350                         | 350    | 29    |
| FSF      | 358                     | 177.5 | 180.5 | 80                          | 100    | 100   |

Table 4-25 Mounting

| Frame<br>size | Fixing/torque [Nm] |
|---------------|--------------------|
| FSD, FSE      | 10 × M5 / 3.5      |
| FSF           | 12 × M6 / 5.9      |

#### Connecting the line supply and motor 4.5





### WARNING

## Electric shock when the motor terminal box is open

As soon as the converter is connected to the line supply, the motor connections of the converter may carry dangerous voltages. When the motor is connected to the converter, there is danger to life through contact with the motor terminals if the motor terminal box is open.

Close the motor terminal box before connecting the converter to the line supply.

#### Note

## Fault protection when insulation fails in the motor circuit at the output side

In case of insulation failure in the motor circuit, the overcurrent trip of the converter meets the requirements of IEC 60364-4-41:2005/AMD1:2017 Section 411 and Annex D for protection against electric shock.

- Observe the installation specifications for this converter.
- Ensure the continuity of the protective conductor.
- Observe the applicable installation standards.

#### 4.5.1 Permissible line supplies

## Restrictions for installation altitudes above 2000 m

Above an installation altitude of 2000 m, the permissible line supplies are restricted.



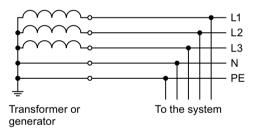
Restrictions for special ambient conditions (Page 562)

## Screw for functional grounding on the converter, frame size FSG

If you wish to use the converters with integrated C3 line filter, please note the information in the sections "TN line system", "TT line system" and "IT system" below.



Figure 4-10 Remove screw for functional grounding


## 4.5.1.1 TN line system

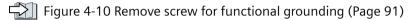
A TN system transfers the PE protective conductor to the installed plant or system using a cable.

Generally, in a TN system the neutral point is grounded. There are versions of a TN system with a grounded line conductor, e.g. with grounded L1.

A TN system can transfer the neutral conductor N and the PE protective conductor either separately or combined.

Example: Separate transfer of N and PE, grounded neutral point




## Converter connected to a TN system

- Converters with integrated line filter:
  - Operation on TN line systems with grounded neutral point permissible.
  - Operation on TN line systems with grounded line conductor not permissible.

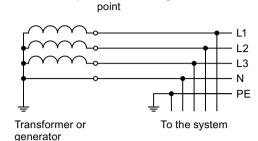
#### Note

## Special feature of FSG converters

FSG converters with integrated C3 line filter can be operated in TN line systems  $\leq$  600 V with a grounded line conductor if you remove the screw for functional grounding.



If you remove the screw for functional grounding, the EMC properties deteriorate and the requirements of Class C3 are no longer met.


- Converters with external line filter:
  - Operation on TN line systems with grounded neutral point permissible.
  - Operation on TN line systems with grounded line conductor not permissible.
- · Converters without line filter:
  - Operation on all TN line systems ≤ 600 V permissible
  - Operation on TN line systems > 600 V and grounded neutral point permissible.
  - Operation on TN line systems > 600 V and grounded line conductor not permissible.

Example: Transfer of N, grounded neutral

## 4.5.1.2 TT line system

In a TT line system, the transformer grounding and the installation grounding are independent of one another.

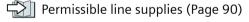
There are TT line supplies where the neutral conductor N is either transferred – or not.



#### Note

## Operation in IEC or UL systems

For installations in compliance with IEC, operation on TT line systems is permissible. For installations in compliance with UL, operation on TT line systems is not permissible.


## Converters connected to a TT system

- Converters with integrated line filter:
  - Operation on TT line systems with grounded neutral point permissible.
  - Operation on TT line systems without grounded neutral point not permissible.

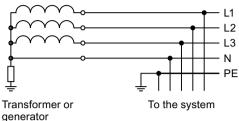
#### Note

## Special feature of FSG converters

FSG converters with integrated C3 line filter can be operated in TT line systems without a grounded neutral point if you remove the screw for functional grounding.



If you remove the screw for functional grounding, the EMC properties deteriorate and the requirements of Class C3 are no longer met.


- Converters with external line filter:
  - Operation on TT line systems with grounded neutral point permissible.
  - Operation on TT line systems without grounded neutral point not permissible.
- Converters without line filter:
  - Operation on all TT line systems permissible.

## 4.5.1.3 IT system

In an IT line system, all of the conductors are insulated with respect to the PE protective conductor – or connected to the PE protective conductor through an impedance.

There are IT systems with and without transfer of the neutral conductor N.

Example: Transfer of N, impedance with respect to PE protective conductor



## Converter connected to an IT line system - FSA ... FSF

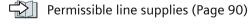
- Converters with integrated line filter:
  - Operation on IT line systems not permissible.
- Converter without line filter:
  - Operation on all IT line systems permissible.

#### Note

## 690 V converters: Output reactors for frame sizes FSD and FSE

An output reactor is required for 690 V converters in frame sizes FSD and FSE.

## Converter with PM330 Power Module operated on an IT line system


When connected to an IT line supply, you must open the connection to the basic interference suppression board of the Power Module.

Further information is provided on the Internet:

Hardware installation manual for PM330 Power Modules (<a href="https://support.industry.siemens.com/cs/ww/en/view/109742506">https://support.industry.siemens.com/cs/ww/en/view/109742506</a>)

## Converter with PM240-2 FSG Power Module operated on an IT line system

The converters have an integrated C3 line filter. Operation on IT line systems is only permissible if you remove the grounding screw at the converter.



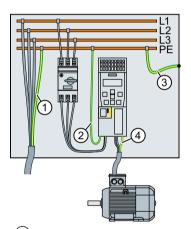
## Behavior of the converter when a ground fault occurs

You must install an output reactor if the converter is to remain operational even when a ground fault occurs at the converter output. This output reactor prevents an overcurrent trip or damage to the converter.

## 4.5.2 Requirements for the protective conductor

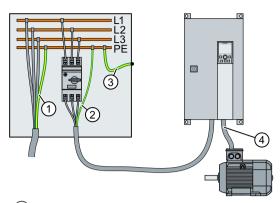


## **MARNING**


## Electric shock due to interrupted protective conductor

The drive components conduct a high leakage current via the protective conductor. Touching conductive parts when the protective conductor is interrupted can result in death or serious injury.

• Dimension the protective conductor as stipulated in the appropriate regulations.


## Dimensioning the protective conductor

Observe the local regulations for protective conductors subject to an increased leakage current at the site of operation.



- 1) Protective conductor for line feeder cables
- 2 Protective conductor for converter line feeder cables
- (3) Protective conductor between PE and the control cabinet
- 4) Protective conductor for motor feeder cables

Figure 4-11 Protective conductors for converters with IP20 degree of protection



- (1) Protective conductor for line feeder cables
- (2) Protective conductor for converter line feeder cables
- 3 Protective conductor between PE and the control cabinet
- (4) Protective conductor for motor feeder cables

Figure 4-12 Protective conductors for converters with IP55 degree of protection

The minimum cross-section of the protective conductor ① ... ④ depends on the cross-section of the line or motor feeder cable:

- Line or motor feeder cable ≤ 16 mm<sup>2</sup>
   ⇒ Minimum cross-section of the protective conductor = cross-section of the line or motor feeder cable
- 16 mm<sup>2</sup> < line or motor feeder cable ≤ 35 mm<sup>2</sup>
   ⇒ Minimum cross-section of the protective conductor = 16 mm<sup>2</sup>
- Line or motor feeder cable > 35 mm<sup>2</sup>
   ⇒ Minimum cross-section of the protective conductor = ½ cross-section of the line or motor feeder cable

Additional requirements placed on the protective conductor (1) according to IEC 60204-1:

- For permanent connection, the protective conductor must fulfill at least one of the following conditions:
  - The protective conductor is routed so that it is protected against damage along its complete length.
     Cables routed inside switch cabinets or enclosed machine housings are considered to be adequately protected against mechanical damage.
  - As a conductor of a multi-conductor cable, the protective conductor has a cross-section ≥ 2.5 mm<sup>2</sup> Cu.
  - For an individual conductor, the protective conductor has a cross-section ≥ 10 mm² Cu.
  - The protective conductor consists of two individual conductors with the same crosssection.
- When connecting a multi-conductor cable using an industrial plug connector according to EN 60309, the protective conductor must have a cross-section of ≥ 2.5 mm² Cu.

## 4.5.3 Connecting the converter with the PM230 Power Module IP55

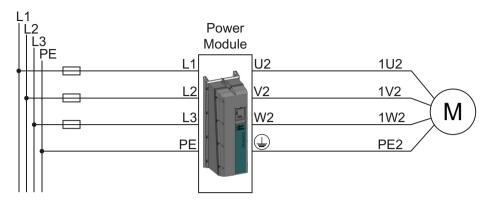



Figure 4-13 PM230 Power Module IP55 connection overview

Table 4-26 Connection types, maximum conductor cross-sections and tightening torques

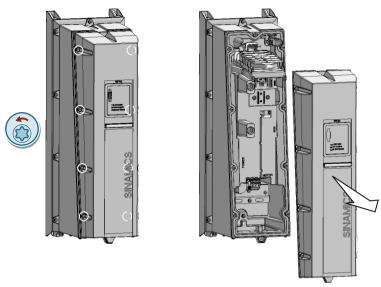
| converters | Connection | Cross-section / tightening torque |                        |  |
|------------|------------|-----------------------------------|------------------------|--|
| FSA        | Terminal   | 1 2.5 mm <sup>2</sup> / 0.5 Nm    | 18 14 AWG / 4.4 lbf in |  |
| FSB        | Terminal   | 2.5 6 mm <sup>2</sup> / 0.6 Nm    | 14 10 AWG, 5.3 lbf in  |  |
| FSC        | Terminal   | 616 mm <sup>2</sup> / 1.5 Nm      | 10 5 AWG / 13.3 lbf in |  |
| FSD        | Cable lug  | 10 35 mm <sup>2</sup> / 6 Nm      | 5 2 AWG / 53 lbf in    |  |
| FSE        | Cable lug  | 25 50 mm <sup>2</sup> / 6 Nm      | 3 2 AWG / 53 lbf in    |  |
| FSF        | Cable lug  | 35 120 mm² / 13 Nm                | 2 4/0 AWG, 115 lbf in  |  |

## **EMC** cable glands

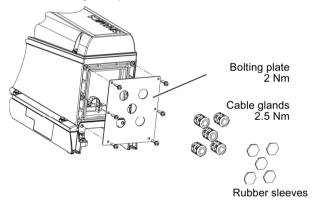
To meet the requirements of degree of protection IP55/UL, type 12, and to fulfill EMC requirements, adhere to the following:

- Use EMC cable glands for the control cables.
- Make sure that the cable glands match the drill holes in the plate.




Figure 4-14 Example of an EMC cable gland (Blueglobe)

The EMC cable glands are not included in the scope of supply of the converter. Rubber sleeves for unused drill holes in the cable cover plate are included in the scope of supply.


# Connecting the mains supply and motor, frame sizes FSA ... FSC

## **Procedure**

1. Remove the front cover of the Power Module.



2. Remove the gland plate from the bottom of the converter.



Diameter of the holes in the gland plate:

| 20.5 mm | Control cables              |
|---------|-----------------------------|
| 20.5 mm | Mains and motor cables, FSA |
| 25.5 mm | Mains and motor cables, FSB |
| 32.5 mm | Mains and motor cables, FSC |

Converter Connection **Dimensions** Explanation C 1) D FSA Mains cable 10 mm 60 mm 90 mm Motor cable 10 mm 60 mm 10 mm 60 mm В FSB Mains cable 10 mm 60 mm 50 mm С 50 mm Motor cable 10 mm 10 mm 40 mm D FSC Mains cable 10 mm 50 mm 70 mm Motor cable 10 mm 50 mm 10 mm 40 mm

3. Prepare the mains and motor cables for connection in accordance with the table below.

- 1) Cable shield
- 1 Gland plate
- 4. Assemble the cable glands with the prepared cables and EMC cable glands for the control cables.
- 5. Seal any unused bushings with a rubber sleeve.
- 6. Secure the gland plate to the converter enclosure. Tightening torque: 2 Nm Make sure that the seal of the gland plate is not damaged.
- 7. Where necessary, fit the supplied ferrite ring onto the motor cable. Ferrite rings are required to be able to comply with the limit values of IEC 61800-3, Category C1 with reference to grid-bound interference voltages when using Power Modules with integrated line filters.

If you use cables > 25 m, the requirements of Category C1 are no longer satisfied.

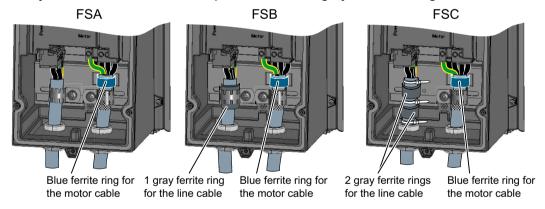
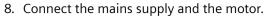
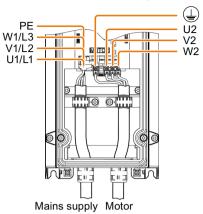





Figure 4-15 Ferrite rings for the mains and motor cables

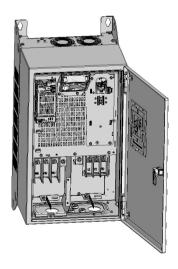


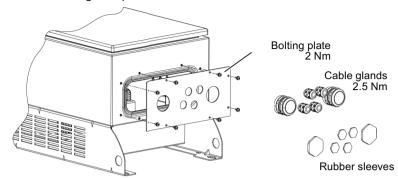


The Power Modules are equipped with removable plug connectors that cannot be inadvertently interchanged. To remove the connectors, press the red lever to release the interlock.

9. Fit the front cover of the Power Module.

Make sure that the seal of the front cover is not damaged.


Line supply and motor are connected to the FSA  $\dots$  FSC Power Modules.  $\square$ 

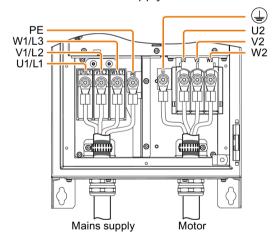

# Connecting the mains supply and motor, frame sizes FSD ... FSF

## **Procedure**

- 1. Open the door of the Power Module.
- 2. Remove the terminal cover.








3. Remove the gland plate from the bottom of the converter.

Diameter of the holes in the gland plate:

20.5 mm Control cables
 40.5 mm Mains and motor cables, FSD
 50.5 mm Mains and motor cables, FSE
 63.5 mm Mains and motor cables, FSF

- 4. Assemble the cable glands with the prepared cables and EMC cable glands for the control cables.
- 5. Seal any unused bushings with a rubber sleeve.
- 6. Secure the gland plate to the converter enclosure. Tightening torque 2 Nm. Make sure that the seal of the gland plate is not damaged.
- 7. Connect the mains supply and the motor.



Close the door of the Power Module.Make sure that the door seal of the Power Module is not damaged.

Line supply and motor are connected to the FSD ... FSF Power Modules.  $\hfill\Box$ 

Converter with CU230P-2 Control Units
Operating Instructions, 02/2023, FW 4.7 SP14, A5E34257946B AJ

# 4.5.4 Connecting the converter with the PM230 Power Module

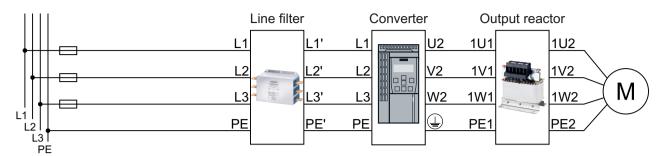
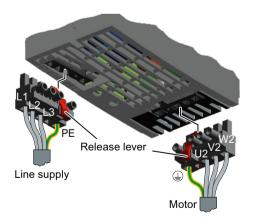




Figure 4-16 PM230 Power Module connection overview

Table 4-27 Connection, cross-section and tightening torque for PM230 Power Modules

| Converter | er Connection      |                                     | Cross-section,                 | Stripped              |                           |
|-----------|--------------------|-------------------------------------|--------------------------------|-----------------------|---------------------------|
|           |                    |                                     | Metric                         | Imperial              | insula-<br>tion<br>length |
| FSA       | Line supply, motor | Diece                               | 1 2.5 mm <sup>2</sup> , 0.5 Nm | 16 14 AWG, 4.5 lbf in | 8 mm                      |
| FSB       |                    |                                     | 1.5 6 mm <sup>2</sup> , 0.6 Nm | 16 10 AWG, 5.5 lbf in | 8 mm                      |
| FSC       |                    | Plug connector with screw terminals | 616 mm <sup>2</sup> , 1.3 Nm   | 10 6 AWG, 12 lbf in   | 10 mm                     |
| FSD       | Line supply, motor |                                     | 10 35 mm², 6 Nm                | 7 2 AWG, 53 lbf in    |                           |
| FSE       |                    | Cable lug                           | 25 50 mm <sup>2</sup> , 6 Nm   | 3 1 AWG, 53 lbf in    |                           |
| FSF       |                    | Cable lug                           | 35 120 mm <sup>2</sup> , 13 Nm | 2 4/0 AWG, 115 lbf in |                           |

## Connections for frame sizes FSA ... FSC



The Power Modules are equipped with withdrawable plug connectors that cannot be inadvertently interchanged.

To remove a plug connector, you must release it by pressing on the red lever.

## Connections for frame sizes FSD ... FSF

The line and motor connections have covers to prevent them from being touched.



You must open the cover to connect the line and motor:

- 1. Release the catches on both sides of the covers using a screwdriver.
- 2. Swivel the covers upwards.

Close the covers once you have connected the line and motor.

# 4.5.5 Connecting the converter with the PM330 Power Module

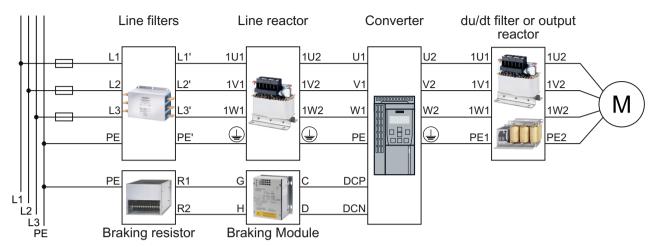
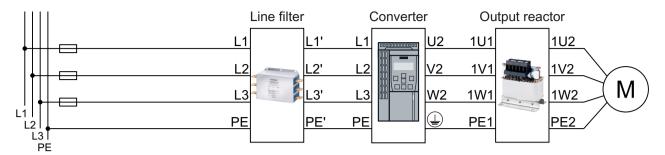



Figure 4-17 Connecting the PM330 Power Module

You will find additional information about the PM330 Power Module in the Internet:

Hardware installation manual for PM330 Power Modules (<a href="https://support.industry.siemens.com/cs/ww/en/view/109742506">https://support.industry.siemens.com/cs/ww/en/view/109742506</a>)

# 4.5.6 Connecting the converter with the PM240P-2 Power Module



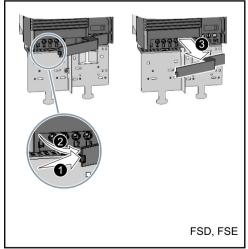


Figure 4-18 PM240P-2 Power Module connection overview

Table 4-28 Connection, cross-section and tightening torque for PM240P-2 Power Modules

| Converter | Connection            |                                   | Cross-section, tig                    | Stripped                  |                           |
|-----------|-----------------------|-----------------------------------|---------------------------------------|---------------------------|---------------------------|
|           |                       |                                   | Metric                                | Imperial                  | insula-<br>tion<br>length |
| FSD       | Line supply,          | Screw-type termi-<br>nal          | 10 35 mm², 2.5 4.5 Nm                 | 20 10 AWG, 22 lbf in      | 18 mm                     |
|           | 1110101               | i i i i                           |                                       | 8 2 AWG, 40 lbf in        |                           |
| FSE       |                       |                                   | 25 70 mm², 8 10 Nm                    | 6 3/0 AWG, 88.5 lbf in    | 25 mm                     |
| FSF       | Line supply,<br>motor |                                   | 35 2 × 120 mm <sup>2</sup> , 22 25 Nm | 1 2 × 4/0 AWG, 210 lbf in |                           |
|           |                       | Cable lug according<br>to SN71322 |                                       |                           |                           |

## Connections, frame sizes FSD ... FSF

You must remove the covers from the connections in order to connect the line supply and motor cables to the converter.



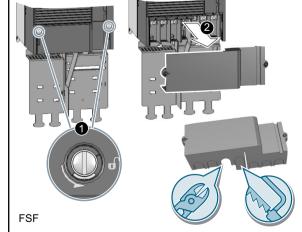
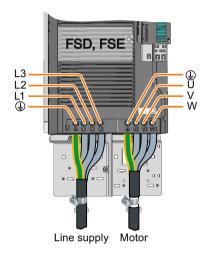




Figure 4-19 Remove the connection covers

In addition, for frame sizes FSD and FSE, release the two terminal screws on the connections for the motor and remove the dummy plug.

For frame size FSF you must breakout the openings from the connection cover for the power connections. Use side cutters or a fine saw blade.



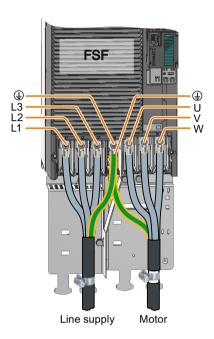



Figure 4-20 Line and motor connections

You must re-attach the connection covers in order to re-establish the touch protection of the converter after it has been connected up.

# 4.5.7 Connecting a converter with the PM240-2 Power Module

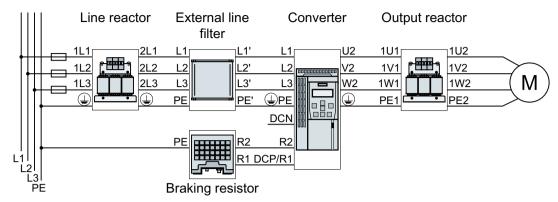



Figure 4-21 Connection of the PM240-2 Power Module, 3 AC, FSA ... FSC

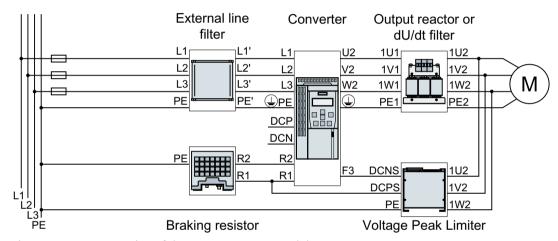



Figure 4-22 Connection of the PM240-2 Power Module, 3 AC, FSD ... FSF

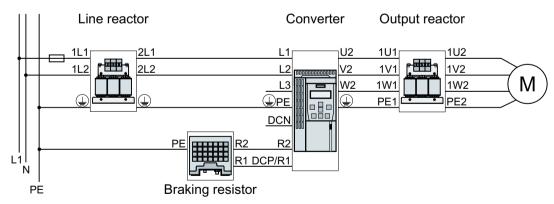
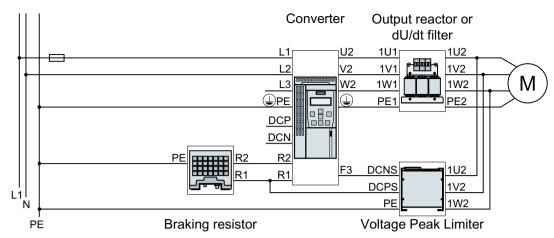



Figure 4-23 Connection of the PM240-2 Power Module, 1 AC 200 V, FSA ... FSC

# 4.5 Connecting the line supply and motor



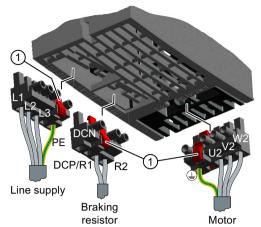


Figure 4-24 Connection of the PM240-2 Power Module, 1 AC 200 V, FSD ... FSF

Table 4-29 Connection, cross-section and tightening torque for PM240-2 Power Modules

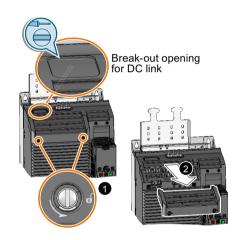
| Converter | Connection           |                                                    | Cross-section and tightening torque              |                                      | Stripped                  |
|-----------|----------------------|----------------------------------------------------|--------------------------------------------------|--------------------------------------|---------------------------|
|           |                      |                                                    | Metric                                           | Imperial                             | insula-<br>tion<br>length |
| FSA       | Line system, motor   | II.                                                | 1.5 2.5 mm <sup>2</sup> , 0.5 Nm                 | 16 14 AWG, 4.5 lbf in                | 8 mm                      |
| FSB       | and braking resistor |                                                    | 1.5 6 mm <sup>2</sup> , 0.6 Nm                   | 16 10 AWG, 5.5 lbf in                | 8 mm                      |
| FSC       |                      | Plug connector<br>with screw termi-<br>nals        | 616 mm², 1.3 Nm                                  | 10 6 AWG, 12 lbf in                  | 10 mm                     |
| FSD       | Line and motor       | Screw-type termi-<br>nal                           | 10 35 mm²,<br>2.5 4.5 Nm                         | 8 2 AWG,<br>22 40 lbf in             | 18 mm                     |
|           | Braking resistor     |                                                    | 2.5 16 mm²,<br>1.2 1.5 Nm                        | 20 6 AWG,<br>10.5 13 lbf in          | 10 mm                     |
| FSE       | Line and motor       | Screw-type termi-<br>nal                           | 25 70 mm²,<br>8 10 Nm                            | 6 3/0 AWG,<br>71 88.5 lbf in         | 25 mm                     |
|           | Braking resistor     |                                                    | 10 35 mm²,<br>2.5 4.5 Nm                         | 8 2 AWG,<br>22 40 lbf in             | 18 mm                     |
| FSF       | Line and motor       | Cable lug according<br>to SN71322 for<br>M10 bolts | 35 2 × 120 mm <sup>2</sup> ,<br>22 25 Nm         | 1 AWG 2 × 4/0 AWG,<br>195 221 lbf.in | 1                         |
|           | Braking resistor     | Screw-type termi-<br>nal                           | 25 <sup>1)</sup> 70 mm <sup>2</sup> ,<br>8 10 Nm | 6 3/0 AWG,<br>71 88.5 lbf in         | 25 mm                     |
| FSG       | Line and motor       | Cable lug according<br>to SN71322 for<br>M10 bolts | 35 2 × 185 mm <sup>2</sup> ,<br>22 25 Nm         | 1 AWG 2 × 350 MCM,<br>195 221 lbf.in | 1                         |
|           | Braking resistor     | Screw-type termi-<br>nal                           | 25 70 mm²,<br>8 10 Nm                            | 6 3/0 AWG,<br>71 88.5 lbf in         | 25 mm                     |

<sup>1) 16</sup> mm<sup>2</sup> allowed during short-time duty

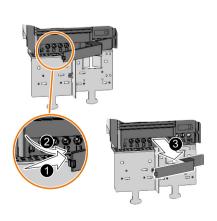
#### Connections for frame sizes FSA ... FSC



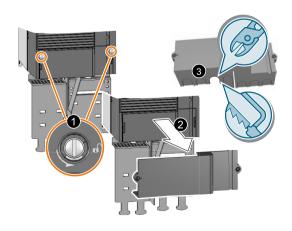
The Power Modules are equipped with withdrawable plug connectors that cannot be inadvertently interchanged.


To remove a plug connector, you must release it by pressing on the red lever.

Release lever


#### Connections for frame sizes FSD ... FSG

You must remove the covers from the connections in order to connect the line supply, braking resistor and motor to the converter. In addition, for frame sizes FSD and FSE, release the two terminal screws on the connections for the motor and braking resistor, and remove the dummy plug.


For frame sizes FSF and FSG, you must breakout the openings from the connection cover for the power connections. Use side cutters or a fine saw blade.



FSD ... FSG: Remove the top covers



FSD, FSE: Remove the lower cover



FSF, FSG: Remove the lower cover

### 4.5 Connecting the line supply and motor

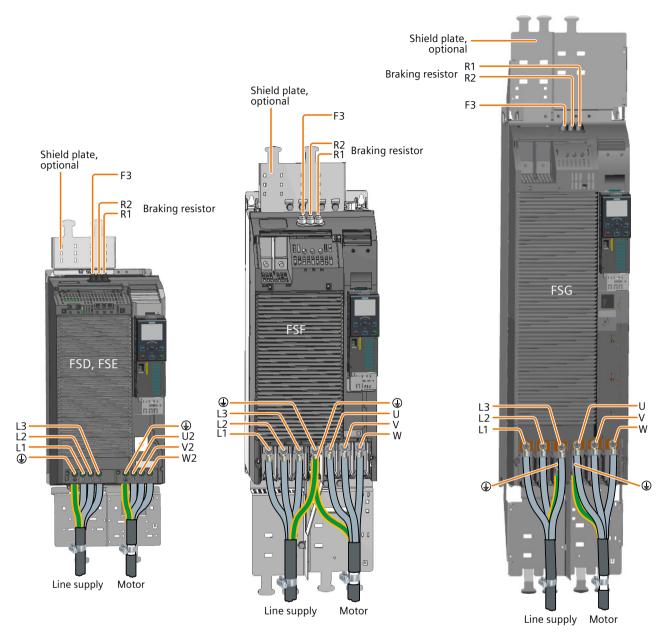



Figure 4-25 Connections for the line supply, motor and braking resistor

You must re-attach the connection covers in order to re-establish the touch protection of the converter after it has been connected up.

#### Additional information when connecting FSG converters

#### Note

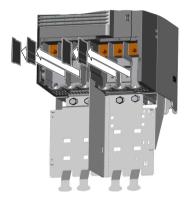
#### Conductor cross-section 240 mm<sup>2</sup>

Cable lugs for M10 bolts according to SN71322 are suitable for cables with cross-sections of  $35 \text{ mm}^2 \dots 185 \text{ mm}^2$  (1 AWG ...  $2 \times 350 \text{ MCM}$ ).

If you wish to establish connections with cables of 240 mm<sup>2</sup> (500 MCM), you must use narrow cable lugs, e.g. Klauke 12SG10. Other cable lugs are not suitable due to the narrow design of the converter.

The maximum permissible width of the cable lugs is 37 mm (1.45 inches).

Remove the plastic insulating plate as shown below to gain better access to the terminals for the power connections.




#### **WARNING**

#### Damage to converter as a result of operation without insulating plates

Without the insulating plates, voltage flashovers may occur between the phases.

• Replace the insulating plates after connecting the cables.





# 4.5.8 Connecting the converter with the PM250 Power Module

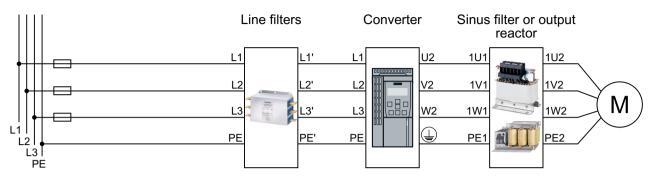
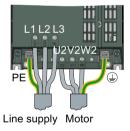
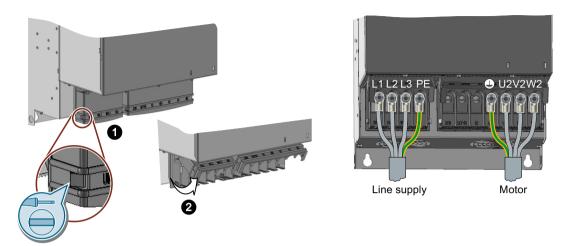




Figure 4-26 Connecting the PM250 Power Module

Table 4-30 Connection, cross-section and tightening torque for PM250 Power Modules


| Converter | Line supply and motor connection | Cross-section and tightening torque |                       | Stripped                  |
|-----------|----------------------------------|-------------------------------------|-----------------------|---------------------------|
|           |                                  | Metric                              | Imperial              | insula-<br>tion<br>length |
| FSC       | Screw-type terminal              | 410 mm <sup>2</sup> , 2.3 Nm        | 12 8 AWG, 20 lbf in   | 10 mm                     |
| FSD       |                                  | 10 35 mm <sup>2</sup> , 6 Nm        | 7 2 AWG, 53 lbf in    |                           |
| FSE       | Cable lug                        | 25 50 mm², 6 Nm                     | 3 1/0 AWG, 53 lbf in  |                           |
| FSF       | Cable lug                        | 35 120 mm <sup>2</sup> , 13 Nm      | 2 4/0 AWG, 115 lbf in |                           |

### Connections for frame size FSC



#### Connections for frame sizes FSD ... FSF

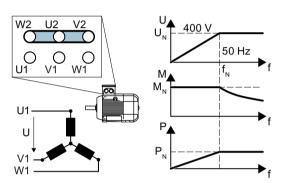
The line and motor connections have covers to prevent them from being touched.



You must open the cover to connect the line and motor:

- 1. Release the catches on both sides of the covers using a screwdriver.
- 2. Swivel the covers upwards.

Close the covers once you have connected the line and motor.

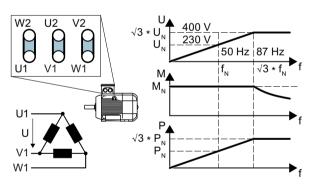

### 4.5.9 Connecting the motor to the converter in a star or delta connection

#### Overview

Standard induction motors up to a rated power of approximately 3 kW are usually connected in star/delta connection (Y/ $\Delta$ ) at 400 V/230 V. For a 400-V line supply, you can connect the motor to the converter either in a star or in a delta connection.

### **Function description**

#### Operating the motor in a star connection




In a star connection, the motor can provide its rated torque  $M_N$  in the range 0 ... rated frequency  $f_N$ .

Rated voltage  $U_N = 400 \text{ V}$  is available at a rated frequency  $f_N = 50 \text{ Hz}$ .

The motor goes into field weakening above the rated frequency. In field weakening, the available motor torque decreases proportionally with 1/f. In field weakening, the available power remains constant.

#### Operating the motor in a delta connection with 87 Hz characteristic



In a delta connection, the motor is operated with a voltage and frequency above its rated values. As a consequence, the motor power is increased by a factor  $\sqrt{3} \approx 1.73$ .

In the range  $f = 0 \dots 87$  Hz, the motor can output its rated torque  $M_N$ .

The maximum voltage U = 400 V is available at a frequency of  $f = \sqrt{3} \times 50$  Hz  $\approx$  87 Hz.

The motor only goes into field weakening above 87 Hz.

The higher motor power when operated with an 87 Hz characteristic has the following disadvantages:

- The converter must supply approximately 1.73x current. Select a converter based on its rated current and not its rated power.
- The motor temperature increases more significantly than when operated with  $f \le 50$  Hz.
- The motor must have windings that are approved for a voltage > rated voltage U<sub>N</sub>.
- As the fan impeller rotates faster, the motor has a higher noise level than operation with f ≤ 50 Hz.

### 4.6.1 Plugging the Control Unit onto the Power Module

The Power Module has a holder for the Control Unit and a release mechanism.

There are different release mechanisms depending on the particular Power Module.

### **Inserting the Control Unit**

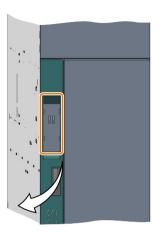
#### **Procedure**



- 1. Place the two catches of the Control Unit in the matching grooves of the Power Module.
- 2. Press the Control Unit onto the Power Module until you hear that it latches.

The Control Unit is plugged onto the Power Module.

### **Removing the Control Unit**


#### **Procedure**

Remove the Control Unit from the Power Module by pressing the release mechanism.

### Special features for the PM330 Power Module

To insert or detach the Control Unit, you must open the left-hand cover of the Power Module.

Close the cover before you commission the inverter.



### Special features for the PM230 Power Module IP55, FSA ... FSC

To insert or detach the Control Unit, you must release eight or ten fixing screws of the cover and then remove the cover.

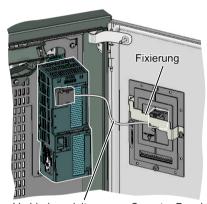
The Power Module release mechanism is shown in the diagram.

Attach the cover again before you commission the converter. Do not damage the seal of the cover when attaching it.



### Installing the Control Unit, PM230 IP55 - FSD ... FSF

To insert or detach the Control Unit, you must open the front door of the Power Module.

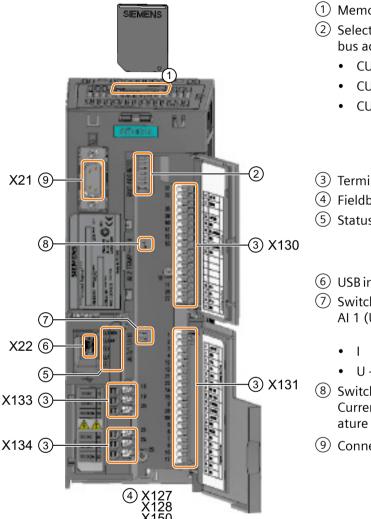

Close the door before you commission the converter. Check to ensure that the seals are not damaged.



#### Operation with operator panel

To connect the operator panel to the Control Unit, you have to plug in the supplied connecting cable to the Control Unit and the operator panel.

Fasten the plug connector in the door with the supplied clamp.




Verbindungsleitung zum Operator Panel

#### Overview of the interfaces 4.6.2

#### Interfaces on the Control Unit

To access the interfaces at the front of the Control Unit, you must lift the Operator Panel (if one is being used) and open the front doors.



- 1 Memory card slot
- 2 Selecting the fieldbus address:
  - CU230P-2 DP
  - CU230P-2 HVAC
  - CU230P-2 BT

| Bit 6 (64) |
|------------|
| Bit 5 (32) |
| Bit 4 (16) |
| Bit 3 (8)  |
| Bit 2 (4)  |
| Bit 1 (2)  |
| Bit 0 (1)  |
| On Off     |

- 3 Terminal strips
- 4) Fieldbus interfaces at the lower side
- (5) Status LED



- (6) USB interface for connection to a PC
- (7) Switch for AI 0 and AI 1 (U/I)



- I 0/4 mA ... 20 mA
- U -10/0 V ... 10 V
- 8 Switch for Al 2 Current or temperature input



Connection to the operator panel

### Protection against unauthorized access via the USB interface



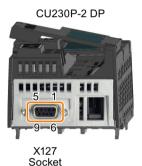
#### WARNING

### Unsafe operating states resulting from manipulation of the converter software

Manipulation of the converter software can cause unsafe operating states in your system that may lead to death, serious injury and property damage.

- Prevent unauthorized persons from accessing the converter's USB interface:
  - Do not route the USB interface outside the control cabinet.
  - Lock the control cabinet or the control room in which the converter is installed.

#### 4.6.3 Fieldbus interface allocation


#### Interfaces at the lower side of the CU230P-2 Control Unit



X150 X150 P1 P2

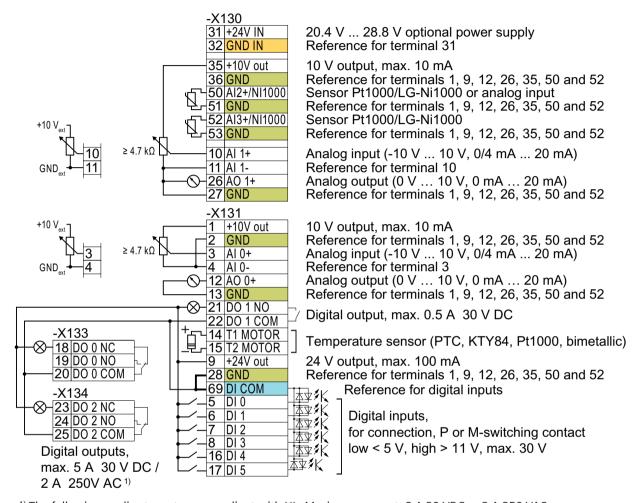
### Pin

- 1 RX+, receive data +
- 2 RX-, receive data -
- 3 TX+. Transmit data +
- 4 ---
- 5 ---
- 6 TX-, transmit data -
- 7 ---
- 8 ---



#### Pin

- 1 Shield, ground connection
- 2 --
- 3 RxD/TxD-P, receive and transmit (B/B')
- 4 CNTR-P, control signal
- 5 DGND, reference potential for data (C/C')
- 6 VP, supply voltage
- 7 ---
- 8 RxD/TxD-N, receive and transmit (A/A')
- 9 ---




#### Pin

- 1 0 V, reference potential
- 2 P+, RS485P, receive and transmit
- 3 N-, RS485N, receive and transmit
- 4 Cable shield
- 5 --

### 4.6.4 Terminal strips

#### Terminal strips with wiring example



<sup>1)</sup> The following applies to systems compliant with UL: Maximum current, 3 A 30 VDC or 2 A 250 VAC Figure 4-27 Wiring the digital inputs with p-switching contacts and an internal 24 V power supply (terminal 9)

GND

All terminals labelled with reference potential "GND" are connected internally in the converter.

DI COM

Reference potential "DI COM" is electrically isolated from "GND". The Control Unit is delivered with a jumper between terminals 28 and 69.

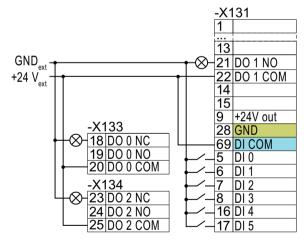
 $\rightarrow$  If, as shown above, you wish to use the 24-V supply from terminal 9 as supply for the digital inputs, then it is mandatory that this jumper is used.

31 +24 V IN 32 GND IN When an optional 24 V power supply is connected at terminals 31, 32, even when the Power Module is disconnected from the line supply, the Control Unit remains in operation. The Control Unit thus maintains fieldbus communication, for example.

- → for terminals 31, 32 only use a 24 VDC power supply with PELV (Protective Extra Low Voltage).
- $\rightarrow$  for applications in the USA and Canada: Use a 24 VDC power supply, NEC Class 2.

- → connect the 0 V of the power supply with the protective conductor.
- → if you also wish to use the power supply at terminals 31, 32 for the digital inputs, then you must connect "DI COM" and "GND IN" with one another at the terminals.

| 10 | AI 1+ |  |
|----|-------|--|
| 11 | AI 1- |  |
| 3  | AI 0+ |  |
| 4  | AI 0- |  |


You may use the internal 10 V power supply or an external power supply for the analog inputs. → When you use the internal 10 V power supply, you must connect AI 0 or AI 1 with "GND".

#### Additional options for wiring the digital inputs



You must remove the jumper between terminals 28 and 69 if it is necessary to have electrical isolation between the external power supply and the internal converter power supply.

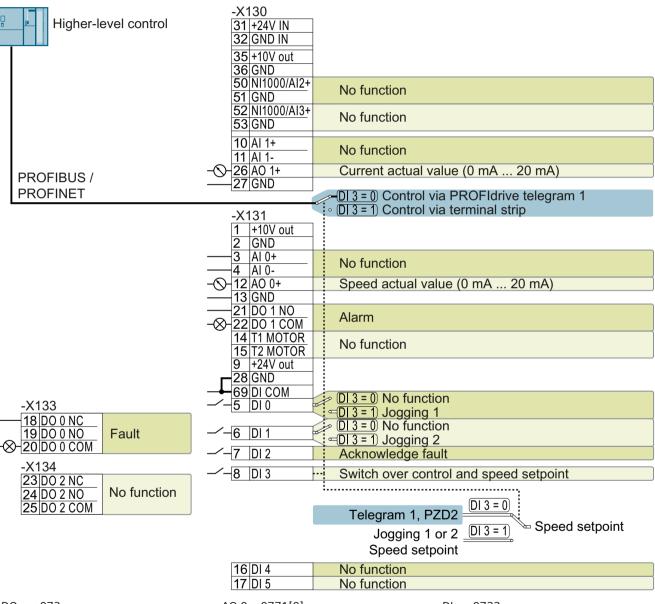
Connecting P-switching contacts with an external power supply



Remove the jumper between terminals 28 and 69.

Connecting M-switching contacts with an external power supply

#### Note


When a contact switching to M is connected, a ground fault at the digital input can lead to the input being unintentionally controlled.

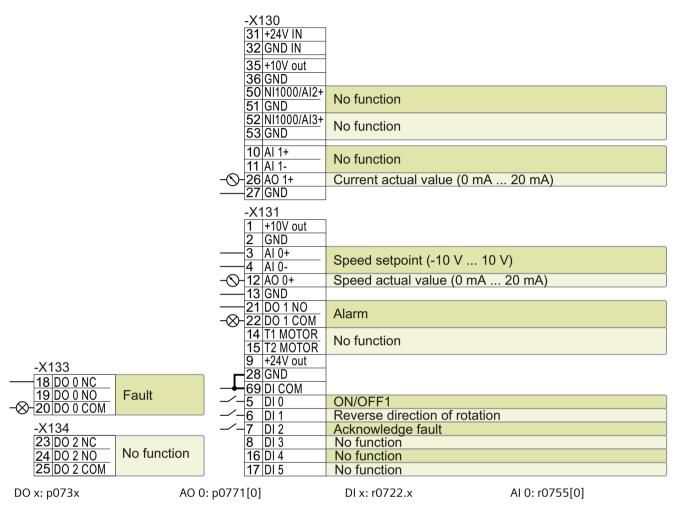
### 4.6.5 Factory interface settings

The factory setting of the interfaces depends on the Control Unit.

#### Control Units with PROFIBUS or PROFINET interface

The function of the fieldbus interface and digital inputs DI 0, DI 1 depends on DI 3.




DO x: p073x AO 0: p0771[0] DI x: r0722.x

Speed setpoint (main setpoint): p1070[0] = 2050[1]

Figure 4-28 Factory setting of the CU230P-2 DP and CU230P-2 PN Control Units

#### Control Units with USS interface

The fieldbus interface is not active.



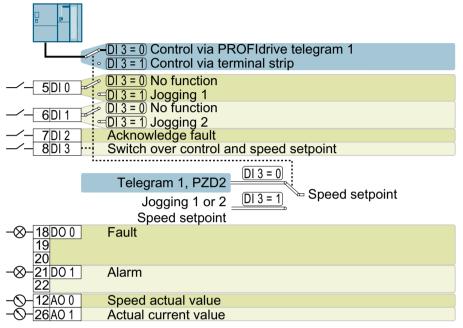

Speed setpoint (main setpoint): p1070[0] = 755[0]

Figure 4-29 Factory setting of CU230P-2 HVAC Control Units

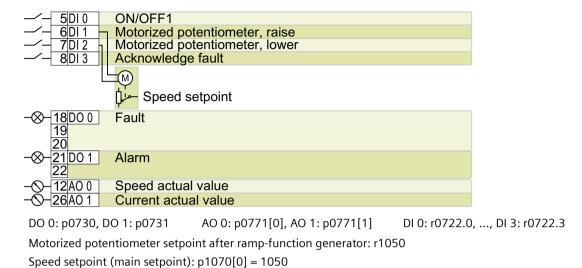
### 4.6.6 Default setting of the interfaces

### Default setting 7: "Fieldbus with data set switchover"

Factory setting for inverters with PROFIBUS or PROFINET interface



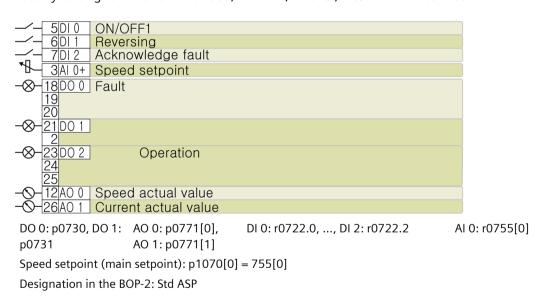
DO 0: p0730, DO 1: p0731


AO 0: p0771[0], AO 1: p0771[1]

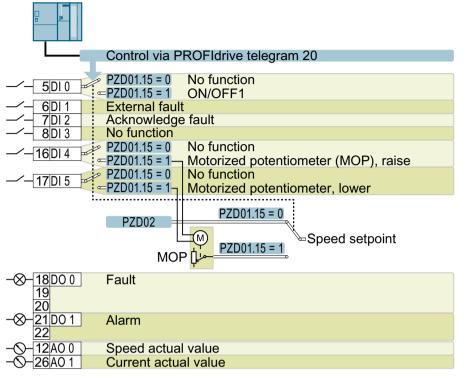
DI 0: r0722.0, ..., DI 3: r0722.3

Speed setpoint (main setpoint): p1070[0] = 2050[1] Jog 1 speed setpoint: p1058, factory setting: 150 rpm Jog 2 speed setpoint: p1059, factory setting: -150 rpm

Designation in the BOP-2: FB cdS


### Default setting 9: "Standard I/O with MOP"




# Designation in the BOP-2: Std MoP

Default setting 12: "Standard I/O with analog setpoint"

Factory setting for inverters with USS, Modbus, BACnet, MS/TP or P1 interface



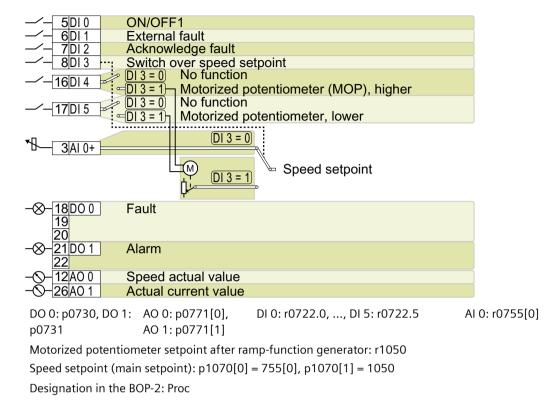
### Default setting 14: "Process industry with fieldbus"



DO 0: p0730, DO 1: p0731

AO 0: p0771[0], AO 1: p0771[1]

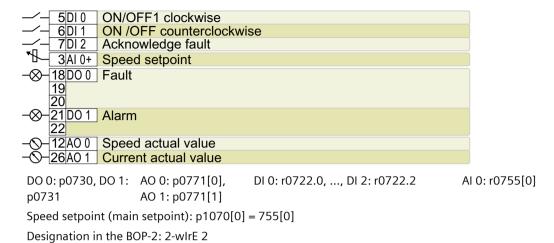
DI 0: r0722.0, ..., DI 5: r0722.5


Motorized potentiometer setpoint after ramp-function generator: r1050

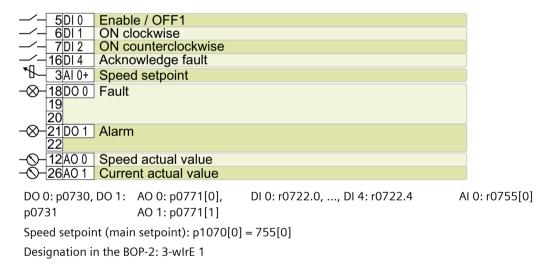
Speed setpoint (main setpoint): p1070[0] = 2050[1], p1070[1] = 1050

Switch controller via PZD01, bit 15: p0810 = r2090.15

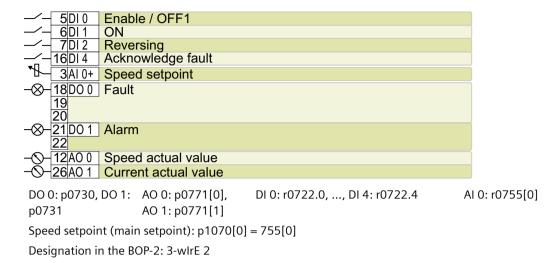
Designation in the BOP-2: Proc Fb


### Default setting 15: "Process industry"

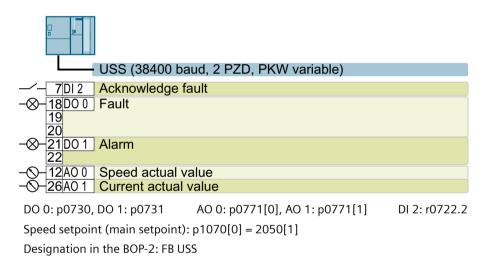



### Default setting 17: "2-wire (forw/backw1)"

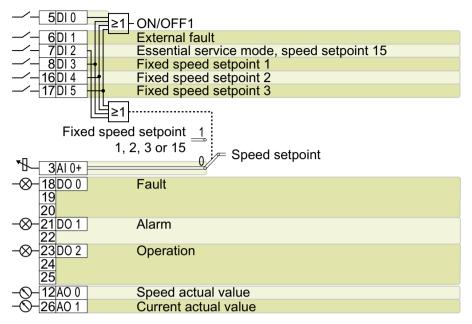
| ────────────────────────────────────                             |                |
|------------------------------------------------------------------|----------------|
| - 6DI1 ON /OFF counterclockwise                                  |                |
| 7DI2 Acknowledge fault                                           |                |
| 3 A  0+ Speed setpoint                                           |                |
| -⊗-18D0 0 Fault                                                  |                |
| 19                                                               |                |
| [20]                                                             |                |
| -⊗- <u>21</u> D0 1 Alarm                                         |                |
| 22                                                               |                |
| -O-12A0 0 Speed actual value                                     |                |
| -⊘-26A0 1 Current actual value                                   |                |
| DO 0: p0730, DO 1: AO 0: p0771[0], DI 0: r0722.0,, DI 2: r0722.2 | AI 0: r0755[0] |
| · · · · · · · · · · · · · · · · · · ·                            | 11 0.10735[0]  |
| p0731 AO 1: p0771[1]                                             |                |
| Speed setpoint (main setpoint): p1070[0] = 755[0]                |                |
| Designation in the BOP-2: 2-wIrE 1                               |                |
| •                                                                |                |


### Default setting 18: "2-wire (forw/backw2)"




### Default setting 19: "3-wire (enable/forw/backw)"




### Default setting 20: "3-wire (enable/on/reverse)"

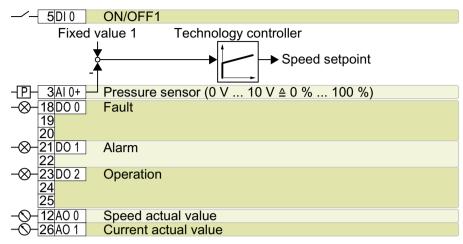


# Default setting 21: "USS fieldbus"



### Default setting 101: "Universal application"



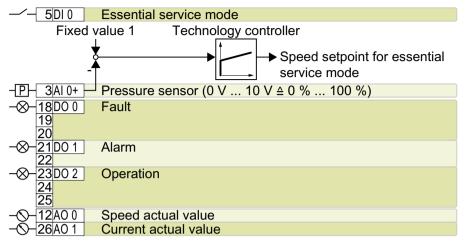

DO 0: p0730, ..., AO 0: p0771[0], AO 1: p0771[1] DI 0: r0722.0, ..., DI 5: r0722.5 AI 0: r0755[0] DO 2: p0732

#### Additional settings:

- Fixed speed setpoint 1: p1001 = 800 rpm
- Fixed speed setpoint 2: p1002 = 1000 rpm
- Fixed speed setpoint 3: p1003 = 1200 rpm
- If several of the DI 3 ... DI 5 = high, the inverter adds the corresponding fixed speeds.
- Fixed speed setpoint 15 for essential service mode (ESM): p1015 = 1500 rpm
- "Flying restart" is enabled: p1200 = 1
- Automatic restart is active. After a power failure, the inverter automatically acknowledges possible faults and switches on the motor: p1210 = 26

Designation in the BOP-2: P F 6PA

#### Default setting 103: "Pump pressure control"

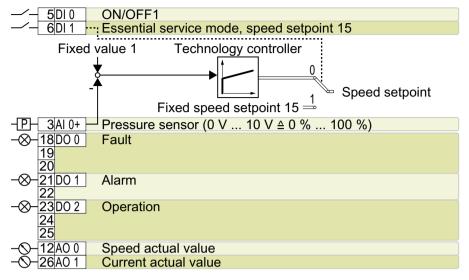



DO 0: p0730, ..., DO 2: p0732 AO 0: p0771[0], AO 1: p0771[1] DI 0: r0722.0 Al 0: r0755[0] Additional settings:

- Differential pressure control using the technology controller
- Technological unit: p0595 = 1 (%), reference variable: p0596 = 1
- Default setting of the technology controller:
  - Enable: p2200 = 1
  - Fixed value 1: p2201 = 50 %
  - Ramp-up/down time for setpoint: p2257 = p2258 = 30 s
  - Ramp-up/down time for controller output: p2293 = 30 s
  - Upper and lower limits, actual value: p2267 = 120 %, p2268 = -10 %
  - Actual value filter time constant: p2265 = 10 s
  - Proportional gain  $K_P$ , integral time  $T_I$ , differentiation time constant  $T_D$ : p2280 ( $K_P$ ) = 1, p2285 ( $T_I$ ) = 30 s, p2274 ( $T_D$ ) = 0 s
- "Flying restart" is enabled: p1200 = 1
- Automatic restart is active. After a power failure, the inverter automatically acknowledges possible faults and switches on the motor: p1210 = 26

Designation in the BOP-2: P F dPc

### Default setting 104: "ESM stairwell pressure control"



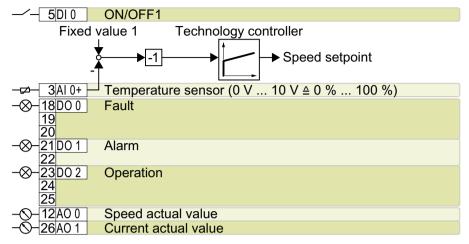

DO 0: p0730, ..., DO 2: p0732 AO 0: p0771[0], AO 1: p0771[1] DI 0: r0722.0 Al 0: r0755[0] Additional settings:

- Pressure control using the technology controller
- Analog inputs smoothing time constant: p0753 = 500 ms
- Technological unit: p0595 = 1 (%), reference variable: p0596 = 1
- Default setting of the technology controller:
  - Enable: p2200 = 1
  - Fixed value 1: p2201 = 40 %
  - Ramp-up/down time for setpoint: p2257 = p2258 = 30 s
  - Ramp-up/down time for controller output: p2293 = 30 s
  - Upper and lower limits, actual value: p2267 = 120 %, p2268 = -10 %
  - Actual value filter time constant: p2265 = 10 s
  - Proportional gain  $K_p$ , integral time  $T_l$ , differentiation time constant  $T_D$ : p2280 ( $K_p$ ) = 1.2, p2285 ( $T_l$ ) = 25 s, p2274 ( $T_D$ ) = 0 s
  - Technology controller minimum limiting p2292 = 30 %
  - Technology controller output signal start value p2302 = 35 %
- "Flying restart" is enabled: p1200 = 1
- Automatic restart is active. After a power failure, the inverter automatically acknowledges possible faults and switches on the motor: p1210 = 26

Designation in the BOP-2: P\_F Stw

#### Default setting 105: "Fan pressure control + ESM with fixed setpoint"



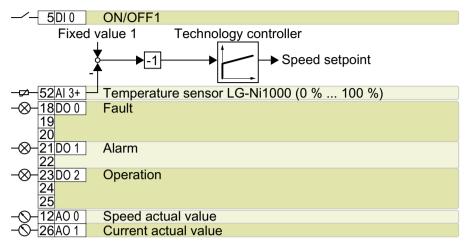

DO 0: p0730, ..., AO 0: p0771[0], AO 1: p0771[1] DI 0: r0722.0, DI 1: r0722.1 AI 0: r0755[0] DO 2: p0732

#### Additional settings:

- Pressure control using the technology controller
- Analog inputs smoothing time constant: p0753 = 500 ms
- Technological unit: p0595 = 1 (%), reference variable: p0596 = 1
- Fixed speed setpoint 15 for essential service mode (ESM): p1015 = 1350 rpm
- Default setting of the technology controller:
  - Enable: p2200 = 1
  - Fixed value 1: p2201 = 40 %
  - Ramp-up/down time for setpoint: p2257 = p2258 = 30 s
  - Ramp-up/down time for controller output: p2293 = 30 s
  - Upper and lower limits, actual value: p2267 = 120 %, p2268 = -10 %
  - Actual value filter time constant: p2265 = 10 s
  - Proportional gain  $K_p$ , integral time  $T_l$ , differentiation time constant  $T_D$ : p2280 ( $K_p$ ) = 1.1, p2285 ( $T_l$ ) = 35 s, p2274 ( $T_D$ ) = 0 s
  - Technology controller minimum limiting p2292 = 20 %
  - Technology controller output signal start value p2302 = 50 %
- "Flying restart" is enabled: p1200 = 1
- Automatic restart is active. After a power failure, the inverter automatically acknowledges possible faults and switches on the motor: p1210 = 26

Designation in the BOP-2: P\_F Pc5

### Default setting 106: "Cooling tower with active sensor + hibernation"

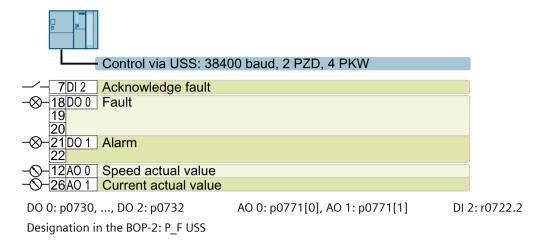



DO 0: p0730, ..., DO 2: p0732 AO 0: p0771[0], AO 1: p0771[1] DI 0: r0722.0 AI 0: r0755[0] Additional settings:

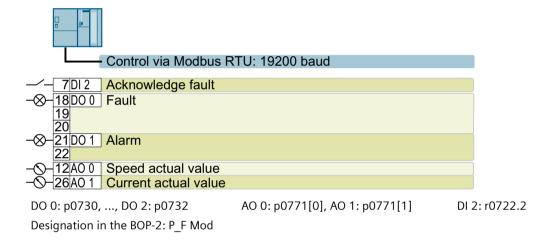
- · Temperature control using the technology controller
- Analog inputs smoothing time constant: p0753 = 100 ms
- Technological unit: p0595 = 1 (%), reference variable: p0596 = 1
- Default setting of the technology controller:
  - Enable: p2200 = 1
  - Fixed value 1: p2201 = 26 %
  - Ramp-up/down time for setpoint: p2257 = p2258 = 30 s
  - Ramp-up/down time for controller output: p2293 = 30 s
  - Upper and lower limits, actual value: p2267 = 120 %, p2268 = -10 %
  - Actual value filter time constant: p2265 = 10 s
  - Proportional gain  $K_p$ , integral time  $T_l$ , differentiation time constant  $T_D$ : p2280 ( $K_p$ ) = 1.2, p2285 ( $T_l$ ) = 25 s, p2274 ( $T_D$ ) = 0 s
  - Technology controller system deviation inversion: p2306 = 1
- Default setting hibernation mode:
  - Activated: p2398 = 1
  - Start speed: p2390 = 50 rpm
  - Delay time: p2391 = 60 s
  - Restart value with technology controller: p2392 = 1 %
  - Restart speed relative w/o technology controller: p2393 = 100 rpm
- "Flying restart" is enabled: p1200 = 1
- Automatic restart is active. After a power failure, the inverter automatically acknowledges possible faults and switches on the motor: p1210 = 26

Designation in the BOP-2: P\_F ctF1

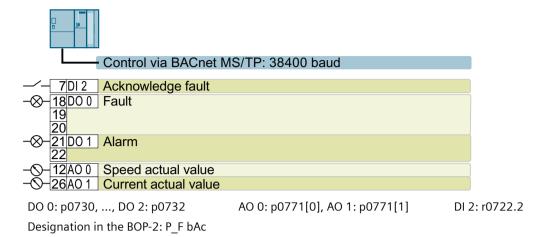
#### Default setting 107: "Cooling tower with LG-Ni1000 sensor + hibernation"



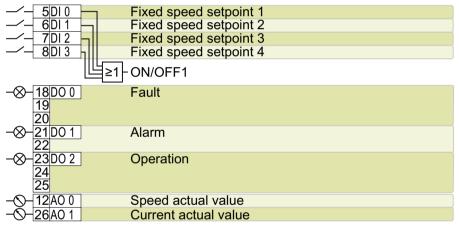

DO 0: p0730, ..., DO 2: p0732 AO 0: p0771[0], AO 1: p0771[1] DI 0: r0722.0 AI 3: r0755[3] Additional settings:


- · Temperature control using the technology controller
- Analog inputs smoothing time constant: p0753 = 100 ms
- Technological unit: p0595 = 1 (%), reference variable: p0596 = 1
- Default setting of the technology controller:
  - Enable: p2200 = 1
  - Fixed value 1: p2201 = 26 %
  - Ramp-up/down time for setpoint: p2257 = p2258 = 30 s
  - Ramp-up/down time for controller output: p2293 = 30 s
  - Upper and lower limits, actual value: p2267 = 120 %, p2268 = -100 %
  - Actual value filter time constant: p2265 = 10 s
  - Proportional gain  $K_p$ , integral time  $T_l$ , differentiation time constant  $T_D$ : p2280 ( $K_p$ ) = 1.2, p2285 ( $T_l$ ) = 25 s, p2274 ( $T_D$ ) = 0 s
  - Technology controller minimum limiting p2292 = 20 %
  - Technology controller system deviation inversion: p2306 = 1
- Default setting hibernation mode:
  - Activated: p2398 = 1
  - Start speed: p2390 = 50 rpm
  - Delay time: p2391 = 60 s
  - Restart value with technology controller: p2392 = 1 %
  - Restart speed relative w/o technology controller: p2393 = 100 rpm
- "Flying restart" is enabled: p1200 = 1
- Automatic restart is active. After a power failure, the inverter automatically acknowledges possible faults and switches on the motor: p1210 = 26

Designation in the BOP-2: P F ctF2


### Default setting 108: "USS fieldbus"



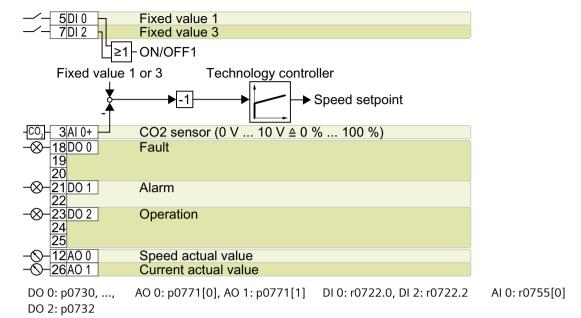

### Default setting 109: "Modbus RTU field"



### Default setting 110: "BACnet MS/TP fieldbus"



### Default setting 111: "Fixed setpoints"

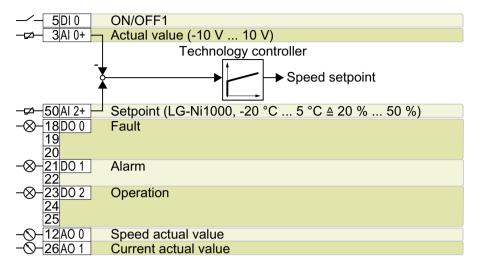



DO 0: p0730, ..., DO 2: p0732 AO 0: p0771[0], AO 1: p0771[1] DI 0: r0722.0, ..., DI 3: r0722.3 Additional settings:

- Fixed speed setpoint 1: p1001 = 300 rpm
- Fixed speed setpoint 2: p1002 = 600 rpm
- Fixed speed setpoint 3: p1003 = 900 rpm
- Fixed speed setpoint 4: p1004 = 1200 rpm
- If several of the DI 0 ... DI 3 = high, the inverter adds the corresponding fixed speeds.
- "Flying restart" is enabled: p1200 = 1
- Automatic restart is active. After a power failure, the inverter automatically acknowledges possible faults and switches on the motor: p1210 = 26

Designation in the BOP-2: P\_F \_F55

### Default setting 112: "CO2 sensor, 2 PID setpoints"



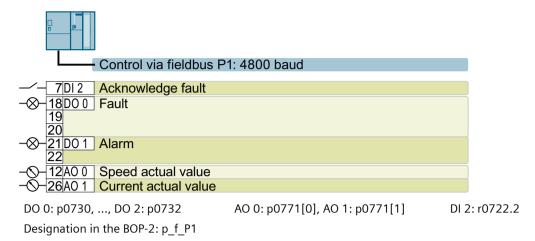

#### Additional settings:

- CO<sub>2</sub> control using the technology controller
- Analog inputs smoothing time constant: p0753 = 500 ms
- Technological unit: p0595 = 1 (%), reference variable: p0596 = 1
- Default setting of the technology controller:
  - Enable: p2200 = 1
  - Fixed value 1: p2201 = 50 %
  - Fixed value 3: p2203 = 10 %
  - Technology controller setpoint 1: p2253 = r2224 (active fixed value)
  - Ramp-up/down time for setpoint: p2257 = p2258 = 30 s
  - Upper and lower limits, actual value: p2267 = 120 %, p2268 = -10 %
  - Actual value filter time constant: p2265 = 10 s
  - Technology controller system deviation inversion: p2306 = 1
- "Flying restart" is enabled: p1200 = 1
- Automatic restart is active. After a power failure, the inverter automatically acknowledges possible faults and switches on the motor: p1210 = 26

Designation in the BOP-2: P\_F\_CO2

#### Default setting 113: "Temperature-dependent pressure setpoint"




DO 0: p0730, ..., AO 0: p0771[0], AO 1: p0771[1] DI 0: r0722.0 AI 0: r0755[0], AI 2: r0755[2] DO 2: p0732

#### Additional settings:

- Temperature control using the technology controller
- Technological unit: p0595 = 1 (%), reference variable: p0596 = 1
- Default setting of the technology controller:
  - Enable: p2200 = 1
  - Upper and lower limits, setpoint: p20229 = 0.5, p20230 = 0.2
  - Ramp-up/down time for setpoint: p2257 = p2258 = 30 s
  - Ramp-up/down time for controller output: p2293 = 30 s
  - Upper and lower limits, actual value: p2267 = 120 %, p2268 = -10 %
  - Actual value filter time constant: p2265 = 10 s
  - Technology controller minimum limiting p2292 = 20 %
- "Flying restart" is enabled: p1200 = 1
- Automatic restart is active. After a power failure, the inverter automatically acknowledges possible faults and switches on the motor: p1210 = 26

Designation in the BOP-2: P\_F\_tP5

### Default setting 114: "P1 fieldbus"



#### Default setting 120: "PID settings for pumps and fans"

The default setting restores the function of the terminal strip to the factory setting.

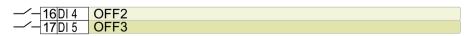
Technology controller setting:

- Ramp-up/down time for setpoint: p2257 = p2258 = 30 s
- Ramp-up/down time for controller output: p2293 = 30 s
- Actual value upper limit: p2267 = 120%
- Actual value filter time constant: p2265 = 10 s

Designation in the BOP-2: P F PID

#### Default setting 200: "Option L13, main contactor"

The macro is intended for the G120P Cabinet with option L13 (main contactor).




DO 2: p0732

Designation in the BOP-2: L13

#### Default setting 201: "Option L57, L59, L60, Emergency Stop"

The macro is intended for the G120P Cabinet with options L57, L59 and L60 (Emergency Stop).



DI 4: r0722.4, DI 5: r0722.5

Designation in the BOP-2: L57\_60

### Default setting 202: "Option L83, L84, L86, ext. alarm/fault"

The macro is intended for the G120P Cabinet with options L83, L84 and L86 (external alarm or fault).

| <br>7 DI 2 | External alarm |
|------------|----------------|
| <br>8 DI 3 | External fault |

DI 2: r0722.2, DI 3: r0722.3

Designation in the BOP-2: L83\_86

### Additional information on the default settings 200 ... 202

Additional information on the default settings 200 ... 202 is provided on the Internet.

G120P Cabinet operating instructions (<a href="https://support.industry.siemens.com/cs/ww/en/view/109749009">https://support.industry.siemens.com/cs/ww/en/view/109749009</a>)

# 4.6.7 Additional digital inputs and outputs on PM330 Power Modules

### Overview

The PM330 Power Module has 4 digital inputs and 2 digital outputs on terminal strip X9.

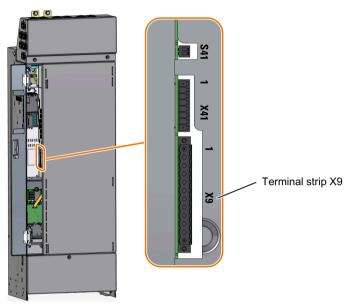
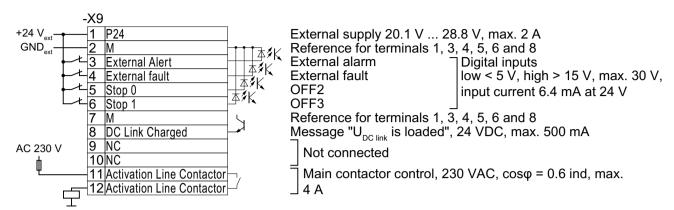




Figure 4-30 Terminal strip X9

### **Function description**



Connection cross-section: 0.2 mm<sup>2</sup> ... 2.5 mm<sup>2</sup>, tightening torque: 0.5 Nm (5 lb.in)

Use insulated end sleeves according to DIN 46228-4.

| Terminals | Remark                                                                                                                                               |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1         | You may either connect an external 24 V supply or use the internal 24 V supply.                                                                      |
| 3 6       | The function of the digital inputs is shown in the factory setting.                                                                                  |
|           | You can change the function of the digital inputs subsequently.                                                                                      |
|           | The digital inputs are low-active in the factory setting. If you do not use one of the digital inputs, you must connect the digital input with 24 V. |
| 8. 11. 12 | The function of the digital outputs cannot be changed.                                                                                               |

- 6, 11, 12 The function of the digital outputs cannot be changed.
- The digital output signals a fully charged DC link of the converter. A charged DC link is the precondition for the "operation" converter state.
- 11, 12 A device to protect against overload and short-circuit is required for the power supply to the line contactor control, e.g. a 4 A / 250 V fuse.

Connect the excitation coil of the line contactor to a surge suppressor, e.g. an RC element.

Figure 4-31 Terminal strip X9 with external 24 V supply

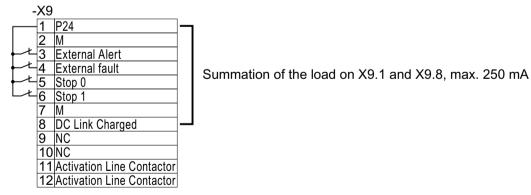



Figure 4-32 Terminal strip X9 with internal 24 V supply

# 4.6.8 Safe Torque Off (STO) safety function

#### Overview

You can implement safety function "Safe Torque Off" (STO) using the following Power Modules:

- PM240-2 Power Modules, FSD ... FSG
- PM240P-2 Power Modules, FSD ... FSF
- PM330 Power Module

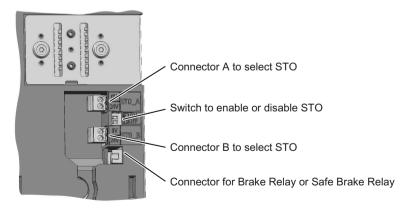
### Requirement

The higher-level control system monitors the selection of STO and the feedback from the converter.

Application examples for "Safe Torque Off" (Page 146)

Setting the feedback signal for Safe Torque Off (Page 264)

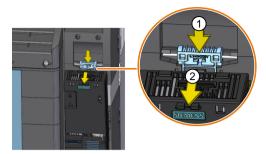
### **Function description**


Use an SELV or PELV power supply with 24 V DC (20.4 V  $\dots$  28.8 V, maximum 60 V briefly).

Use a shielded cable with the following properties:

- Cable length ≤ 30 m
- Cross section 0.5 mm<sup>2</sup> ... + 1.5 mm<sup>2</sup> (20 ... 16 AWG)
- Insulated for 600 V
- Conductor end sleeves, stripping length 7 mm

Tightening torque: 0.2 Nm (2 lbf in)


#### Procedure for converters with PM240-2 and PM240P-2 Power Modules



Both switches = ON: STO is enabled Both switches = OFF: STO is locked Two switches different: not permissible

Figure 4-33 Terminals and switches for the "STO" function, PM240--2 and PM240P-2 Power Modules

1. Remove the Control Unit.




- 2. Connect the cable for selecting STO to terminals STO\_A and STO\_B.
- 3. Plug in the Control Unit.



- 4. Connect the cables for the STO feedback signal to 2 digital outputs of the Control Unit.
- 5. Attach the shield to the shield plate of the Control Unit through the largest possible surface

You have connected all cables for the STO safety function.

#### Procedure for converters with PM330 Power Modules



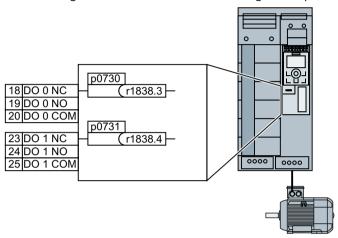
Both switches = ON: STO is enabled Both switches = OFF: STO is locked Two switches different: not permissible

Figure 4-34 Terminals and switches for the "STO" function

- 1. Connect the cable for selecting STO to terminals X41:STO\_A and X41:STO\_B.
- 2. Connect the cables for STO feedback to terminals X41:FB\_A and X41:FB\_B.
- 3. Attach the shield to the shield plate through the largest possible surface area.

You have connected all cables for the STO safety function.  $\ \ \square$ 

# 4.6.9 Application examples for "Safe Torque Off"


#### Overview

A higher-level control system is required to select the STO safety function.

#### Requirement

The following requirements apply:

- The converter signals that the STO safety function is being controlled to the higher-level control system using two digital outputs.
  - For converters with PM240-2 and PM240P-2 Power Modules, you must interconnect feedback signals "STO is active" with two digital outputs.



- For converters with PM330 Power Modules, you can use terminal strip -X41.
- The higher-level control system monitors the selection of the STO safety function and the feedback from the converter.
- Forced checking procedure (test stop):
  - The higher-level control system regularly selects the STO safety function and evaluates the converter feedback signal.
  - We recommend that you implement a time monitoring function in the higher-level control system, which issues an alarm if a test stop is overdue.
- Suitable higher-level controllers
  - SIRIUS 3SK1: Single-channel static feedback circuit
     Permissible for converters FSH and FSJ, not permissible for FSA ... FSG
  - SIRIUS 3SK2: Two-channel dynamic feedback circuit
  - MSS 3RK3: Two-channel dynamic feedback circuit
  - SIMATIC: Feedback circuit monitoring in the safety program
- Forced checking procedure (test stop) every 3 months

#### **Function description**

### SIRIUS 3SK1 safety relay

With a SIRIUS 3SK1 safety relay and FSA ... FSG converters, as a maximum, you can achieve SII 2/PI d

Using a SIRIUS 3SK1 safety relay, you can only achieve SIL 3/PL e using an FSGX, FSHX or FSJX converter.

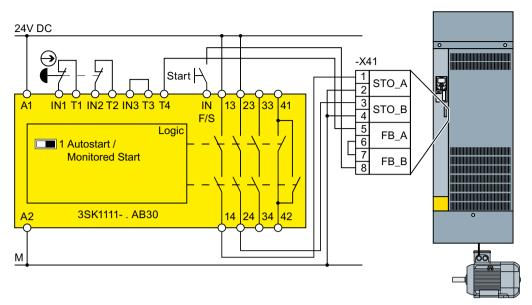



Figure 4-35 Connection 3SK1 inside a control cabinet for FSGX, FSHX and FSJX

#### SIRIUS 3SK2 safety relay

The wiring examples are implemented using safety relays with relay enable circuits. Safety relays with semiconductor enable circuits can also be used.

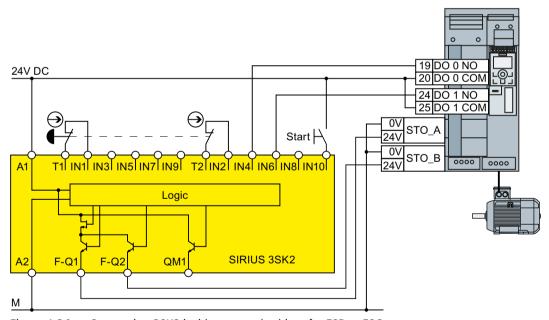
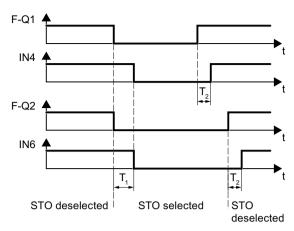




Figure 4-36 Connection 3SK2 inside a control cabinet for FSD ... FSG



 $T_1 \ge 30 \text{ ms}$  In case of deviating feedback, the safety relay must select the STO function and indicate an error.

Figure 4-37 Dynamic monitoring of STO feedback signal for FSD ... FSG

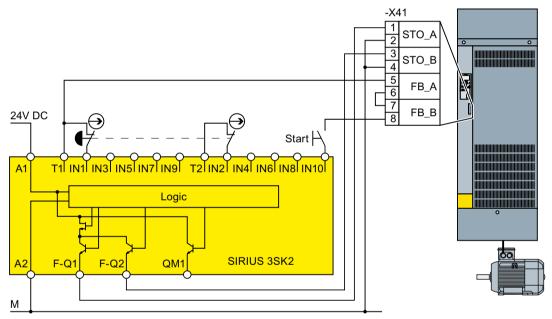



Figure 4-38 Connection 3SK2 inside a control cabinet for FSGX, FSHX and FSJX

When starting, static monitoring of the STO feedback signal is sufficient for converters FSGX, FSHX and FSJX.

# **3RK3 Modular Safety System**

You can use the following outputs to control the failsafe digital inputs in the converter:

- The failsafe digital outputs in the central units of the 3RK3 modular safety system
- The failsafe digital outputs in the EM 2/4F-DI 2F-DO expansion module
- The failsafe digital outputs in the EM 4F-DO expansion module.
- The failsafe relay outputs in the EM 4/8F-RO expansion module
- 2 individual relay contacts of the EM 2/4F-DI 1/2F-RO expansion module

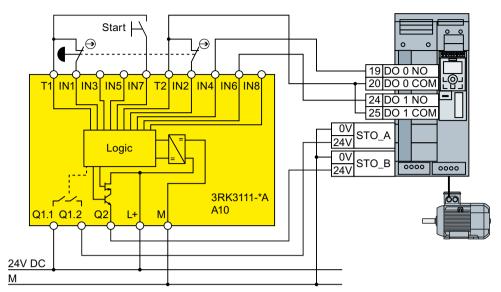
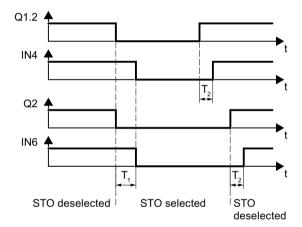




Figure 4-39 Connection 3RK3 inside a control cabinet for FSD ... FSG



 $T_1 \ge 30 \text{ ms}$  In case of deviating feedback, the Modular Safety System must select the STO  $T_2 \ge 20 \text{ ms}$  function and indicate an error.

Figure 4-40 Dynamic monitoring of STO feedback signal for FSD ... FSG

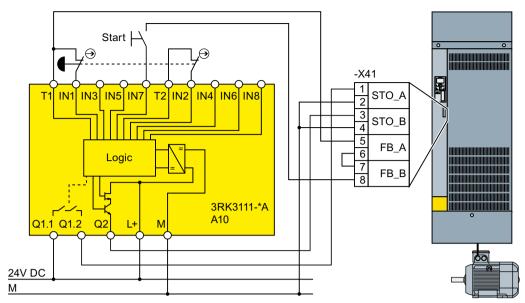



Figure 4-41 Connection 3RK3 inside a control cabinet for FSGX, FSHX and FSJX

When starting, static monitoring of the STO feedback signal is sufficient for converters FSGX, FSHX and FSJX.

#### SIMATIC I/O modules

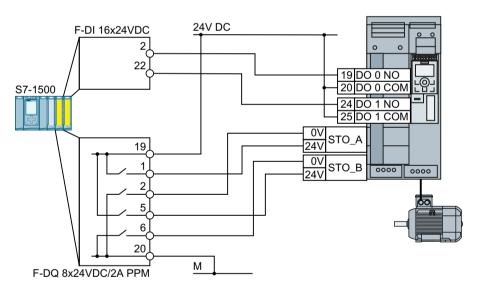
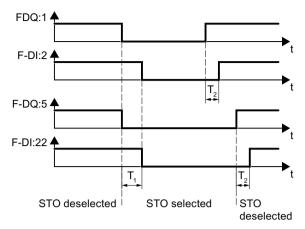




Figure 4-42 Connecting the SIMATIC S7-1500 in a control cabinet for FSD ... FSG



 $T_1 \ge 30 \text{ ms}$  In case of deviating feedback, the SIMATIC must select the STO function and

 $T_2 \ge 20 \text{ ms}$  indicate an error.

Figure 4-43 Dynamic monitoring of STO feedback signal for FSD ... FSG

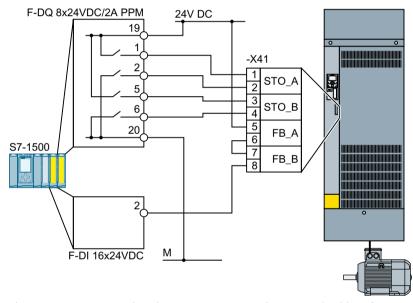



Figure 4-44 Connecting the SIMATIC S7-1500 in a control cabinet for FSGX, FSHX and FSJX

Static monitoring of the STO feedback signal when STO is selected is sufficient for converters FSGX, FSHX and FSJX.

#### **Further information**

Further information is provided on the Internet:

SIRIUS 3SK1 safety relays (<a href="https://support.industry.siemens.com/cs/ww/en/ps/16381/man">https://support.industry.siemens.com/cs/ww/en/ps/16381/man</a>)

SIRIUS 3SK2 Safety Relays (<a href="https://support.industry.siemens.com/cs/ww/en/view/109444336">https://support.industry.siemens.com/cs/ww/en/view/109444336</a>)

SIRIUS 3RK3 modular safety system manual (<a href="https://support.industry.siemens.com/cs/ww/en/view/26493228">https://support.industry.siemens.com/cs/ww/en/view/26493228</a>)



\$7-1500 (https://support.industry.siemens.com/cs/ww/en/view/86140384)



ET 200SP (https://support.industry.siemens.com/cs/ww/en/view/84133942)



ET 200pro (https://support.industry.siemens.com/cs/ww/en/view/22098524)

ET 200S (https://support.industry.siemens.com/cs/ww/en/view/12490437)

\$7-300 (https://support.industry.siemens.com/cs/ww/en/view/19026151)

#### 4.6.10 Wiring terminal strips





#### **WARNING**

### Electric shock due to unsuitable power supply

Death or serious injury can result when live parts are touched in the event of a fault.

For all connections and terminals of the electronic boards, only use power supplies that provide PELV (Protective Extra Low Voltage) or SELV (Safety Extra Low Voltage) output voltages.





#### **WARNING**

#### Electric shock due to unsuitable motor temperature evaluation system

Voltage flashovers to the electronics of the converter can occur in motors without safe electrical separation of the temperature sensors in accordance with IEC 61800-5-1 when the motor develops a fault.

- Install a temperature monitoring relay 3RS1... or 3RS2...
- Evaluate the temperature monitoring relay output using a digital input of the converter, e.g. using the "External fault" function.

You can find additional information about the temperature monitoring relay on the Internet:

Manual 3RS1 / 3RS2 temperature monitoring relays (https:// support.industry.siemens.com/cs/ww/en/view/54999309)

#### Note

# Malfunction caused by incorrect switching states as the result of diagnostic flows in the off state (logical state "0")

In contrast to mechanical switching contacts, e.g. emergency stop switches, diagnostic flows can also flow with semiconductor switches in the off state. If interconnection with digital inputs is faulty, the diagnostic flows can lead to incorrect switching states and thus to a malfunction of the drive.

- Observe the conditions for digital inputs and digital outputs specified in the relevant manufacturers documentation.
- Check the conditions of the digital inputs and digital outputs in regard to the flows in off state. If applicable, connect the digital inputs with suitably dimensioned, external resistors to protect against the reference potential of the digital inputs.

In order to install the converter in compliance with UL, you may only connect the DO 0 and DO 2 relay outputs of the Control Unit using copper wires approved for 75 °C.





#### WARNING

#### Electric shock due to damaged insulation

Damaged insulation of cables carrying hazardous voltages can cause a short circuit with cables carrying non-hazardous voltages. This can have the effect that parts of the converter or the installation carry an unexpectedly high voltage.

• Use only cables with double insulation for 230 V cables which you connect to the digital outputs of the converter.

#### **NOTICE**

#### Overvoltages for long signal cables

Using > 30 m long cables at the converter's digital inputs and 24 V power supply or inductive circuits at the digital inputs can lead to overvoltage. Overvoltages can damage the converter.

• Connect an overvoltage protection device between the terminal and the associated reference potential.

We recommend using the Weidmüller overvoltage protection terminal with designation MCZ OVP TAZ DIODE 24VDC.

Table 4-31 Permissible cables and wiring options

| Solid or finely stranded conductor                                      | Finely stranded conductor with non-insulated conductor end sleeve | Finely stranded conductor with partially insulated conductor end sleeve |  |  |
|-------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|
| 8 mm 0.5<br>1.5 mm <sup>2</sup> 0.5 mm <sup>2</sup> 0.5 mm <sup>2</sup> |                                                                   |                                                                         |  |  |
| Cables with twin end sleeves are not permissible.                       |                                                                   |                                                                         |  |  |

# Wiring the terminal strip in compliance with EMC

• If you use shielded cables, then you must connect the shield to the mounting plate of the control cabinet or with the shield support of the converter through a good electrical connection and a large surface area.

Further information about EMC-compliant wiring is available on the Internet:

EMC installation guideline (<a href="http://support.automation.siemens.com/WW/view/en/60612658">http://support.automation.siemens.com/WW/view/en/60612658</a>)

• Use the right shield connection plate for shield support and strain relief.

Control Units (Page 35)

#### 4.6.11 Connecting the temperature contact of the braking resistor



#### WARNING

# Fire caused by an unsuitable or incorrectly installed braking resistor

Using an unsuitable or improperly installed braking resistor can cause fires and smoke to develop. Fire and smoke development can cause severe personal injury or material damage.

- Only use braking resistors that are approved for the converter.
- Install the braking resistor in accordance with regulations.
- Monitor the temperature of the braking resistor.

#### **Procedure**

1. Connect the temperature monitoring system of the braking resistor (terminals T1 and T2 on the braking resistor) to a free digital input on the inverter.

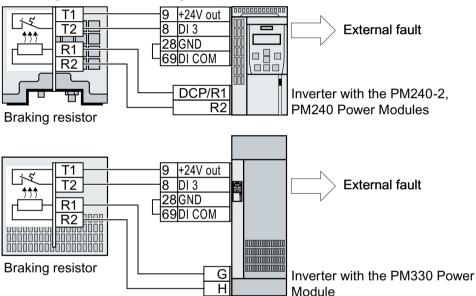



Figure 4-45 Example: Temperature monitoring of the braking resistor via digital input DI 3 on the **Control Unit** 

2. Define the function of the digital input used as an external fault with p2106. As an example with temperature monitoring via digital input DI 3: p2106 = 722.3.

The inverter monitors the braking resistor temperature.

#### 4.6.12 Fieldbus interfaces

#### Overview

The Control Units are available in different versions for communication with higher-level controls with the fieldbus interfaces listed as follows:

| Fieldbus         | Profiles   |                | S7 communica- | Control Unit  |
|------------------|------------|----------------|---------------|---------------|
|                  | PROFIdrive | PROFlenergy 1) | tion 1)       |               |
| PROFINET         | <b>✓ ✓</b> |                | ✓             | CU230P-2 PN   |
| EtherNet/IP 1)   |            |                |               |               |
| PROFIBUS         | <b>✓</b>   |                | ✓             | CU230P-2 DP   |
| USS 1)           |            |                |               | CU230P-2 HVAC |
| Modbus RTU 1)    |            |                |               |               |
| BACnet MS/TP 1)  |            |                |               |               |
| P1 <sup>1)</sup> |            |                |               |               |

<sup>&</sup>lt;sup>1)</sup> Information about these fieldbuses, profiles and communication types can be found in the Fieldbus Function Manual.

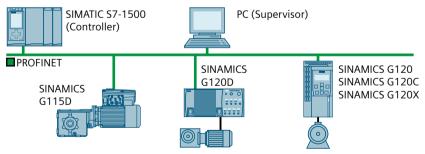
Overview of the manuals (Page 581)

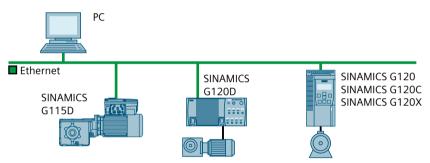
# 4.6.13 Connecting the converter to PROFINET

#### 4.6.13.1 Communication via PROFINET IO and Ethernet

You can either integrate the converter in a PROFINET network or communicate with the converter via Ethernet.

# The converter in PROFINET IO operation





Figure 4-46 The converter in PROFINET IO operation (examples)

The converter supports the following functions:

- RT
- IRT: The converter forwards the clock synchronism, but does not support clock synchronism.

- MRP: Media redundancy, impulsed with 200 ms. Precondition: Ring topology With MRP, you get an uninterrupted switchover if you set the failure monitoring time to a value > 200 ms.
- MRPD: Media redundancy, bumpless. Precondition: IRT and the ring topology created in the
- Diagnostic alarms in accordance with the error classes specified in the PROFIdrive profile.
- Device replacement without removable data storage medium: The replacement converter is assigned the device name from the IO controller, not from its memory card or from the programming device.
- Shared Device for converters that support PROFIsafe.

#### The converter as Ethernet node



The converter as Ethernet node (examples)

Further information on the operation as Ethernet nodes can be found in the Function Manual "Fieldbuses".



Overview of the manuals (Page 581)

#### **Further information on PROFINET**

Further information on PROFINET can be found on the Internet:

- PROFINET the Ethernet standard for automation (http://w3.siemens.com/mcms/ automation/en/industrial-communications/profinet/Pages/Default.aspx)
- PROFINET system description (https://support.industry.siemens.com/cs/ww/en/view/ 19292127)

#### 4.6.13.2 Connecting the PROFINET cable to the converter

#### **Procedure**

1. Integrate the converter in the bus system (e.g. ring topology) of the control using PROFINET cables and the two PROFINET sockets X150-P1 and X150-P2.

Overview of the interfaces (Page 118)

The maximum permitted cable length from the previous station and to the next one is 100 m.

2. Externally supply the converter with 24 VDC through terminals 31 and 32. The external 24 V supply is only required if communications with the control should also run when the line voltage is switched off.

You have connected the converter to the control system via PROFINET.

#### Communication with the control system even if the line voltage is switched off

You must supply the converter with 24 V DC at terminals 31 and 32 if you wish to maintain communication with the control system when the line voltage is switched off.

In the case of brief interruptions of the 24 V power supply, the converter may signal a fault without communications with the control system being interrupted.

#### 4.6.13.3 What do you have to set for communication via PROFINET?

### Configuring PROFINET communication in the I/O controller

You require the appropriate engineering system to configure PROFINET communication in the IO controller.

If required, load the GSDML file of the converter into the engineering system.



Installing GSDML (Page 160)

#### **Device** name

In addition to the MAC address and IP address, PROFINET also uses the device name to identify PROFINET devices (Device name). The device name must be unique across the PROFINET network.

To assign the device name, you need an engineering software, e.g. HW-Config.

The converter saves the device name on the inserted memory card.

#### IP address

In addition to the device name, PROFINET also uses an IP address.

You have the following options to specify the IP address of the converter:

- You specify the IP address using engineering software, e.g. via HW Config.
- The IO Controller assigns an IP address to the converter.

#### **Telegram**

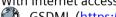
Set the same telegram in the converter as in the IO Controller. Interconnect the telegrams in the control program of the IO Controller with the signals of your choosing.



Drive control via PROFIBUS or PROFINET (Page 278)

### **Application examples**

You can find application examples for PROFINET communication on the Internet:


Controlling the speed of a SINAMICS G110M/G120/G120C/G120D with S7-300/400F via PROFINET or PROFIBUS, with Safety Integrated (via terminal) and HMI (https:// support.industry.siemens.com/cs/ww/en/view/60441457)

Controlling the speed of a SINAMICS G110M / G120 (Startdrive) with S7-1500 (TO) via PROFINET or PROFIBUS, with Safety Integrated (via terminal) and HMI (https:// support.industry.siemens.com/cs/ww/en/view/78788716)

#### 4.6.13.4 Installing GSDML

#### **Procedure**

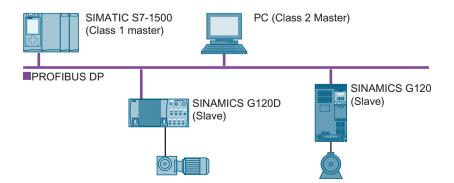
- 1. Save the GSDML to your PC.
  - With Internet access:



GSDML (https://support.industry.siemens.com/cs/ww/en/view/26641490)

– Without Internet access:

Insert a memory card into the converter.


Set p0804 = 12.

The converter writes the GSDML as a zipped file (\*.zip) into directory /SIEMENS/SINAMICS/ DATA/CFG on the memory card.

- 2. Unzip the GSDML file on your computer.
- 3. Import the GSDML into the engineering system of the controller.

You have now installed the GSDML in the engineering system of the controller.

#### 4.6.14 Connecting the converter to PROFIBUS



The PROFIBUS DP interface has the following functions:

- Cyclic communication
- Acyclic communication
- · Diagnostic alarms

General information on PROFIBUS DP can be found in the Internet:

- Information about PROFIBUS DP (<a href="http://www.automation.siemens.com/net/html\_76/support/printkatalog.htm">http://www.automation.siemens.com/net/html\_76/support/printkatalog.htm</a>)
- PROFIBUS user organization (<a href="http://www.profibus.com/downloads/installation-quide/">http://www.profibus.com/downloads/installation-quide/</a>)

### 4.6.14.1 Connecting the PROFIBUS cable to the converter

#### **Procedure**

- 1. Connect the converter to socket X126 via a PROFIBUS cable with the higher-level control.

  Overview of the interfaces (Page 118)

  The maximum permitted cable length to the previous station or the subsequent one is 100 m at a baud rate of 12 Mbit/s.
- 2. If necessary, connect a 24 V supply voltage to terminals 31 and 32. The external 24 V supply is only required if communication with the control may not be interrupted even if the line voltage is switched off.

You connected the converter with the control via PROFIBUS.

#### Communication with the control system even if the line voltage is switched off

You must supply the converter with 24 V DC at terminals 31 and 32 if you wish to maintain communication with the control system when the line voltage is switched off.

In the case of brief interruptions of the 24 V power supply, the converter may signal a fault without communications with the control system being interrupted.

### 4.6.14.2 What do you have to set for communication via PROFIBUS?

#### **Configuring PROFIBUS communication**

You require the appropriate engineering system to configure PROFIBUS communication in the PROFIBUS master.

If required, load the GSD file of the converter into the engineering system.

Installing the GSD (Page 162)

#### Setting the address

Set the address of the PROFIBUS device.

Set the PROFIBUS address (Page 162)

### Setting the telegram

Set the same telegram in the converter as in the PROFIBUS master. Interconnect the telegrams in the control program of the PROFIBUS master with the signals of your choosing.



Drive control via PROFIBUS or PROFINET (Page 278)

### **Application examples**

You can find application examples for PROFIBUS communication on the Internet:

Controlling the speed of a SINAMICS G110M/G120/G120C/G120D with S7-300/400F via PROFINET or PROFIBUS, with Safety Integrated (via terminal) and HMI (https:// support.industry.siemens.com/cs/ww/en/view/60441457)

Controlling the speed of a SINAMICS G110M / G120 (Startdrive) with S7-1500 (TO) via PROFINET or PROFIBUS, with Safety Integrated (via terminal) and HMI (https:// support.industry.siemens.com/cs/ww/en/view/78788716)

#### 4.6.14.3 Installing the GSD

#### **Procedure**

- 1. Save the GSD on your PC using one of the following methods.
  - With Internet access:
    - GSD (http://support.automation.siemens.com/WW/view/en/22339653/133100)
  - Without Internet access: Insert a memory card into the converter. Set p0804 = 12.

The converter writes the GSD as zipped file (\*.zip) into directory /SIEMENS/SINAMICS/ DATA/CFG on the memory card.

- 2. Unzip the GSD file on your computer.
- 3. Import the GSD in the engineering system of the controller.

You have now installed the GSD file in the engineering system of the controller.

#### 4.6.14.4 Set the PROFIBUS address.

Valid address area: 1 ... 125

You have the following options for setting the address:

• Using the address switch on the Control Unit:

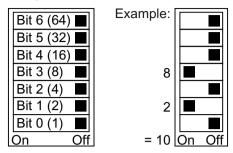
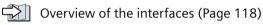




Figure 4-48 Address switch with example for bus address 10

The address switch has priority over the other settings.

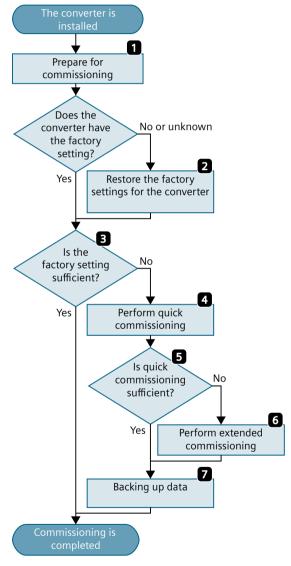
• With a commissioning tool, e.g. an operator panel, via parameter p0918 (factory setting: p0918 = 126).

It is only possible to change p0918 if an invalid address is set in the address switch.



# Setting the bus address

#### **Procedure**


- 1. Set the address using one of the subsequently listed options:
  - Via the address switch
  - With a commissioning tool via p0918
- 2. Switch off the converter power supply.
- 3. Wait until all LEDs on the converter are dark.
- 4. Switch on the converter power supply again. Your settings become effective after switching on.

The PROFIBUS address is set.

Commissioning

#### Commissioning guidelines 5.1

#### Overview



- 1. Define the requirements to be met by the drive for your application.
  - (Page 168)
- 2. Restore the factory settings of the converter if necessary.
  - (Page 209)
- 3. Check if the factory setting of the converter is sufficient for your application. (Page 172)
- 4. Set the following for quick commissioning of the drive:
  - The closed-loop motor control
    - The inputs and outputs
    - The fieldbus interface
  - (Page 174)
- 5. Check if additional converter functions are required for the application.
  - (Page 241)
- 6. If necessary, adapt the drive.
  - (Page 241)
- 7. Save your settings. (Page 219)

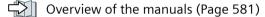
# 5.2 Tools to commission the converter

#### Operator panel

An operator panel is used to commission, troubleshoot and control the converter, as well as to back up and transfer the converter settings.



The Intelligent Operator Panel (IOP-2) can either be snapped onto a converter, or is available as handheld device with a connecting cable to the converter. The graphics-capable plain text display of the IOP-2 enables intuitive converter operation.


Additional information on the IOP-2 is available in the Internet:





The **Operator Panel BOP-2** for snapping onto the converter has a two-line display for diagnostics and operating the converter.

Operating Instructions of the BOP-2 and IOP-2 operator panels:

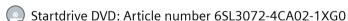


#### **Smart Access**



Smart Access is snapped onto a converter, and is a web server-based operating unit with wireless connection to a PC, tablet or smartphone. Smart Access is used to commission and maintain the converter.

You can find additional information about Smart Access on the Internet:


SINAMICS G120 Smart Access Operating Instructions (<a href="https://support.industry.siemens.com/cs/ww/en/view/109758122">https://support.industry.siemens.com/cs/ww/en/view/109758122</a>)

#### PC tools



**STARTER** and **Startdrive** are PC tools that are used to commission, troubleshoot and control the converter, as well as to back up and transfer the converter settings. You can connect the PC with the converter via USB or via the PROFIBUS / PROFINET fieldbus.

Connecting cable (3 m) between PC and converter: Article number 6SL3255-0AA00-2CA0



Startdrive, system requirements and download (<a href="https://support.industry.siemens.com/cs/ww/en/view/109760844">https://support.industry.siemens.com/cs/ww/en/view/109760844</a>)

Startdrive tutorial (<a href="http://support.automation.siemens.com/WW/view/en/73598459">http://support.automation.siemens.com/WW/view/en/73598459</a>)

STARTER, system requirements and download (<a href="http://support.automation.siemens.com/WW/view/en/26233208">http://support.automation.siemens.com/WW/view/en/26233208</a>)



Siemens respects the principles of data protection, in particular the data minimization rules (privacy by design).

Operating Instructions, 02/2023, FW 4.7 SP14, A5E34257946B AJ

5.2 Tools to commission the converter

For this product, this means:

The product does not process neither store any person-related data, only technical function data (e.g. time stamps). If the user links these data with other data (e.g. shift plans) or if he stores person-related data on the same data medium (e.g. hard disk), thus personalizing these data, he has to ensure compliance with the applicable data protection stipulations.

# 5.3 Preparing for commissioning

# 5.3.1 Collecting motor data

#### Data for a standard induction motor

Before starting commissioning, you must know the following data:

#### • Which motor is connected to the converter?

Note down the Article No. of the motor and the motor's nameplate data. If available, note down the motor code on the motor's nameplate.

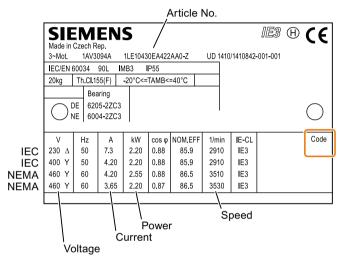



Figure 5-1 Example of the rating plate for a standard induction motor

#### In which region of the world is the motor to be used?

- Europe IEC: 50 Hz [kW]
- North America NEMA: 60 Hz [hp] or 60 Hz [kW]

# • How is the motor connected?

Pay attention to the connection of the motor (star connection [Y] or delta connection  $[\Delta]$ ). Note the appropriate motor data for connecting.

# Data for a synchronous reluctance motor

Before starting commissioning, you must know the following data:

• Which motor is connected to the converter?

Note down the motor code on the type plate of the motor.

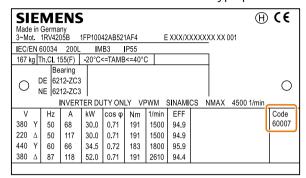



Figure 5-2 Example of a type plate for a reluctance motor

- In which region of the world is the motor to be used?
  - Europe IEC: 50 Hz [kW]
  - North America NEMA: 60 Hz [hp] or 60 Hz [kW]
- · How is the motor connected?

Pay attention to the connection of the motor (star connection [Y] or delta connection  $[\Delta]$ ). Note the appropriate motor data for connecting.

#### 5.3 Preparing for commissioning

### 5.3.2 Forming DC link capacitors

#### Description

You may have to reform the DC link capacitors if the Power Module has been stored for more than one year. When the converter is operational, DC link capacitors that have not been formed can be damaged.

Table 5-1 The forming duration depends on how long the converter was stored for

| Storage time from the date of manufacture | Recommended forming duration |
|-------------------------------------------|------------------------------|
| 1 – 2 years                               | 1 hour                       |
| 2 – 3 years                               | 2 hours                      |
| > 3 years                                 | 8 hours                      |

The production date of the Power Module is coded in the 3rd and 4th digit of the serial number on the rating plate: "S X -- 3 4 X X X..."

Table 5-2 Production year and month

| Digit ③ | Year of manufacture | Digit 4 | Month of manufacture |
|---------|---------------------|---------|----------------------|
| D       | 2013                | 1 9     | January September    |
| E       | 2014                | 0       | October              |
| F       | 2015                | N       | November             |
| Н       | 2016                | D       | December             |
| J       | 2017                |         |                      |
| K       | 2018                |         |                      |
| L       | 2019                |         |                      |
| М       | 2020                |         |                      |

### Form DC Link of the PM330 power module

The "Forming the DC link" firmware function is only possible for the PM330 power module.

#### **Procedure**

- 1. Set p0010 = 2.
- 2. Set the forming duration p3380. For p3380 > 0, with alarm A07391, the converter signals that at the next on command, DC link forming starts.
- 3. Switch on the motor, e.g. from an inserted operator panel.
- 4. Wait for the forming time to elapse. r3381 indicates the remaining time.

  If the line voltage is switched off before forming has been completed, then you must again form the DC link.
- 5. The converter sets p3380 = 0.
- 6. Set p0010 = 0.

You have formed the DC link.

#### **Parameter**

| Parameter                          | Descr                        | iption                                                                          |  |  |
|------------------------------------|------------------------------|---------------------------------------------------------------------------------|--|--|
| p0010                              | Drive                        | e commissioning parameter filter (factory setting: 0)                           |  |  |
|                                    | 0: Rea                       | dy                                                                              |  |  |
|                                    | 2: Pov                       | ver unit commissioning                                                          |  |  |
| p3380                              | DC lir                       | nk forming, forming duration (factory setting: 0 h)                             |  |  |
|                                    | p3380                        | 0 = 0 deactivates the function.                                                 |  |  |
|                                    | I .                          | forming duration is changed while forming, then forming restarts with the modi- |  |  |
| r3381                              | DC lir                       | ink forming, remaining time [h]                                                 |  |  |
|                                    | Rema                         | maining forming time.                                                           |  |  |
| r3382                              | DC link forming, status word |                                                                                 |  |  |
|                                    | .00                          | 1 signal: Forming activated                                                     |  |  |
| .01 1 signal: Forming active       |                              | 1 signal: Forming active                                                        |  |  |
| .02 1 signal: Forming completed    |                              | 1 signal: Forming completed                                                     |  |  |
|                                    | .03 1 signal: Forming faulty |                                                                                 |  |  |
| The converter signals fault F07390 |                              |                                                                                 |  |  |

# Forming the DC link of PM240-2 and PM240P-2 Power Modules

You form the DC link capacitors by supplying the converter with a line voltage of  $\leq$  100 % of the rated voltage for a defined time.

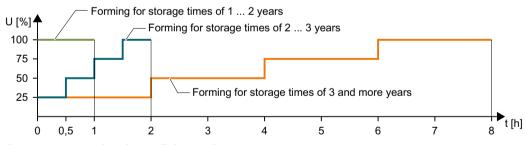



Figure 5-3 Forming the DC-link capacitors

# Form DC Link of other power modules

Formation of the DC link capacitors is not required for the following power modules even after a lengthy period of storage.

- PM230
- PM250

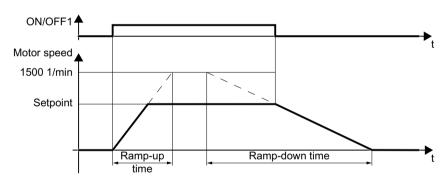
#### 5.3.3 Converter factory setting

#### Motor

In the factory, the converter is set for an induction motor matching the rated power of the Power Module.

#### Converter interfaces

The inputs and outputs and the fieldbus interface of the converter have specific functions when set to the factory settings.




Factory interface settings (Page 122)

### Switching the motor on and off

The converter is set in the factory as follows:

- After the ON command, the motor accelerates within the ramp-up time (referred to 1500 rpm) to its speed setpoint.
- After the OFF1 command, the motor brakes down to standstill with the ramp-down time.
- The negative direction of rotation is inhibited



With PM330 Power Modules: 20 s Ramp-up time: •

For all other Power Modules: 10 s

Ramp-down With PM230 and PM330 Power Modules: 30 s

time: For all other Power Modules: 10 s

Figure 5-4 Switching on, switching off and reversing the motor in the factory setting

The ramp-up and ramp-down times define the maximum motor acceleration when the speed setpoint changes. The ramp-up and ramp-down times are derived from the time between motor standstill and the maximum speed, or between the maximum speed and motor standstill.

### Traverse the motor in the jog mode

For a converter with PROFIBUS or PROFINET interface, operation can be switched over using digital input DI 3. The motor is either switched on and off via the fieldbus – or operated in the jog mode via its digital inputs.

For a control command at the respective digital input, the motor rotates with  $\pm 150$  rpm. The same ramp-up and ramp-down times as described above apply.

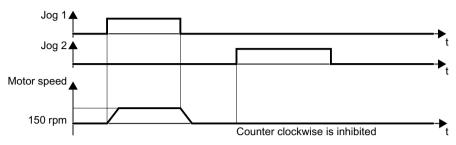



Figure 5-5 Jogging the motor in the factory setting

# Minimum and maximum speed

- Minimum speed factory setting 0 [rpm]
   After the selection of a motor, during the quick commissioning, the converter sets the minimum speed to 20% of the rated speed.
   The minimum speed is the lowest speed of the motor independent of the speed setpoint.
- Maximum speed factory setting 1500 [rpm]
   The converter limits the motor speed to this value.

### Operate the motor in the factory setting

We recommend that you execute quick commissioning. For quick commissioning, you must adapt the converter to the connected motor by setting the motor data in the converter.

For basic applications, you can try to operate the drive with a rated power < 18.5 kW without any other commissioning steps. Check whether the control quality of the drive without commissioning is adequate for the requirements of the application.

5.4 Quick commissioning using the BOP-2 operator panel

# 5.4 Quick commissioning using the BOP-2 operator panel

# 5.4.1 Inserting the BOP-2

# Plugging on an operator panel

#### Procedure



- 1. Locate the lower edge of the Operator Panel into the matching recess of the Control Unit.
- 2. Plug the Operator Panel onto the converter until the latch audibly engages.

The operator panel is plugged onto the Control Unit.

The operator panel is ready for operation when you connect the converter to the power supply.

# 5.4.2 Starting quick commissioning

#### Overview

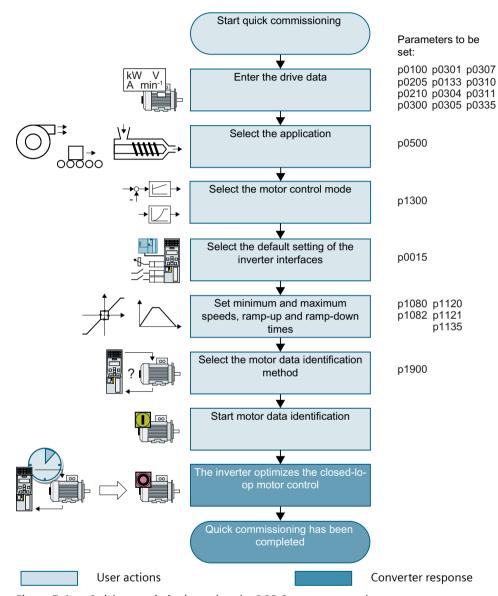



Figure 5-6 Quick commissioning using the BOP-2 operator panel

### Requirement

The following requirements apply:



- The supply voltage is switched on.
- The operator panel displays setpoints and actual values.

5.4 Quick commissioning using the BOP-2 operator panel

#### **Function description**

#### **Procedure**



Press the ESC key.



Press one of the arrow keys until the BOP-2 displays menu SETHP.



To start quick commissioning, press the OK key in menus F !!!P.



We recommend resetting the converter to the factory setting before commencing quick commissioning.

Should you wish to change the default setting of the interfaces, the converter must be reset to the factory settings now.

Proceed as follows:

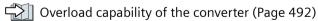
- 1. Press the OK key.
- 2. Switch over the display using an arrow key: ¬□□→ЧӺҔ
- 3. Press the OK key.



Whether the converter offers the selection of the application class, depends on the Power Module being used:

- PM230 or PM250 Power Module: The converter skips the step ∄₽₽↓.
- PM240-2, PM240P-2 or PM330 Power Modules:
   select the application class:
   Quick commissioning with application classes (Page 181)




Select the motor standard:

- KW 50HZIEC
- 片户 50 H 7 NEMA, US units
- 岩川 長日日7NEMA, SI units



Specify the overload capability of the converter:

- 景音景 景景 Duty cycle with "high overload"
- | []|| | Duty cycle with "low overload"





Set the converter supply voltage.



Select the motor type. If a 5-digit motor code is stamped on the motor rating plate, select the corresponding motor type with motor code.

Motors without motor code stamped on the rating plate:

- ; N ] [ ] Third-party induction motor
- !! | N | 1LE1, 1LG6, 1LA7, 1LA9 induction motors

Motors with motor code stamped on the rating plate:

- \P[ \ \N] 1PC1 induction motor
- \FP \ Reluctance motor

Depending on the converter, the motor list in BOP-2 can deviate from the list shown above.



If you have selected a motor type with motor code, you must now enter the motor code. The converter assigns the following motor data corresponding to the motor code.

If you do not know the motor code, then you must set the motor code = 0, and enter motor data from p0304 and higher from the rating plate.



87 Hz motor operation The BOP-2 only indicates this step if you selected IEC as the motor standard (P100 = 4 Hz 5 GHz).



Rated motor voltage



Rated motor current



Rated motor power



Rated motor frequency



Rated motor speed



Motor cooling:

- SF! F: Natural cooling
- F□R[E]: Forced-air cooling
- [ | [] [ ] : Liquid cooling
- N∏ FBN: Without fan



Select the appropriate application:

- "FF 577 In all applications that do not fit the other setting options.
- P!!MP FRN Applications involving pumps and fans
- 5117 Applications with short ramp-up and ramp-down times.

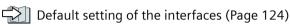
#### 5.4 Quick commissioning using the BOP-2 operator panel

- PUMP []H 7 Applications involving pumps and fans with optimized efficiency. The setting only makes sense for steady-state operation with slow speed changes. We recommend setting [ [ 5 7 ]] if load surges during operation cannot be ruled out.
- 1/ | [] [] Applications with high break loose torque

The selection option depends on the Power Module being used. There is no selection option for PM230 Power Modules.



### Select the control mode:


- #F | | W: U/f control with linear characteristic
- #F | | F: Flux current control (FCC)
- #F NIIR T: U/f control with square-law characteristic

| Flux current control (FCC)  * Typical settling time after a speed change: 100 ms 200 ms  * Typical settling time after a load surge: 500 ms  * Typical settling time after a load surge: 500 ms  * Typical settling time after a load surge: 200 ms  * Typical settling time after a load surge: 200 ms  * Typical settling time after a load surge: 200 ms  * Typical settling time after a load surge: 200 ms  * Typical settling time after a load surge: 200 ms  * Typical settling time after a load surge: 200 ms  * Typical settling time after a speed change: 200 ms  * Typical settling time after a load surge: 200 ms  * Typical settling time after a speed change: 200 ms  * Typical settling time after a speed change: 200 ms  * Typical settling time after a speed change: 200 ms  * Typical settling time after a speed change: 200 ms  * Typical settling time after a speed change: 200 ms  * Typical settling time after a speed change: 200 ms  * Typical settling time after a speed change: 200 ms  * Typical settling time after a speed change: 200 ms  * Typical settling time after a speed change: 200 ms  * Typical settling time after a speed change: 200 ms  * Typical settling time after a load surge: 200 ms  * Typical settling time after a speed change: 200 ms  * Typical settling time after a load surge: 200 ms  * Typical settling time after a load surge: 200 ms  * Typical settling time after a load surge: 200 ms  * The vector control controls and limits the moto torque 200 ms  * The vector control controls and limits the moto torque 200 ms  * The vector control controls and limits the motor dorque 200 ms  * The vector control controls and limits the motor torque 200 ms  * The vector control controls and limits the motor torque 200 ms  * The vector control controls and limits the motor torque 200 ms  * The vector control controls and limits the motor torque 200 ms  * The vector control controls and limits the motor torque 200 ms  * The vector control controls and limits the motor torque 200 ms  * The vector control controls and li |                                     |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Typical settling time after a speed change: 100 ms 200 ms Typical settling time after a load surge: 500 ms Typical settling time after a load surge: 200 ms Typical settling time after a load surge: 200 ms Typical settling time after a load surge: 200 ms Typical settling time after a load surge: 200 ms  Typical settling time after a load surge: 200 ms  Typical settling time after a speed change: 100 ms Typical settling time after a speed change: 100 ms Typical settling time after a speed change: 100 ms Typical settling time after a speed change: 100 ms Typical settling time after a speed change: 100 ms Typical settling time after a speed change: 100 ms Typical settling time after a speed change: 100 ms Typical settling time after a speed change: 100 ms Typical settling time after a speed change: 100 ms Typical settling time after a speed change: 100 ms Typical settling time after a speed change: 100 ms Typical settling time after a speed change: 100 ms Typical settling time after a load surge: 200 ms Typical settling time after a load surge: 200 ms Typical settling time after a load surge: 200 ms  Typical settling time after a load surge: 200 ms  Typical settling time after a load surge: 200 ms  Typical settling time after a load surge: 200 ms  Typical settling time after a load surge: 200 ms  Typical settling time after a load surge: 200 ms  Typical settling time after a load surge: 200 ms  Typical settling time after a load surge: 200 ms  Typical settling time after a load surge: 200 ms  Typical settling time after a load surge: 200 ms  Typical settling time after a load surge: 200 ms  Typical settling time after a load surge: 200 ms  Typical settling time after a load surge: 200 ms  Typical settling time after a load surge: 200 ms  Typical settling time after a load surge: 200 ms  Typical settling time after a load surge: 200 ms  Typical settling time after a load surge: 200 ms  Torque accuracy that can be achieved: ± 5 % for 15 % 100 % of the rated speed  We recommend vector control for the followin     | Control mode                        | istic                                                                             | Sensorless vector control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| The control mode is suitable to address the following requirements:  Motor power ratings < 45 kW  Ramp-up time 0 → rated speed (depending on the motor power rating): 1 s (0.1 kW) 10 s (45 kW)  Applications with steady load torque without load surges  The control mode is insensitive with respect to imprecise setting of the motor data  The vector control controls and limits the motor torque  Torque accuracy that can be achieved: ± 5 % for 15 % 100 % of the rated speed  We recommend vector control for the following applications:  Motor power ratings > 45 kW  Application with steady load torque without load surges  The control mode is insensitive with respect to imprecise setting of the motor data  Pumps, fans, and compressors with flow characteristic  Motors that can  Pumps, fans, and compressors with flow characteristic  Induction motors  Induction, synchronous and reluctance motors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | Flux current control (FCC)                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ples         acteristic         chines           Motors that can         Induction motors         Induction, synchronous and reluctance motors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Closed-loop control characteristics | <ul> <li>Typical settling time after a load surge: 500 ms</li> <li>Load</li></ul> | <ul> <li>Typical settling time after a load surge: 200 ms</li> <li>Load Speed Speed</li></ul> |
| , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Application examples                | ·                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Motors that can be operated         | Induction motors                                                                  | Induction, synchronous and reluctance motors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Control mode                               | U/f control with linear or square-law character-<br>istic        | Sensorless vector control                |
|--------------------------------------------|------------------------------------------------------------------|------------------------------------------|
|                                            | Flux current control (FCC)                                       |                                          |
| Power Modules<br>that can be oper-<br>ated | No restrictions                                                  |                                          |
| Max. output frequency                      | 550 Hz                                                           | 240 Hz<br>150 Hz with PM330 Power Module |
| Commissioning                              | Contrary to vector control, no speed controller<br>has to be set |                                          |



Select the default setting for the interfaces of the converter that is suitable for your application.





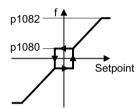



Figure 5-7 Minimum and maximum motor frequency

# Δ

# CAUTION

# Material damage caused by unexpected acceleration of the motor

Depending on the Power Module, the converter sets the minimum frequency p1080 to 20 % of the maximum frequency. Also for setpoint = 0, the motor accelerates for p1080 > 0 to the minimum frequency after switching on the motor. An unexpected acceleration of the motor can cause material damage.

• If the application requires a minimum frequency = 0, then set p1080 = 0.



Scaling of analog input 0



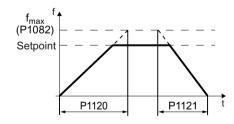



Figure 5-8 Ramp-up and ramp-down time of the motor



Ramp-down time for the OFF3 command



Motor data identification: Select the method which the converter uses to measure the data of the connected motor:

- ∏FF: Motor data is not measured.
- 5 7 12 Part: Recommended setting: Measure the motor data at standstill and with the motor rotating. The converter switches off the motor after the motor data identification has been completed.
- 57; L: Measure the motor data at standstill. The converter switches off the motor after the motor data identification has been completed.

  Select this setting if one of the following cases is applicable:

  - You have selected U/f control as control mode, e.g.¦; F | ; Nor¦; F ∏; R ∏
- Ray: Measure the motor data while the motor is rotating. The converter switches off the motor after the motor data identification has been completed.

FINISH

Complete the data entry for quick commissioning as follows:

- 2. Press the OK key.

You have entered all of the data that is necessary for the quick commissioning of the converter.

# 5.4.3 Quick commissioning with application classes

#### 5.4.3.1 Overview



Figure 5-9 Quick commissioning using the BOP-2 operator panel

# 5.4.3.2 Select the application class

#### Overview

When selecting an application class, the converter assigns the appropriate settings to the motor control.

If you do not set the application class, but instead setting "Expert", then you must define the appropriate closed-loop motor control setting.

# Requirement

You are using one of the following Power Modules:

- PM240-2
- PM240P-2
- PM330

If you are using a different Power Module, then BOP-2 does not show step ### #PPL. Perform commissioning without application class.

Starting quick commissioning (Page 175)

### **Function description**



Select one of the application classes or setting "Expert":

- 5↑AN 🤄 RP 🖟 Standard Drive Control (Page 184)
- 기식사무M; [ Dynamic Drive Control (Page 186)
- EXPERT ☐ Expert (Page 189)

| Application class                          | Standard Drive Control                                                                                                                                                                                                                                                                                                                       | Dynamic Drive Control                                                                                                                                              |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Properties                                 | <ul> <li>Typical settling time after a speed change: 100 ms 200 ms</li> <li>Typical settling time after a load surge: 500 ms</li> <li>Load</li></ul>                                                                                                                                                                                         | <ul> <li>Typical settling time after a speed change:     &lt; 100 ms</li> <li>Typical settling time after a load surge: 200 ms</li> <li>Load</li></ul>             |
| Application examples                       | Pumps, fans, and compressors with flow characteristic                                                                                                                                                                                                                                                                                        | Pumps and compressors with displacement ma-<br>chines                                                                                                              |
| Power Modules<br>that can be oper-<br>ated | PM240-2, PM240P-2                                                                                                                                                                                                                                                                                                                            | PM240-2, PM240P-2 PM330                                                                                                                                            |
| Max. output frequency                      | 550 Hz                                                                                                                                                                                                                                                                                                                                       | 240 Hz 150 Hz                                                                                                                                                      |
| Motors that can be operated                | Induction motors                                                                                                                                                                                                                                                                                                                             | Induction, synchronous and reluctance motors                                                                                                                       |
| Commissioning                              | <ul> <li>Unlike "Dynamic Drive Control," no speed controller needs to be set</li> <li>When compared to "Expert":         <ul> <li>Simplified commissioning using predefined motor data</li> <li>Reduced number of parameters</li> </ul> </li> <li>"Standard Drive Control" is preset for Power Modules, frame size A frame size C</li> </ul> | <ul> <li>Reduced amount of parameters when compared to "Expert"</li> <li>"Dynamic Drive Control" is preset for Power Modules frame size D frame size JX</li> </ul> |

#### 5.4.3.3 Standard Drive Control

# **Function description**



Select the motor standard:

- KW SOHZIEC
- HP 50H7 NEMA, US units
- 片片 日日日7 NEMA, SI units



Set the converter supply voltage.



Select the motor type. If a 5-digit motor code is stamped on the motor rating plate, select the corresponding motor type with motor code.

Motors without motor code stamped on the rating plate:

- // / / ILE1, 1LG6, 1LA7, 1LA9 induction motors

Motors with motor code stamped on the rating plate:

- ILE | | N ] | | 100 1LE1 induction motor . 9
- \P[ \ \N] 1PC1 induction motor
- ╎P ႘ 뮤 ː ː ː ː 1 PH8 induction motor
- <code> !FP ! Reluctance motor</code>

Depending on the converter, the motor list in BOP-2 can deviate from the list shown above.



If you have selected a motor type with motor code, you must now enter the motor code. The converter assigns the following motor data corresponding to the motor code.

If you do not know the motor code, then you must set the motor code = 0, and enter motor data from p0304 and higher from the rating plate.



87 Hz motor operation The BOP-2 only indicates this step if you selected IEC as the motor standard (P100 = 4 M - 5 GHz).



Rated motor voltage



Rated motor current



Rated motor power



Rated motor frequency



Rated motor speed



Motor cooling:

- SF! F Natural cooling
- FNRFF Therced-air cooling
- | | []]|| | | Liquid cooling
- N☐ FRN Without fan



Select the basic setting for the motor control:

- #FF 577 Constant load
- PIIMP FAN Speed-dependent load



Select the default setting for the interfaces of the converter that is suitable for your application.



Default setting of the interfaces (Page 124)





# **CAUTION**

# Material damage caused by unexpected acceleration of the motor

Depending on the Power Module, the converter sets the minimum frequency p1080 to 20 % of the maximum frequency. Also for setpoint = 0, the motor accelerates for p1080 > 0 to the minimum frequency after switching on the motor. An unexpected acceleration of the motor can cause material damage.

If the application requires a minimum frequency = 0, then set p1080 = 0.

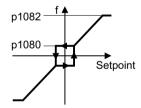



Figure 5-10 Minimum/maximum frequency of the motor



Scaling of analog input 0



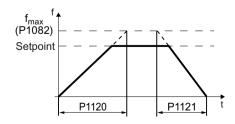



Figure 5-11 Ramp-up and ramp-down time of the motor



Ramp-down time after the OFF3 command



Motor data identification: Select the method which the converter uses to measure the data of the connected motor:

- ## F No motor data identification
- 5 7 11 Ray Measure the motor data at standstill and with the motor rotating.
  The converter switches off the motor after the motor data identification has been completed.
- 57 11 Recommended setting: Measure the motor data at standstill.

  The converter switches off the motor after the motor data identification has been completed.

  Select this setting if the motor cannot rotate freely.
- Rag 7 Measure the motor data while the motor is rotating.
  The converter switches off the motor after the motor data identification has been completed.
- 5 T RT @P Setting the same as 5 T L R @ T After the motor data identification, the motor accelerates to the current setpoint.



Complete the data entry for quick commissioning as follows:

- 1. Switch over the display using an arrow key:  $\Pi_{i} \rightarrow Y \in S$
- 2. Press the OK key.

You have entered all of the data that is necessary for the quick commissioning of the converter.

#### 5.4.3.4 Dynamic Drive Control

# **Function description**



Select the motor standard:

- KW 50H7: IEC
- 片戶 后门片 ?: NEMA, US units
- 呂景 등급유 7: NEMA, SI units



Set the converter supply voltage.



Select the motor type. If a 5-digit motor code is stamped on the motor rating plate, select the corresponding motor type with motor code.

Motors without motor code stamped on the rating plate:

- # ##: 1LE1, 1LG6, 1LA7, 1LA9 induction motors

Motors with motor code stamped on the rating plate:

- ILE | | N ] | | | 1LE1 induction motor . 9
- IP[ | | N]] 1PC1 induction motor
- \FP \ Reluctance motor

Depending on the converter, the motor list in BOP-2 can deviate from the list shown above.



If you have selected a motor type with motor code, you must now enter the motor code. The converter assigns the following motor data corresponding to the motor code.

If you do not know the motor code, then you must set the motor code = 0, and enter motor data from p0304 and higher from the rating plate.



87 Hz motor operation The BOP-2 only indicates this step if you selected IEC as the motor standard (P100 =  $KW = S\Pi H T$ ).



Rated motor voltage



Rated motor current



Rated motor power



Rated motor frequency



Rated motor speed



Motor cooling:

- SF! F: Natural cooling
- F□R[E]: Forced-air cooling
- | | []|| ]: Liquid cooling
- N∏ FBN: Without fan



Select the basic setting for the motor control:

- [L L ]] P: Recommended setting for applications with short ramp-up and ramp-down times.

The BOP-2 does not display this step for a PM330 Power Module.



Select the default setting for the interfaces of the converter that is suitable for your application.

Default setting of the interfaces (Page 124)





# **CAUTION**

#### Material damage caused by unexpected acceleration of the motor

Depending on the Power Module, the converter sets the minimum frequency p1080 to 20 % of the maximum frequency. Also for setpoint = 0, the motor accelerates for p1080 > 0 to the minimum frequency after switching on the motor. An unexpected acceleration of the motor can cause material damage.

• If the application requires a minimum frequency = 0, then set p1080 = 0.

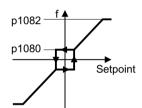



Figure 5-12 Minimum/maximum frequency of the motor



Scaling of analog input 0



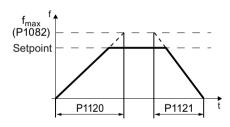



Figure 5-13 Ramp-up and ramp-down time of the motor



Ramp-down time for the OFF3 command



Motor data identification: Select the method which the converter uses to measure the data of the connected motor:

- ∏FF: Motor data is not measured

The converter switches off the motor after the motor data identification has been completed.

• 5 7 1 L: Default setting: Measure the motor data at standstill.

The converter switches off the motor after the motor data identification has been completed.

Select this setting if the motor cannot rotate freely.

- Rar: Measure the motor data while the motor is rotating.
  The converter switches off the motor after the motor data identification has been completed.
- 5 T PT []P: Setting the same as 5 T T P[] T After the motor data identification, the motor accelerates to the current setpoint.



Complete the data entry for quick commissioning as follows:

- 1. Switch over the display using an arrow key:  $\Box 
  \Omega$
- 2. Press the OK key.

You have entered all of the data that is necessary for the quick commissioning of the converter.

### 5.4.3.5 **Expert**

### **Function description**



Select the motor standard:

- KW 50H7IEC
- 片户 片门片 7 NEMA, US units
- 岩景 長日日7 NEMA, SI units



Specify the overload capability of the converter:

- 뭐! [ [ ] L' | Duty cycle with "high overload"
- [[], [], Duty cycle with "low overload"

Overload capability of the converter (Page 492)



Set the converter supply voltage.



Select the motor type. If a 5-digit motor code is stamped on the motor rating plate, select the corresponding motor type with motor code.

Motors without motor code stamped on the rating plate:

- ; N THIE T Third-party induction motor
- # # # 1LE1, 1LG6, 1LA7, 1LA9 induction motors

Motors with motor code stamped on the rating plate:

- ILE | | N ] | | 100 1LE1 induction motor . 9
- \P[ | |N∏ 1PC1 induction motor
- !F₽!Reluctance motor

Depending on the converter, the motor list in BOP-2 can deviate from the list shown above.



If you have selected a motor type with motor code, you must now enter the motor code. The converter assigns the following motor data corresponding to the motor code.

If you do not know the motor code, then you must set the motor code = 0, and enter motor data from p0304 and higher from the rating plate.



87 Hz motor operation The BOP-2 only indicates this step if you selected IEC as the motor standard (P100 =  $\frac{1}{12}$   $\frac$ 



Rated motor voltage



Rated motor current



Rated motor power



Rated motor frequency



Rated motor speed



Motor cooling:

- SF! F: Natural cooling
- FMRFF 7: Forced-air cooling
- | | []]] | ]: Liquid cooling
- N∏ FRN: Without fan



Select the appropriate application:

- #FF 577 In all applications that do not fit the other setting options.
- P!!MP FRN Applications involving pumps and fans
- 51 1/ [ ] H 7 Applications with short ramp-up and ramp-down times.
- # L [ ] Applications with high break loose torque



Select the control mode:

- #F | | W: U/f control with linear characteristic
- #F | | | F: Flux current control (FCC)
- 5₽1 N FN: Sensorless vector control

| Control mode                               | U/f control with linear or square-law character-<br>istic                                                                                            | Sensorless vector control                                                                                                                              |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            | Flux current control (FCC)                                                                                                                           |                                                                                                                                                        |
| Closed-loop control characteristics        | <ul> <li>Typical settling time after a speed change: 100 ms 200 ms</li> <li>Typical settling time after a load surge: 500 ms</li> <li>Load</li></ul> | <ul> <li>Typical settling time after a speed change:     &lt; 100 ms</li> <li>Typical settling time after a load surge: 200 ms</li> <li>Load</li></ul> |
| Application examples                       | Pumps, fans, and compressors with flow characteristic                                                                                                | Pumps and compressors with displacement ma-<br>chines                                                                                                  |
| Motors that can be operated                | Induction motors                                                                                                                                     | Induction, synchronous and reluctance motors                                                                                                           |
| Power Modules<br>that can be oper-<br>ated | No res                                                                                                                                               | strictions                                                                                                                                             |
| Max. output frequency                      | 550 Hz                                                                                                                                               | 240 Hz<br>150 Hz with PM330 Power Module                                                                                                               |
| Commissioning                              | Contrary to vector control, no speed controller<br>has to be set                                                                                     |                                                                                                                                                        |
|                                            | 1                                                                                                                                                    |                                                                                                                                                        |



Select the default setting for the interfaces of the converter that is suitable for your application.

Default setting of the interfaces (Page 124)



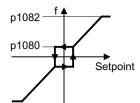



Figure 5-14 Minimum and maximum motor frequency



# CAUTION

#### Material damage caused by unexpected acceleration of the motor

Depending on the Power Module, the converter sets the minimum frequency p1080 to 20 % of the maximum frequency. Also for setpoint = 0, the motor accelerates for p1080 > 0 to the minimum frequency after switching on the motor. An unexpected acceleration of the motor can cause material damage.

• If the application requires a minimum frequency = 0, then set p1080 = 0.



Scaling of analog input 0



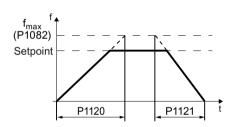



Figure 5-15 Ramp-up and ramp-down time of the motor



Ramp-down time for the OFF3 command



Motor data identification: Select the method which the converter uses to measure the data of the connected motor:

- \[
   \int F: Motor data is not measured.
   \]
   \[
   \]
- 5711 PDT: Recommended setting: Measure the motor data at standstill and with the motor rotating. The converter switches off the motor after the motor data identification has been completed.
- 5 7 1 1 1: Measure the motor data at standstill. The converter switches off the motor after the motor data identification has been completed.

  Select this setting if one of the following cases is applicable:

  - You have selected U/f control as control mode, e.g., F | | | Nor, F |
- Part: Measure the motor data while the motor is rotating. The converter switches off the motor after the motor data identification has been completed.

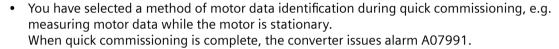
FINISH

Complete the data entry for quick commissioning as follows:

- 1. Switch over the display using an arrow key:  $\Box \Box \rightarrow 
  \Box$
- 2. Press the OK key.

You have entered all of the data that is necessary for the quick commissioning of the converter.

# 5.4.4 Identifying the motor data and optimizing the closed-loop control


#### Overview

Using the motor data identification, the converter measures the data of the stationary motor. In addition, based on the response of the rotating motor, the converter can determine a suitable setting for the vector control.

To start the motor data identification routine, you must switch-on the motor via the terminal strip, fieldbus or from the operator panel.

### Identifying the motor data and optimizing the closed-loop control

#### Requirements





• The motor has cooled down to the ambient temperature.

An excessively high motor temperature falsifies the motor data identification results.



# Unexpected machine motion while the motor data identification is in progress

For the stationary measurement, the motor can make several rotations. The rotating measurement accelerates the motor up to the rated speed. Secure dangerous machine parts before starting motor data identification:

- Before switching on, ensure that nobody is working on the machine or located within its working area.
- Secure the machine's work area against unintended access.
- Lower suspended loads to the floor.

#### **Procedure**

Enable the control priority via the operator panel.



The BOP-2 displays the symbol indicating manual operation.

Switch on the motor.



During motor data identification  $M \square \uparrow - \uparrow \square$  flashes on the BOP-2.



If the converter again outputs alarm A07991, then it waits for a new ON command to start the rotating measurement.

If the converter does not output alarm A07991, switch off the motor as described below, and switch over the converter control from HAND to AUTO.

Switch on the motor to start the rotating measurement.



During motor data identification Market 1 and flashes on the BOP-2.

The motor data identification can take up to 2 minutes depending on the rated motor power.

Depending on the setting, after motor data identification has been completed, the converter switches off the motor - or it accelerates it to the setpoint.

If required, switch off the motor.

Disable the control priority via the operator panel.

You have completed the motor data identification.

Quick commissioning has been completed once the motor data identification has been successfully completed.

# 5.5 Quick commissioning with a PC.

The screen forms that are shown in this manual show generally valid examples. The number of setting options available in screen forms depends on the particular converter type.

#### Overview

To be able to perform quick commissioning using a PC, you need to do the following:

- 1. Creating a project
- 2. Integrating the converter into the project
- 3. Go online and start the quick commissioning

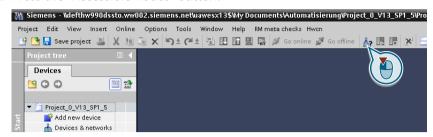
# 5.5.1 Creating a project

# Creating a new project

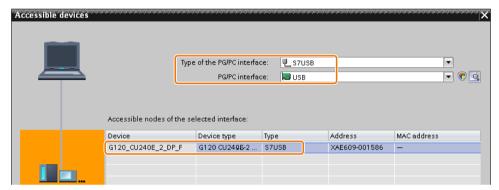
#### **Procedure**

- 1. Start the Startdrive commissioning software.
- 2. In the menu, select "Project" → "New...".
- 3. Specify a name of your choice for the project.

You have created a new project.


# 5.5.2 Transfer converters connected via USB into the project

# Integrating the converter into the project


#### **Procedure**

- 1. Switch on the converter power supply.
- 2. First insert a USB cable into your PC and then into the converter.
- 3. The PC operating system installs the USB driver when you are connecting the converter and PC together for the first time.

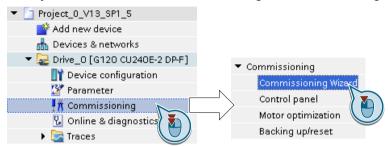
4. Press the "Accessible nodes" button.



5. When the USB interface is appropriately set, then the "Accessible nodes" screen form shows the converters that can be accessed.



If you have not correctly set the USB interface, then the following "No additional nodes found" message is displayed. In this case, follow the description below.


6. Transfer the converter into the project using the menu: "Online - Upload device as new station (hardware and software)".

You have transferred a converter accessible via the USB interface into your project.

# 5.5.3 Go online and start the commissioning Wizard

#### **Procedure**

- 1. Select your project and go online: Select your project and go online:
- 2. In the following screen form, select the converter with which you wish to go online.
- 3. Once you are online, select "Commissioning" → "Commissioning Wizard":



You have started the commissioning Wizard of the converter.  $\ensuremath{\blacksquare}$ 

# 5.5.4 Commissioning wizard

# Select the application class

# **Procedure**



When selecting an application class, the converter assigns the motor control with the appropriate default settings:

- [1] Standard Drive Control (Page 200)
- [2] Dynamic Drive Control (Page 202)
- [0] Expert or if no application class is listed:

| Application class                          | Standard Drive Control                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dynamic Drive Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Properties                                 | Typical settling time after a speed change: 100 ms 200 ms  Typical settling time after a load surge: 500 ms  Load Speed Motor torque  500 ms                                                                                                                                                                                                                                                                                                                  | Typical settling time after a speed change: < 100 ms  Typical settling time after a load surge: 200 ms  Load  Speed  Motor torque  200 ms                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                            | <ul> <li>"Standard Drive Control" is suitable to address the following requirements:         <ul> <li>Motor power ratings &lt; 45 kW</li> <li>Ramp-up time 0 → rated speed (depending on the motor power rating):                 1 s (0.1 kW) 10 s (45 kW)</li> <li>Applications with increasing load torque without load surges</li> </ul> </li> <li>"Standard Drive Control" is insensitive with respect to imprecise setting of the motor data</li> </ul> | <ul> <li>"Dynamic Drive Control" controls and limits the motor torque</li> <li>Torque accuracy that can be achieved: ± 5% for 15% 100% of the rated speed</li> <li>We recommend "Dynamic Drive Control" for the following applications:         <ul> <li>Motor power ratings &gt; 11 kW</li> <li>For load surges 10% &gt;100% of the rated motor torque</li> </ul> </li> <li>"Dynamic Drive Control" is necessary for a rampup time 0 → rated speed (dependent on the rated motor power): &lt; 1 s (0.1 kW) &lt; 10 s (132 kW).</li> </ul> |
| Application examples                       | Pumps, fans, and compressors with flow characteristic                                                                                                                                                                                                                                                                                                                                                                                                         | Pumps and compressors with displacement ma-<br>chines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Power Modules<br>that can be oper-<br>ated | PM240-2, PM240P-2                                                                                                                                                                                                                                                                                                                                                                                                                                             | PM240-2, PM240P-2 PM330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Max. output frequency                      | 550 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 240 Hz 150 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Motors that can be operated                | Induction motors                                                                                                                                                                                                                                                                                                                                                                                                                                              | Induction, synchronous and reluctance motors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Commissioning                              | <ul> <li>Unlike "Dynamic Drive Control," no speed controller needs to be set</li> <li>When compared to "Expert":         <ul> <li>Simplified commissioning using predefined motor data</li> <li>Reduced number of parameters</li> </ul> </li> <li>"Standard Drive Control" is preset for Power Modules, frame size A frame size C</li> </ul>                                                                                                                  | <ul> <li>Reduced amount of parameters when compared to "Expert"</li> <li>"Dynamic Drive Control" is preset for Power Modules frame size D frame size JX</li> </ul>                                                                                                                                                                                                                                                                                                                                                                         |

#### 5.5.5 Standard Drive Control

# Procedure for application class [1]: Standard Drive Control

Setpoint specification

Select whether the converter is connected to a higher-level control via the fieldbus.

Select whether the ramp-function generator for the speed setpoint is implemented in the higher-level control or in the converter.

Defaults of the setpoi...

Select the I/O configuration to preassign the converter interfaces.

Factory interface settings (Page 122)



Default setting of the interfaces (Page 124)

Drive setting

Drive options

Set the applicable motor standard and the converter supply voltage.

If an optional component is installed between converter and motor, the corresponding setting must be performed.

If a braking resistor is installed, you set the maximum braking power to which the braking resistor will be subjected.

Motor

Select your motor.

Enter the motor data according to the rating plate of your motor.

If you have selected a motor based on its article number, the data has already been entered.

Select the temperature sensor for monitoring of the motor temperature.

Important parameters

Set the most important parameters to suit your application.



#### **CAUTION**

### Material damage caused by unexpected acceleration of the motor

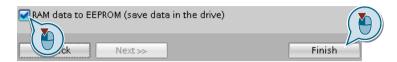
Depending on the Power Module, the converter sets the minimum frequency p1080 to 20% of the maximum frequency. Also for setpoint = 0, the motor accelerates for p1080 > 0 to the minimum frequency after switching on the motor. An unexpected acceleration of the motor can cause material damage.

If the application requires a minimum frequency = 0, then set p1080 = 0.

Drive functions

Select the application:

- [0] Constant load: Typical applications include conveyor drives
- [1] Speed-dependent load: Typical applications include pumps and fans


Motor data identification (not all the following settings may be visible in Startdrive):

- [0]: No motor data identification
- [2]: Recommended setting. Measure the motor data at standstill. The converter switches off the motor after the motor data identification has been completed. Select this setting if the motor cannot freely rotate, e.g. for a mechanically limited traversing range.
- [12]: The same setting as [2]. The motor accelerates to the currently set setpoint after the motor data identification.



Set the check mark for "RAM data to EEPROM (save data in the drive)" to save your data in the converter so that it is not lost if the power fails.

Press the "Finish" button.



You have entered all of the data that is necessary for the quick commissioning of the converter.

#### 5.5.6 **Dynamic Drive Control**

# Procedure for application class [2]: Dynamic Drive Control

Setpoint specification

Select whether the converter is connected to a higher-level control via the fieldbus.

Select whether the ramp-function generator for the speed setpoint is implemented in the higher-level control or in the converter.

Defaults of the setpoi...

Select the I/O configuration to preassign the converter interfaces.

Factory interface settings (Page 122)



Default setting of the interfaces (Page 124)



Drive options

Set the applicable motor standard and the converter supply voltage.

If an optional component is installed between converter and motor, the corresponding setting must be performed.

If a braking resistor is installed, you set the maximum braking power to which the braking resistor will be subjected.



Select your motor.

Enter the motor data according to the rating plate of your motor.

If you have selected a motor based on its article number, the data has already been entered.

Select the temperature sensor for monitoring of the motor temperature.



Set the most important parameters to suit your application.



#### **CAUTION**

### Material damage caused by unexpected acceleration of the motor

Depending on the Power Module, the converter sets the minimum frequency p1080 to 20% of the maximum frequency. Also for setpoint = 0, the motor accelerates for p1080 > 0 to the minimum frequency after switching on the motor. An unexpected acceleration of the motor can cause material damage.

If the application requires a minimum frequency = 0, then set p1080 = 0.

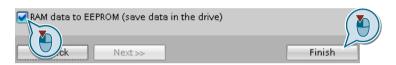


#### Application:


- [0]: Recommended setting for standard applications.
- [1]: Recommended setting for applications with ramp-up and ramp-down times < 10 s. This setting is not suitable for hoisting gear and cranes.
- [5] Recommended setting for applications with a high break loose torque.

Motor data identification:

- [0]: No motor data identification
- [1]: Recommended setting. Measure the motor data at standstill and with the motor rotating. The converter switches off the motor after the motor data identification has been completed.


- [2]: Measure the motor data at standstill. The converter switches off the motor after the motor data identification has been completed.

  Select this setting if the motor cannot freely rotate, e.g. for a mechanically limited traversing range.
- [3]: Measure the motor data while the motor is rotating. The converter switches off the motor after the motor data identification has been completed.
- [11]: The same setting as [1]. The motor accelerates to the currently set setpoint after the motor data identification.
- [12]: The same setting as [2]. The motor accelerates to the currently set setpoint after the motor data identification.



Set the check mark for "RAM data to EEPROM (save data in the drive)" to save your data in the converter so that it is not lost if the power fails.

Press the "Finish" button.



You have entered all of the data that is necessary for the quick commissioning of the converter.



#### 5.5.7 **Expert**

# Procedure without application class or for the application class [0]: Expert

Setpoint specification

Select whether the converter is connected to a higher-level control via the fieldbus.

Select whether the ramp-function generator for the speed setpoint is implemented in the higher-level control or in the converter.

Open-loop/closed-loop ..

Select the control mode.

Further information is provided at the end of the section.

Defaults of the setpoi...

Select the I/O configuration to preassign the converter interfaces.

Factory interface settings (Page 122)

Default setting of the interfaces (Page 124)

Drive setting

Set the applicable motor standard and the converter supply voltage.

#### Application:

- "[0] Load cycle with high overload for applications requiring a high dynamic performance, e.g. conveyor systems.
- "[1] Load cycle with low overload ..." for applications that do not require a high dynamic performance, e.g. pumps or fans.
- [6], [7]: Load cycles for applications with encoderless 1FK7 synchronous motors. The respective power module being used determines whether or not the selection is displayed by the commissioning wizard.

Drive options

If an optional component is installed between converter and motor, the corresponding setting must be performed.

If a braking resistor is installed, you set the maximum braking power to which the braking resistor will be subjected.

Motor 🏓

Select your motor.

Enter the motor data according to the rating plate of your motor.

If you have selected a motor based on its article number, the data has already been entered.

Select the temperature sensor for monitoring of the motor temperature.

Important parameters

Set the most important parameters to suit your application.



#### **CAUTION**

#### Material damage caused by unexpected acceleration of the motor

Depending on the Power Module, the converter sets the minimum frequency p1080 to 20% of the maximum frequency. Also for setpoint = 0, the motor accelerates for p1080 > 0 to the minimum frequency after switching on the motor. An unexpected acceleration of the motor can cause material damage.

If the application requires a minimum frequency = 0, then set p1080 = 0.

Drive functions

#### Application:

- [0]: In all applications that do not fall under [1] ... [3]
- [1]: Applications involving pumps and fans
- [2]: Applications with short ramp-up and ramp-down times. However, this setting is not suitable for hoisting gear and cranes/lifting gear.
- [3]: Setting only for steady-state operation with slow speed changes. We recommend setting [1] if load surges in operation cannot be ruled out.

#### Motor identification:

- [1]: Recommended setting. Measure the motor data at standstill and with the motor rotating. The converter switches off the motor after the motor data identification has been completed.
- [2]: Measure the motor data at standstill. The converter switches off the motor after the motor data identification has been completed.

  Recommended setting for the following cases:
  - You have selected "Speed control" as control mode, however the motor cannot freely rotate, e.g. for mechanically limited traversing sections.
  - You have set "U/f control" as control mode.
- [3]: Measure the motor data while the motor is rotating. The converter switches off the motor after the motor data identification has been completed.
- [11]: The same setting as [1]. The motor accelerates to the currently set setpoint after the motor data identification.
- [12]: The same setting as [2]. The motor accelerates to the currently set setpoint after the motor data identification.

Calculating the motor parameters: Select "Complete calculation".



Set the check mark for "RAM data to EEPROM (save data in the drive)" to save your data in the converter so that it is not lost if the power fails.

Press the "Finish" button.



You have entered all of the data that is necessary for the quick commissioning of the converter.



# Select a suitable control mode

| Control mode                               | U/f control with linear or square-law character-                                                                                                     | Encoderless vector control                                                                                                                             |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Control mode                               | istic                                                                                                                                                | Encoderiess vector control                                                                                                                             |
|                                            | Flux current control (FCC)                                                                                                                           |                                                                                                                                                        |
| Closed-loop control characteristics        | <ul> <li>Typical settling time after a speed change: 100 ms 200 ms</li> <li>Typical settling time after a load surge: 500 ms</li> <li>Load</li></ul> | <ul> <li>Typical settling time after a speed change:     &lt; 100 ms</li> <li>Typical settling time after a load surge: 200 ms</li> <li>Load</li></ul> |
| Application examples                       | Pumps, fans, and compressors with flow characteristic                                                                                                | Pumps and compressors with displacement ma-<br>chines                                                                                                  |
| Motors that can be operated                | Induction motors                                                                                                                                     | Induction, synchronous and reluctance motors                                                                                                           |
| Power Modules<br>that can be oper-<br>ated | No res                                                                                                                                               | strictions                                                                                                                                             |
| Max. output frequency                      | 550 Hz                                                                                                                                               | 240 Hz<br>150 Hz with PM330 Power Module                                                                                                               |
| Commissioning                              | Contrary to vector control, no speed controller<br>has to be set                                                                                     |                                                                                                                                                        |

# 5.5.8 Identify motor data

#### Overview

Using the motor data identification, the converter measures the data of the stationary motor. In addition, based on the response of the rotating motor, the converter can determine a suitable setting for the vector control.

To start the motor data identification routine, you must switch on the motor.

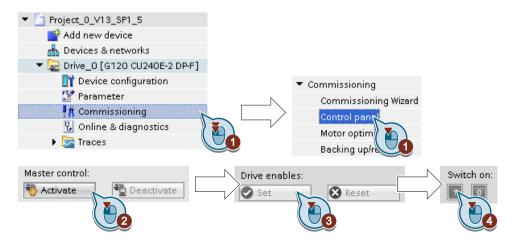
# Identifying the motor data and optimizing the closed-loop control

#### Requirements

- You have selected a method of motor data identification during quick commissioning, e.g. measurement of the motor data while the motor is stationary.

  When quick commissioning is complete, the converter issues alarm A07991.
- The motor has cooled down to the ambient temperature.
   An excessively high motor temperature falsifies the motor data identification results.
- The PC and converter are connected to each other online.




# WARNING

# Unexpected machine motion while the motor data identification is in progress

For the stationary measurement, the motor can make several rotations. The rotating measurement accelerates the motor up to the rated speed. Secure dangerous machine parts before starting motor data identification:

- Before switching on, ensure that nobody is working on the machine or located within its working area.
- Secure the machine's work area against unintended access.
- Lower suspended loads to the floor.

#### **Procedure**



- 1. Open the control panel.
- 2. Assume master control for the converter.
- 3. Set the "Drive enables"
- 4. Switch on the motor.

The converter starts the motor data identification. This measurement can take several minutes.

Depending on the setting, after motor data identification has been completed, the converter switches off the motor - or it accelerates it to the currently set setpoint.

- 5. If required, switch off the motor.
- 6. Relinquish the master control after the motor data identification.
- 7. Save the settings in the converter (RAM  $\rightarrow$  EEPROM):



You have completed the motor data identification.

# Self-optimization of the speed control

If you have not only selected motor data identification with the motor stationary, but also rotating measurement with self-optimization of the speed control, you must switch on the motor again as described above and wait for the optimization run to finish.

Quick commissioning has been completed once the motor data identification has been successfully completed.

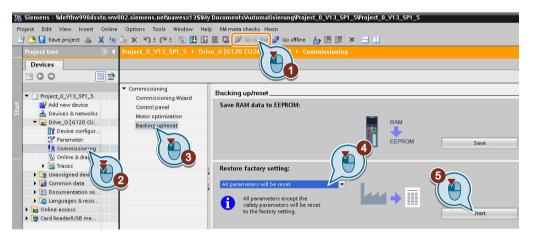
#### Recommendations

Induction motors

When commissioning induction machines, you are advised to proceed as follows:

- Before connecting the load, a complete "rotating measurement" (p1900 = 3 or without encoder: p1960 = 1; with encoder: p1960 = 2) should be carried out. Since the induction machine is idling, you can expect highly accurate results for the saturation characteristic and the rated magnetizing current.
- When the load is connected, speed controller tuning should be repeated because the total moment of inertia has changed. This is realized by selecting parameter p1960 (without encoder: p1960 = 3; with encoder: p1960 = 4). During the speed optimization, the saturation characteristic recording is automatically deactivated in parameter p1959.
- Permanent-magnet synchronous motors
   When permanent-magnet synchronous motors are commissioned, the speed controller should be tuned (p1900 = 3 or p1960 > 0) when the load is connected.

# 5.6 Restoring the factory settings


# Why restore the factory settings?

Reset the converter to the factory settings in the following cases:

- You do not know the converter settings.
- The line voltage was interrupted during commissioning and you were not able to complete commissioning.

# Resetting to factory settings with Startdrive

#### **Procedure**



- 1. Go online.
- 2. Select "Commissioning".
- 3. Select "Back up/reset".
- 4. Select "All parameters will be reset".
- 5. Press the "Start" button.
- 6. Wait until the converter has been reset to the factory settings.

You have reset the converter to the factory settings.

# 5.6 Restoring the factory settings

# Resetting to factory setting with the BOP-2 operator panel

# **Procedure**

1. Select "Reset to factory settings"



2. Start the reset.



3. Wait until the converter has been reset to the factory setting.



You have reset the converter to the factory settings.

# 5.7 Series commissioning

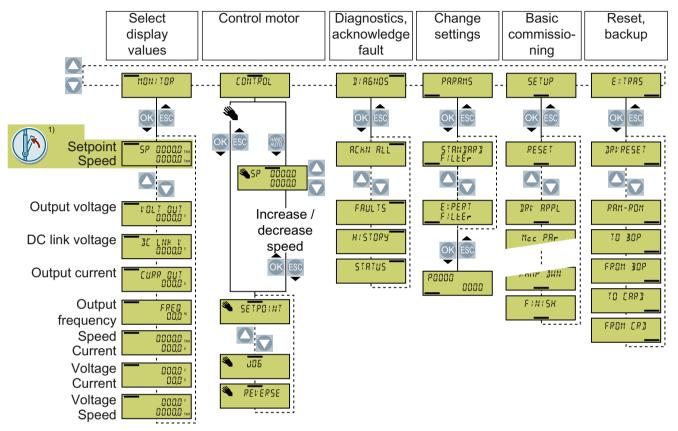
#### Overview

Series commissioning is the commissioning of several identical converters. During series commissioning, it is sufficient to commission one of the converters and then transfer the settings of the first converter to additional converters.

#### Precondition

The following preconditions apply to the converters regarding series commissioning:

- All converters have the same article number
- The converters to which the settings are transferred have the same or a higher firmware version as the source converter with the original settings.


# **Function description**

#### **Procedure**

- 1. Commission the first converter.
- 2. Back up the settings of the first converter to an external storage medium. Uploading the converter settings (Page 219)
- 3. Transfer the settings from the first converter to another converter via the data storage medium.
  - Downloading the converter settings (Page 465)

# 5.8 Handling the BOP 2 operator panel

#### Overview



<sup>&</sup>lt;sup>1)</sup> Status display once the power supply for the converter has been switched on.

Figure 5-16 Menu of the BOP-2

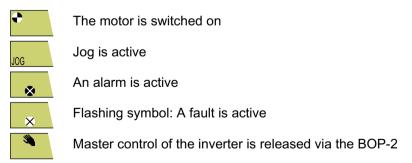



Figure 5-17 Additional symbols of the BOP-2

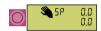
# 5.8.1 Switching the motor on and off

#### Overview

The BOP-2 offers the option of switching the motor on and off using the control keys.

# **Function description**

#### **Procedure**


1. Enable the control priority via the operator panel.



2. Switch on the motor.



3. Switch off the motor.



4. Disable the control priority via the operator panel.



You switched the motor on and off again.

5.8 Handling the BOP 2 operator panel

# 5.8.2 Changing parameter values

#### Overview

You can modify the settings of the converter by changing the parameter values in the converter.

### Precondition

The converter only permits changes to write parameters. Write parameters begin with a "P", e.g. P45.

The value of a read-only parameter cannot be changed. Read-only parameters begin with an "r", for example: r2.

# **Function description**

#### **Procedure**

1. Select the menu to display and change parameter values.



2. Select the parameter filter.



- The converter only displays the most important parameters:



The converter displays all of the parameters to you:



3. When the parameter number flashes, select the desired parameter number.



4. When the parameter value flashes, change the parameter value.



You changed a parameter value.

#### **Additional information**

The converter immediately saves any changes so that they are protected against power failure.

# 5.8.3 Changing indexed parameters

### Overview

For indexed parameters, several parameter values are assigned to a parameter number. Each of the parameter values has its own index.

### Precondition

You are in the menu for displaying and changing parameter values.

The number of an indexed parameter flashes in the BOP-2 display.

# **Function description**

### **Procedure**

1. Set the parameter index.



2. Set the parameter value for the selected index.



You have now changed an indexed parameter.

5.8 Handling the BOP 2 operator panel

# 5.8.4 Entering the parameter number directly

### Overview

The BOP-2 offers the possibility of setting the parameter number digit by digit.

### Precondition

You are in the menu for displaying and changing parameter values.

The number of a given parameter flashes in the BOP-2 display.

## **Function description**

# **Procedure**

1. Press the OK button until the first digit of the parameter number flashes.



2. Change the parameter number digit-by-digit. If you press the OK button, the BOP-2 jumps to the next digit.



3. After you have entered all of the digits of the parameter number, press the OK button.

You set the parameter number directly.

# 5.8.5 Entering the parameter value directly

### Overview

The BOP-2 offers the option of setting the parameter value digit by digit.

### Precondition

You are in the menu for displaying and changing parameter values.

The parameter value flashes in the BOP-2 display.

# **Function description**

### **Procedure**

1. Press the OK button until the first digit of the parameter value flashes.



2. Change the parameter value digit-by-digit.



You set the parameter value directly.

5.8 Handling the BOP 2 operator panel

# 5.8.6 Why can a parameter value not be changed?

### Overview

Whether or not a parameter value can be changed depends on the type of parameter and the operating mode of the converter.

# **Function description**

The converter indicates why it currently does not permit a parameter to be changed:



### **Further information**

For each parameter, the parameter list contains the operating state in which the parameter can be changed.

# Uploading the converter settings

6

### Overview

After commissioning, your settings are permanently saved in the converter.

We recommend that you additionally back up the converter settings on an external storage medium by means of an upload. Without a backup, your settings could be lost should the converter develop a fault.

The following storage media options are available:

- Memory card
- Operator panel BOP-2
- Operator panel IOP-2
- SINAMICS G120 Smart Access
- PG/PC

# 6.1 Uploading to the memory card

# 6.1.1 Recommended memory cards

## **Function description**



Table 6-1 Memory cards to back up converter settings

| Scope of delivery                   | Article number     |  |
|-------------------------------------|--------------------|--|
| Memory card without firmware        | 6SL3054-4AG00-2AA0 |  |
| Memory card with firmware V4.7      | 6SL3054-7EH00-2BA0 |  |
| Memory card with firmware V4.7 SP3  | 6SL3054-7TB00-2BA0 |  |
| Memory card with firmware V4.7 SP6  | 6SL3054-7TD00-2BA0 |  |
| Memory card with firmware V4.7 SP9  | 6SL3054-7TE00-2BA0 |  |
| Memory card with firmware V4.7 SP10 | 6SL3054-7TF00-2BA0 |  |
| Memory card with firmware V4.7 SP14 | 6SL3054-7TG00-2BA0 |  |

### **Further information**

### Using memory cards from other manufacturers

The converter only supports memory cards up to 2 GB. SDHC cards (SD High Capacity) and SDXC cards (SD Extended Capacity) are not permitted.

If you use a different SD memory card, then you must format it as follows:

- Insert the card into your PC's card reader.
- Command to format the card: format x: /fs:fat or format x: /fs:fat32 (x: Drive code of the memory card on your PC.)

### Functional restrictions with memory cards from other manufacturers

The following functions are either not possible – or only with some restrictions – when using memory cards from other manufacturers:

- Licensing functions is only possible using the recommended memory cards.
- Know-how protection is only possible with one of the recommended memory cards.
- In certain circumstances, memory cards from other manufacturers do not support writing or reading data from/to the converter.

# 6.1.2 Automatic upload

### Overview

We recommend that you insert the memory card before switching on the converter. The converter automatically backs up its settings on the inserted memory card and always keeps it up to date.

### Precondition

The converter power supply has been switched off.

# **Function description**

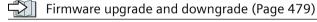
#### **Procedure**

1. Insert an empty memory card into the converter.

#### Note

### Accidental overwrite of the converter settings

When the supply voltage is switched on, the converter automatically accepts the settings already backed up on the memory card. If you use a memory card on which settings are already backed up, you will overwrite the settings of the converter.


• Use an empty memory card for the first automatic back-up of your settings.

#### Note

### Unintentional firmware update

If the memory card contains a converter firmware, the converter may perform a firmware update after the supply voltage has been switched on.

• Before inserting the memory card, ensure that it is empty.



2. Switch on the power supply for the converter.

After the power supply has been switched on, the converter copies its changed settings to the memory card.

# 6.1.3 Message for a memory card that is not inserted

# **Function description**

The converter identifies that a memory card is not inserted, and signals this state. The message is deactivated in the converter factory setting.

### Activate message

### **Procedure**

- 1. Set p2118[x] = 1101, x = 0, 1, ... 19
- 2. Set p2119[x] = 2

Message A01101 for a memory card that is not inserted is activated.

П

To cyclically signal to the higher-level control that a memory card is not inserted, connect parameter r9401 to the send data of the fieldbus interface.

### Deactivate message

#### **Procedure**

- 1. Set p2118[x] = 1101, x = 0, 1, ... 19
- 2. Set p2119[x] = 3

Message A01101 for a memory card that is not inserted is deactivated.

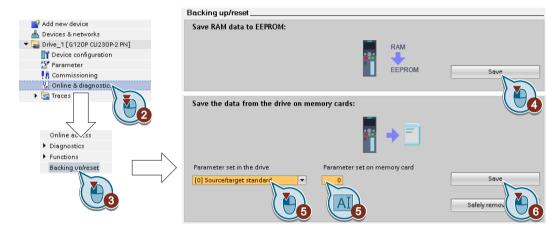
#### **Parameter**

| Parameter   | Explanation                         | Factory setting |
|-------------|-------------------------------------|-----------------|
| p2118[019]  | Change message type, message number | 0               |
| p2119[0 19] | Change message type, type           | 0               |
| r9401       | Safely remove memory card status    | -               |

# 6.1.4 Manual upload with Startdrive

### Overview

If you insert the memory card into a converter that is already supplied with power, you must start the upload manually using a commissioning tool.


### Requirement

The following preconditions apply:

- The converter power supply has been switched on.
- The PC and converter are connected with one another via a USB cable or via the fieldbus.
- A memory card is inserted in the converter.

### **Function description**

#### **Procedure**



- 1. Go online.
- 2. Select "Online & diagnostics".
- 3. Select "Back up/reset".
- 4. Back up the settings to the EEPROM of the converter.
- 5. Set the number of your data backup. You can back up 99 different settings on the memory card.
- 6. Start data transfer
- 7. Wait until Startdrive signals that data backup has been completed.

You have backed up the converter settings to a memory card.  $\ \square$ 

### 6.1.5 Manual upload with BOP-2

### Overview

If you insert the memory card into a converter that is already supplied with power, you must start the upload manually using a commissioning tool.

6.1 Uploading to the memory card

#### Precondition

The converter power supply has been switched on.

A memory card is inserted in the converter.

# **Function description**

### **Procedure**

1. Select the upload.



2. Set the number of your data backup. You can back up 99 different settings on the memory card.



3. Start the upload.



4. Wait until the converter has backed up the settings to the memory card.



You have backed up the settings of the converter to the memory card.

# 6.1.6 Safely removing a memory card using the BOP-2

# **Function description**

#### **NOTICE**

### Data loss from improper handling of the memory card

If you remove the memory card when the converter is switched on without implementing the "safe removal" function you may destroy the file system on the memory card. The data on the memory card are lost. The memory card will only function again after formatting.

• Only remove the memory card using the "safe removal" function.

#### **Procedure**

1. Select the menu for changing parameter values.



2. If a memory card is inserted, p9400 = 1. Set p9400 = 2.



- 3. The converter indicates whether it is currently writing data to the memory card:
  - The converter sets p9400 = 100:



You must not remove the memory card. Wait for several seconds and then set p9400 = 2 again.

- The converter sets p9400 = 3:



Remove the memory card.

4. After removing the memory card, the converter sets p9400 = 0.

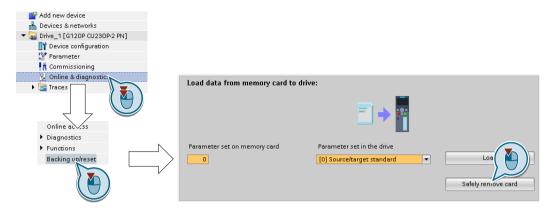


You have safely removed the memory card.

# 6.1.7 Safely remove the memory card with Startdrive

### **Function description**

### NOTICE


### Data loss from improper handling of the memory card

If you remove the memory card when the converter is switched on without implementing the "safe removal" function you may destroy the file system on the memory card. The data on the memory card are lost. The memory card will only function again after formatting.

• Only remove the memory card using the "safe removal" function.

### 6.1 Uploading to the memory card

#### **Procedure**



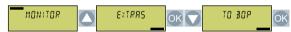
- 1. In the Drive Navigator select the following screen form:
- 2. Click on the button to safely remove the memory card. Startdrive will tell you whether you can remove the memory card from the converter.

You have now safely removed the memory card from the converter.

# 6.2 Uploading to the BOP-2

### Overview

You can back up the converter settings on the BOP-2 operator panel.


### Precondition

The converter power supply has been switched on.

# **Function description**

### Procedure

1. Select the upload to the operator panel.



2. Start the upload.



3. Wait until the upload is completed.



The upload from the converter to the BOP-2 is completed.

# 6.3 Upload to a PC using Startdrive

### Overview

You can backup the converter settings to a PC.

# Requirement

The following preconditions apply:

- The converter power supply has been switched on.
- The PC and converter are connected with one another via a USB cable or via the fieldbus.

# **Function description**

#### **Procedure**

- 1. Go online.
- 2. Select "Online" > "Upload device to PG/PC."
- 3. Back up the project with "Project" > "Save."
- 4. Wait until Startdrive signals that data backup has been completed.
- 5. Go offline.

You have backed up the settings.

#### 6.4 More options for the upload

# **Function description**

In addition to the default setting, the converter has an internal memory for backing up three other settings.

On the memory card, you can back up 99 other settings in addition to the default setting. Further information is provided on the Internet:



Memory options (http://support.automation.siemens.com/WW/view/en/43512514)

6.4 More options for the upload

**Protecting the converter settings** 

7

# 7.1 Write protection

### Overview

The write protection prevents unauthorized changing of the converter settings.

# **Function description**

Write protection is applicable for all user interfaces:

- Commissioning tool, e.g. operator panel or PC
- Parameter changes via fieldbus

No password is required for write protection.

# Activate and deactivate write protection

| Parameter                                                 |       |                                             |  |  |
|-----------------------------------------------------------|-------|---------------------------------------------|--|--|
| r7760                                                     | Write | Write protection/know-how protection status |  |  |
|                                                           | .00   | 1 signal: Write protection active           |  |  |
| p7761                                                     | Write | Write protection (factory setting: 0)       |  |  |
| Deactivate write protection     Activate write protection |       | Deactivate write protection                 |  |  |
|                                                           |       | Activate write protection                   |  |  |

### **Parameter**

Table 7-1 Parameters that can be changed with active write protection

| Number    | Name                                                          |  |
|-----------|---------------------------------------------------------------|--|
| p0003     | Access level / Acc_level                                      |  |
| p0010     | Drive commissioning parameter filter / Drv comm par_filt      |  |
| p0124[0n] | CU detection using LED / CU detect LED                        |  |
| p0970     | Reset drive parameters / Drive par reset                      |  |
| p0971     | Save parameters / Sav par                                     |  |
| p0972     | Drive unit reset / Drv_unit reset                             |  |
| p2111     | Alarm counter / Alarm counter                                 |  |
| p3950     | Service parameter / Serv par                                  |  |
| p3981     | Acknowledge drive object faults / Ackn DO faults              |  |
| p3985     | Master control mode selection / PcCtrl mode select            |  |
| p7761     | Write protection / Write protection                           |  |
| p8805     | Identification and Maintenance 4 Configuration / I&M 4 Config |  |

# 7.1 Write protection

| Number     | Name                                                         |  |
|------------|--------------------------------------------------------------|--|
| p8806[053] | Identification and Maintenance 1 / I&M 1                     |  |
| p8807[015] | Identification and Maintenance 2 / I&M 2                     |  |
| p8808[053] | Identification and Maintenance 3 / I&M 3                     |  |
| p8809[053] | Identification and Maintenance 4 / I&M 4                     |  |
| p9400      | Safely remove memory card / Mem_card rem                     |  |
| p9484      | BICO interconnections search signal source / BICO S_src srch |  |

#### Note

# Write protection for multimaster fieldbus systems

Via multimaster fieldbus systems, e.g. BACnet or Modbus RTU, in spite of write protection being activated, parameters can still be changed. So that write protection is also active when accessing via these fieldbuses, you must additionally set p7762 to 1.

# 7.2 Know-how protection

# 7.2.1 Know-how protection

#### Overview

Know-how protection prevents unauthorized reading of the converter settings.

To protect your converter settings against unauthorized copying, in addition to know-how protection, you can also activate copy protection.

# Requirement

Know-how protection requires a password.

| Combination of know-how protection and copy protection                                                     | Is a memory card necessary?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                    |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Know-how protection without copy protection                                                                | The converter can be operated with or without memory card.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                    |
| Know-how protection with basic copy protection  Know-how protection with extended copy protection  tection | SIMATIC<br>SIMATIC<br>DEMONSTRATE SERVICES OF SE | The converter can only be operated with a SIEMENS memory card  Recommended memory cards (Page 220) |

### **Function description**

The active know-how protection provides the following:

- With just a few exceptions, the values of all adjustable parameters p ... are invisible.
  - Several adjustable parameters can be read and changed when know-how protection is active.
    - In addition, you can define an exception list of adjustable parameters, which end users may change.
  - Several adjustable parameters can be read but not changed when know-how protection is active
- The values of monitoring parameters r ... remain visible.

### 7.2 Know-how protection

- Locked functions:
  - Downloading converter settings using a PC
  - Automatic controller optimization
  - Stationary or rotating measurement of the motor data identification
  - Deleting the alarm history and the fault history
  - Generating acceptance documents for safety functions
- Executable functions:
  - Restoring factory settings
  - Acknowledging faults
  - Displaying faults, alarms, fault history, and alarm history
  - Reading out the diagnostic buffer
  - Controlling a converter using a PC
  - Uploading adjustable parameters that can be changed or read when know-how protection is active.
  - Displaying acceptance documents for safety functions

When know-how protection is active, support can only be provided (from Technical Support) after prior agreement from the machine manufacturer (OEM).

### Know-how protection without copy protection

You can transfer the converter settings to another converter, e.g. using a memory card or an operator panel.

### Know-how protection with basic copy protection

After replacing a converter, to be able to operate the new converter with the settings of the replaced converter without knowing the password, the memory card must be inserted in the new converter.

### Know-how protection with extended copy protection

It is not possible to insert and use the memory card in another converter without knowing the password.

# Commissioning know-how protection

- 1. Check as to whether you must extend the exception list.
  - List of exceptions (Page 237)
- 2. Activate the know-how protection.
  - Know-how protection (Page 238)

### **Parameter**

Table 7-2 Parameters that can be changed with active know-how protection

| Number     | Name                                                          |  |
|------------|---------------------------------------------------------------|--|
| p0003      | Access level / Acc_level                                      |  |
| p0010      | Drive commissioning parameter filter / Drv comm par_filt      |  |
| p0124[0n]  | CU detection using LED / CU detect LED                        |  |
| p0791[01]  | CO: Fieldbus analog outputs / Fieldbus AO                     |  |
| p0970      | Reset drive parameters / Drive par reset                      |  |
| p0971      | Save parameters / Sav par                                     |  |
| p0972      | Drive unit reset / Drv_unit reset                             |  |
| p2040      | Fieldbus interface monitoring time / Fieldbus t_monit         |  |
| p2111      | Alarm counter / Alarm counter                                 |  |
| p3950      | Service parameter / Serv par                                  |  |
| p3981      | Acknowledge drive object faults / Ackn DO faults              |  |
| p3985      | Master control mode selection / PcCtrl mode select            |  |
| p7761      | Write protection / Write protection                           |  |
| p8402[08]  | RTC daylight saving time setting / RTC DST                    |  |
| p8805      | Identification and Maintenance 4 Configuration / I&M 4 Config |  |
| p8806[053] | Identification and Maintenance 1 / I&M 1                      |  |
| p8807[015] | Identification and Maintenance 2 / I&M 2                      |  |
| p8808[053] | Identification and Maintenance 3 / I&M 3                      |  |
| p8809[053] | Identification and Maintenance 4 / I&M 4                      |  |
| p8980      | EtherNet/IP profile / Eth/IP profile                          |  |
| p8981      | EtherNet/IP ODVA STOP mode / Eth/IP ODVA STOP                 |  |
| p8982      | EtherNet/IP ODVA speed scaling / Eth/IP ODVA n scal           |  |
| p8983      | EtherNet/IP ODVA torque scaling / Eth/IP ODVA M scal          |  |
| p9400      | Safely remove memory card / Mem_card rem                      |  |
| p9484      | BICO interconnections search signal source / BICO S_src srch  |  |

Table 7-3 Parameters that can be read with active know-how protection

| Number    | Name                                                   |  |
|-----------|--------------------------------------------------------|--|
| p0015     | Macro drive unit / Macro drv unit                      |  |
| p0100     | IEC/NEMA Standards / IEC/NEMA Standards                |  |
| p0170     | Number of Command Data Sets (CDS) / CDS count          |  |
| p0180     | Number of Drive Data Sets (DDS) / DDS count            |  |
| p0300[0n] | Motor type selection / Mot type sel                    |  |
| p0304[0n] | Rated motor voltage / Mot U_rated                      |  |
| p0305[0n] | Rated motor current / Mot I_rated                      |  |
| p0505     | Selecting the system of units / Unit sys select        |  |
| p0595     | Technological unit selection / Tech unit select        |  |
| p0730     | BI: CU signal source for terminal DO 0 / CU S_src DO 0 |  |

# 7.2 Know-how protection

| Number    | Name                                                                   |
|-----------|------------------------------------------------------------------------|
| p0731     | BI: CU signal source for terminal DO 1 / CU S_src DO 1                 |
| p0732     | BI: CU signal source for terminal DO 2 / CU S_src DO 2                 |
| p0806     | BI: Inhibit master control / Inhibit PcCtrl                            |
| p0870     | BI: Close main contactor / Close main cont                             |
| p0922     | PROFIdrive PZD telegram selection / PZD telegr_sel                     |
| p1080[0n] | Minimum velocity / v_min                                               |
| p1082[0n] | Maximum velocity / v_max                                               |
| p1520[0n] | CO: Torque limit upper / M_max upper                                   |
| p2000     | Reference speed reference frequency / n_ref f_ref                      |
| p2001     | Reference voltage / Reference voltage                                  |
| p2002     | Reference current / I_ref                                              |
| p2003     | Reference torque / M_ref                                               |
| p2006     | Reference temperature / Ref temp                                       |
| p2030     | Fieldbus interface protocol selection / Fieldbus protocol              |
| p2038     | PROFIdrive STW/ZSW interface mode / PD STW/ZSW IF mode                 |
| p2079     | PROFIdrive PZD telegram selection extended / PZD telegr ext            |
| p7763     | KHP OEM exception list number of indices for p7764 / KHP OEM qty p7765 |
| p7764[0n] | KHP OEM exception list / KHP OEM excep list                            |
| p11026    | Free tec_ctrl 0 unit selection / Ftec0 unit sel                        |
| p11126    | Free tec_ctrl 1 unit selection / Ftec1 unit sel                        |
| p11226    | Free tec_ctrl 2 unit selection / Ftec2 unit sel                        |

# 7.2.2 Extending the exception list for know-how protection

In the factory setting, the exception list only includes the password for know-how protection.

Before activating know-how protection, you can additionally enter the adjustable parameters in the exception list, which must still be able to be read and changed by end users – even if know-how protection has been activated.

You do not need to change the exception list, if, with exception of the password, you do not require additional adjustable parameters in the exception list.

# Absolute know-how protection

If you remove password p7766 from the exception list, it is no longer possible to enter or change the password for know-how protection.

You must reset the converter to the factory settings in order to be able to gain access to the converter adjustable parameters. When restoring the factory settings, you lose what you have configured in the converter, and you must recommission the converter.

### **Parameter**

| Parameter                                     | Description                                         | Factory setting |
|-----------------------------------------------|-----------------------------------------------------|-----------------|
| p7763                                         | KHP OEM exception list, number of indices for p7764 | 1               |
| p7764[0p7763]                                 | KHP OEM exception list                              | [0] 7766        |
| p7766 is the password for know-how protection |                                                     | [1499] 0        |

## 7.2.3 Activating and deactivating know-how protection

### Requirements

- The converter has now been commissioned.
- You have generated the exception list for know-how protection.
- To guarantee know-how protection, you must ensure that the project does not remain at the end user as a file.

### **Function description**

### Activating know-how protection

- 1. Enter a password of your choice in p7767. Each index of p7767 corresponds with a character in the ASCII format.
- 2. Complete entry of the password with p7767[29] = 0.
- 3. Enter the same password in p7768 as that for p7767.
- 4. Complete entry of the password with p7768[29] = 0.

The know-how protection for the converter is activated.

### **Deactivating know-how protection**

- 1. Enter the password for the know-how protection in p7766. Each index of p7766 corresponds with a character in the ASCII format.
- 2. Complete entry of the password with p7766[29] = 0.

The know-how protection for the converter is deactivated.  $\Box$ 

### **Parameter**

| Parameter  | Description                                 | Factory setting |
|------------|---------------------------------------------|-----------------|
| r7758[019] | KHP Control Unit serial number              |                 |
| p7759[019] | KHP Control Unit reference serial number    |                 |
| r7760      | Write protection/know-how protection status |                 |
| p7765      | KHP configuration                           | 0000 bin        |
| p7766[029] | KHP password, input                         |                 |
| p7767[029] | KHP password, new                           |                 |
| p7768[029] | KHP password, confirmation                  |                 |
| p7769[020] | KHP memory card reference serial number     |                 |
| r7843[020] | Memory card serial number                   |                 |

### **Further information**

### Preventing data reconstruction from the memory card

As soon as know-how protection has been activated, the converter only backs up encrypted data to the memory card.

In order to guarantee know-how protection, after activating know-how protection, we recommend that you insert a new, empty memory card. For memory cards that have already been written to, previously backed up data that was not encrypted can be reconstructed.

7.2 Know-how protection

Advanced commissioning

## 8.1 Overview of the converter functions

#### Overview

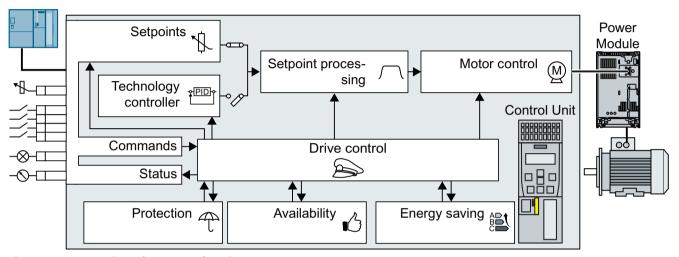



Figure 8-1 Overview of converter functions

#### **Drive control**



The converter receives its commands from the higher-level control via the terminal strip or the fieldbus interface of the Control Unit. The drive control defines how the converter responds to the commands.

Sequence control when switching the motor on and off (Page 245)

Adapt the default setting of the terminal strip (Page 248)

Controlling clockwise and counter-clockwise rotation via digital inputs (Page 266)

Drive control via PROFIBUS or PROFINET (Page 278)

Drive control via USS (Page 299)

Drive control via Modbus RTU (Page 302)

Drive control via Ethernet/IP (Page 305)

Drive control via BACnet MS/TP (Page 307)

Drive control via P1 (Page 310)

Jogging (Page 311)

The converter can switch between different settings of the drive control.

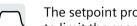
Switching over the drive control (command data set) (Page 313)

The free function blocks permit configurable signal processing within the converter.

#### 8.1 Overview of the converter functions

Free function blocks (Page 315)

You can select in which physical units the converter represents its associated values.


Physical units (Page 317)

### Setpoints and setpoint processing



The setpoint generally determines the motor speed.





The setpoint processing uses a ramp-function generator to prevent speed steps occurring and to limit the speed to a permissible maximum value.

Setpoint processing (Page 331)

### **Technology controller**



The technology controller controls process variables, e.g. pressure, temperature, level or flow. The closed-loop motor control receives the setpoint either from the higher-level control or from the technology controller.

PID technology controller (Page 340)

The converter has three additional technology controllers that operate independently of each other.

Free technology controllers (Page 352)

The multi-zone control offers various procedures to process multiple setpoints or actual values with only one technology controller.

Multi-zone control (Page 354)

The cascade control is ideal for applications in which, for example, significantly fluctuating pressures or flow rates are equalized.

Cascade control (Page 357)

The "time switch", together with the real-time clock, offers the option of controlling when signals are switched on and off.

Real time clock (RTC) (Page 361)

Time switch (DTC) (Page 363)

#### Motor control



The closed-loop motor control ensures that the motor follows the speed setpoint. You can choose between various control modes.

Motor control (Page 364)

The converter provides several methods to brake the motor electrically. During electrical braking, the motor develops a torque that reduces the speed down to standstill.

Electrically braking the motor (Page 378)

#### Protection of the drive and the driven load



The protection functions prevent damage to the motor, converter and driven load.

Overcurrent protection (Page 392)

Converter protection using temperature monitoring (Page 393)

Motor protection with temperature sensor (Page 396)

Motor protection by calculating the temperature (Page 398)

Motor and converter protection by limiting the voltage (Page 401)

The monitoring of the driven load prevents impermissible operating modes, e.g. dry-running of a pump.

Monitoring the driven load (Page 403)

### Increasing the drive availability



The kinetic buffering converts the kinetic energy of the load into electrical energy to buffer short-term power failures.

Flying restart – switching on while the motor is running (Page 412)

The "Flying restart" function permits the fault-free switching on of the motor while it is still turning.

Automatic restart (Page 414)

For active automatic restart, after a power failure, the converter attempts to automatically restart the motor and to acknowledge any faults that occur.

Kinetic buffering (Vdc min control) (Page 417)

In an emergency, the converter deactivates its protection functions in order to maintain drive operation as long as possible.

Essential service mode (Page 419)

#### **Energy saving**



For standard induction motors, the efficiency optimization reduces the motor losses in the partial load range.

Efficiency optimization (Page 423)

The "Bypass" function switches the motor between converter and line operation.

Bypass (Page 426)

If the plant/system conditions permit, the converter switches off the motor temporarily.

### **Energy saving**

Hibernation mode (Page 430)

If necessary, the main contactor control disconnects the converter from the power system and so reduces the converter losses.

Line contactor control (Page 434)

The converter calculates how much energy controlled converter operation saves when compared to mechanical flow control (e.g. throttle).

Calculating the energy saving for fluid flow machines (Page 436)

# 8.2 Brief description of the parameters

### Overview

The brief parameter description provides the most important information for all of the parameters that are assigned to a certain converter function.

If the number of parameter indices depends on the data sets, then the parameter index is shown in an abbreviated form.

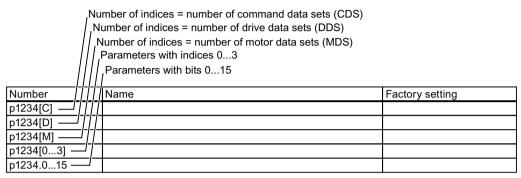



Figure 8-2 Brief parameter description

# 8.3 Sequence control when switching the motor on and off

#### Overview



The sequence control defines the rules for switching the motor on and off.

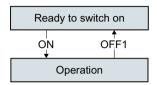



Figure 8-3 Simplified representation of the sequence control

After switching the supply voltage on, the converter normally goes into the "ready to start" state. In this state, the converter waits for the command to switch on the motor.

The converter switches on the motor with the ON command. The converter changes to the "Operation" state.

After the OFF1 command, the converter brakes the motor down to standstill. The converter switches off the motor once standstill has been reached. The converter is again "ready to start".

# **Function description**

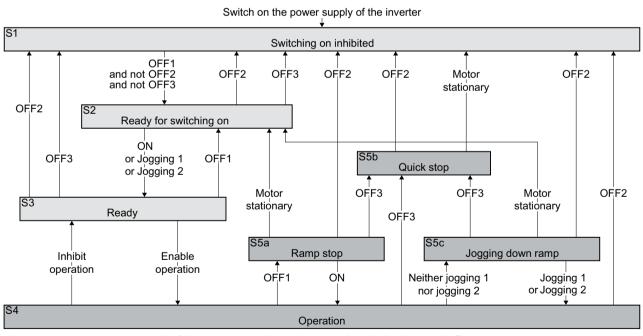



Figure 8-4 Sequence control of the converter when the motor is switched on and off

# 8.3 Sequence control when switching the motor on and off

Converter states S1 ... S5c are defined in the PROFIdrive profile. The sequence control defines the transition from one state to another.

Table 8-1 Converter states

| The motor is switched off                                                                                                        |                                                                                                                    | The motor is switched on                                    |                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Current does not flow in the motor and the motor does not generate any torque                                                    |                                                                                                                    | Current flows in the motor and the motor generates a torque |                                                                                                                        |
| S1                                                                                                                               | The ON command and an OFF command are active at the same time.                                                     | S4                                                          | The motor is switched on.                                                                                              |
|                                                                                                                                  | In order for the converter to exit the state, you must deactivate OFF2 and OFF3 and activate the ON command again. |                                                             |                                                                                                                        |
| S2 The converter waits for a new command to switch on the motor.                                                                 |                                                                                                                    | S5a,<br>S5c                                                 | The motor is still switched on. The converter brakes the motor with the ramp-down time of the ramp-function generator. |
| S3 The converter waits for "Enable operation". The "Enable operation" command is always active in the converter factory setting. |                                                                                                                    | S5b                                                         | The motor is still switched on. The converter brakes the motor with the OFF3 rampdown time.                            |

Table 8-2 Commands for switching the motor on and off

| ON                     | The converter switches the motor on.                                                                                   |
|------------------------|------------------------------------------------------------------------------------------------------------------------|
| Jogging 1              |                                                                                                                        |
| Jogging 2              |                                                                                                                        |
| Enable opera-<br>tion  |                                                                                                                        |
| OFF1, OFF3             | 1. The converter brakes the motor.                                                                                     |
|                        | 2. The converter switches off the motor once it comes to a standstill.                                                 |
|                        | The converter identifies that the motor is at a standstill when at least one of the following conditions is satisfied: |
|                        | • The speed actual value falls below the threshold in p1226, and the time started in p1228 has expired.                |
|                        | • The speed setpoint falls below the threshold in p1226, and the time subsequently started in p1227 has expired.       |
| OFF2                   | The converter switches off the motor immediately without first braking it.                                             |
| Inhibit opera-<br>tion |                                                                                                                        |

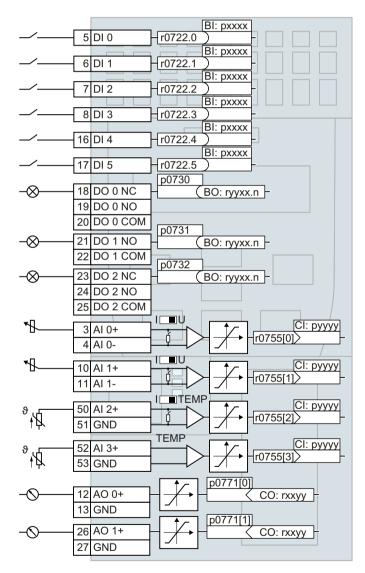
### **Parameters**

| Number    | Name                                    | Factory setting |
|-----------|-----------------------------------------|-----------------|
| r0046.031 | CO/BO: Missing enable signals           | -               |
| p0857     | Power unit monitoring time              | 10000 ms        |
| p0858[C]  | BI: Unconditionally close holding brake | 0               |
| p0860     | BI: Line contactor feedback signal      | 863.1           |

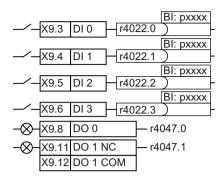
# 8.3 Sequence control when switching the motor on and off

| Number   | Name                                     | Factory setting |
|----------|------------------------------------------|-----------------|
| p0861    | Line contactor monitoring time           | 100 ms          |
| p1226[D] | Speed threshold for standstill detection | 20 rpm          |
| p1227    | Standstill detection monitoring time     | 300 s           |
| p1228    | Pulse suppression delay time             | 0.01 s          |

# 8.4 Adapt the default setting of the terminal strip


### Overview

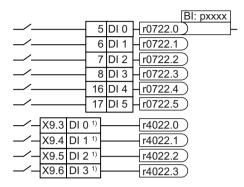



In the converter, the input and output signals are interconnected with specific converter functions using special parameters. The following parameters are available to interconnect signals:

- Binectors BI and BO are parameters to interconnect binary signals.
- Connectors CI and CO are parameters to interconnect analog signals.

The following chapters describe how you adapt the function of individual converter inputs and outputs using binectors and connectors.




8.4 Adapt the default setting of the terminal strip



When using the PM330 Power Module, in addition to the terminals on the Control Unit, the converter has 4 digital inputs DI and 2 digital outputs DO on the Power Module.

# 8.4.1 Digital inputs

# **Function description**



<sup>1)</sup> When using the PM330 Power Module, the converter has 4 additional digital inputs.

To change the function of a digital input, you must interconnect the status parameter of the digital input with a binector input of your choice.

Binector inputs are designated in the parameter list with the "BI".

# Example

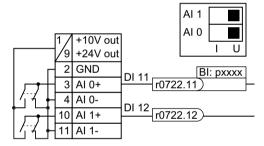
To acknowledge converter fault messages using digital input DI 1, you must interconnect DI 1 with the command to acknowledge faults (p2103).

Set p2103 = 722.1.

### **Parameter**

| Parameter | Description                                         | Factory setting            |
|-----------|-----------------------------------------------------|----------------------------|
| r0721     | CU digital inputs, terminal actual value            | -                          |
| r0722     | CO/BO: CU digital inputs, status                    | -                          |
| r0723     | CO/BO: CU digital inputs, status inverted           |                            |
| p0724     | CU digital inputs debounce time                     | 4 ms                       |
| p0810     | BI: Command data set selection CDS bit 0            | 0                          |
| p0840[C]  | BI: ON/OFF (OFF1)                                   | Dependent on the converter |
| p0844[C]  | BI: No coast down/coast down (OFF2) signal source   | Dependent on the converter |
| p0848[C]  | BI: No quick stop/quick stop (OFF3) signal source 1 | 1                          |
| p0852[C]  | BI: Enable operation/inhibit operation              | Dependent on the converter |
| p1020[C]  | BI: Fixed speed setpoint selection, bit 0           | 0                          |
| p1021[C]  | BI: Fixed speed setpoint selection, bit 1           | 0                          |
| p1022[C]  | BI: Fixed speed setpoint selection, bit 2           | 0                          |

| Parameter | Description                                 | Factory setting            |
|-----------|---------------------------------------------|----------------------------|
| p1023[C]  | BI: Fixed speed setpoint selection, bit 3   | 0                          |
| p1035[C]  | BI: Motorized potentiometer setpoint higher | Dependent on the converter |
| p1036[C]  | BI: Motorized potentiometer setpoint lower  | Dependent on the converter |
| p1055[C]  | BI: Jogging bit 0                           | Dependent on the converter |
| p1056[C]  | BI: Jogging bit 1                           | Dependent on the converter |
| p1113[C]  | BI: Setpoint inversion                      | Dependent on the converter |
| p2103[C]  | BI: 1. Acknowledge faults                   | Dependent on the converter |
| p2106[C]  | BI: External fault 1                        | 1                          |
| p2112[C]  | BI: External alarm 1                        | 1                          |


For additional binector inputs and additional information on parameters, please refer to the parameter list.



Overview of the manuals (Page 581)

#### 8.4.2 Analog inputs as digital inputs

## **Function description**

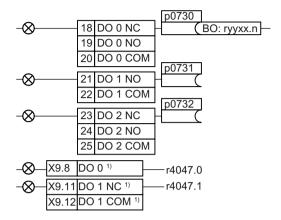


To use an analog input as additional digital input, you must interconnect the corresponding status parameter r0722.11 or r0722.12 with a binector input of your choice.

You may operate the analog input as a digital input with 10 V or with 24 V.

## NOTICE

## Defective analog input due to overcurrent


If the analog input switch is set to "Current input" (I), a 10 V or 24 V voltage source results in an overcurrent at the analog input. An overcurrent condition destroys the analog input.

If you use an analog input as a digital input, then you must set the analog input switch to "Voltage" (U).

8.4 Adapt the default setting of the terminal strip

## 8.4.3 Digital outputs

## **Function description**



To change the function of a digital output, you must interconnect the digital output with a binector output of your choice.

Binector outputs are designated in the parameter list with "BO".

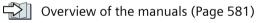
<sup>1)</sup> When using the PM330 Power Module, the converter has 2 additional digital outputs. The function of the two additional digital outputs is fixed and cannot be modified:

- DO 0 (X9.8): Converter DC link is charged
- DO 1 (X9.11, X9.12): Close main contactor

## **Example**



To output converter fault messages via digital output DO 1, you must interconnect DO 1 with these fault messages.


Set p0731 = 52.3

## **Parameter**

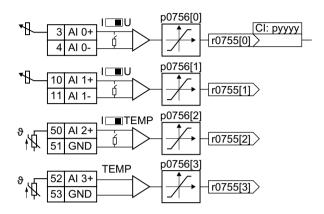
Table 8-3 Frequently used binector outputs (BO) of the converter

| Parameter  | Description |                                            | Factory setting |
|------------|-------------|--------------------------------------------|-----------------|
| r0052[015] | CO/BO: St   | tatus word 1                               | -               |
|            | .00         | 1 signal: Ready for switching on           |                 |
|            | .01         | 1 signal: Ready for operation              |                 |
|            | .02         | 1 signal: Operation enabled                |                 |
|            | .03         | 1 signal: Fault active                     |                 |
|            | .04         | 0 signal: OFF2 active                      |                 |
|            | .05         | 0 signal: OFF3 active                      |                 |
|            | .06         | 1 signal: Switching on inhibited active    |                 |
|            | .07         | 1 signal: Alarm active                     |                 |
|            | .08         | 0 signal: Deviation, setpoint/actual speed |                 |
|            | .09         | 1 signal: Control request                  |                 |
|            | .10         | 1 signal: Maximum speed (p1082) reached    |                 |
|            | .11         | 0 signal: I, M, P limit reached            |                 |
|            | .13         | 0 signal: Alarm, motor overtemperature     |                 |
|            | .14         | 1 signal: Motor clockwise rotation         |                 |
|            | .15         | 0 signal: Alarm, converter overload        |                 |
| r0053[011] | CO/BO: St   | tatus word 2                               | -               |
|            | .00         | 1 signal: DC braking active                |                 |
|            | .02         | 1 signal: Speed > minimum speed (p1080)    |                 |
|            | .06         | 1 signal: Speed ≥ setpoint speed (r1119)   |                 |

You can find additional binector outputs in the parameter list.



## **Further information**


You can invert the signal of the digital output using parameter p0748.

Additional information is provided in the parameter list and the function diagrams 2230 ff.

Overview of the manuals (Page 581)

# 8.4.4 Analog inputs

# **Function description**



## Defining the analog input type

The parameter p0756[x] and the switch on the converter specify the analog input type.

Table 8-4 Default settings via parameter p0756

| AI 0 | Unipolar voltage input                       | 0 V +10 V    | p0756[0] | 0  |
|------|----------------------------------------------|--------------|----------|----|
|      | Unipolar voltage input monitored             | +2 V +10 V   | =        | 1  |
|      | Unipolar current input                       | 0 mA +20 mA  |          | 2  |
|      | Unipolar current input monitored             | +4 mA +20 mA |          | 3  |
|      | Bipolar voltage input (factory setting)      | -10 V +10 V  |          | 4  |
| Al 1 | Unipolar voltage input                       | 0 V +10 V    | p0756[1] | 0  |
|      | Unipolar voltage input monitored             | +2 V +10 V   | =        | 1  |
|      | Unipolar current input                       | 0 mA +20 mA  |          | 2  |
|      | Unipolar current input monitored             | +4 mA +20 mA |          | 3  |
|      | Bipolar voltage input (factory setting)      | -10 V +10 V  |          | 4  |
| Al 2 | Unipolar current input (factory setting)     | 0 mA +20 mA  | p0756[2] | 2  |
|      | Unipolar current input monitored             | +4 mA +20 mA | =        | 3  |
|      | LG-Ni1000 temperature sensor                 |              |          | 6  |
|      | Pt1000 temperature sensor                    |              |          | 7  |
|      | No sensor connected                          |              |          | 8  |
|      | DIN-Ni1000 temperature sensor (6180 ppm / K) |              |          | 10 |
| AI 3 | 3 LG-Ni1000 temperature sensor               |              | p0756[3] | 6  |
|      | Pt1000 temperature sensor                    |              |          | 7  |
|      | No sensor connected (factory setting)        |              |          | 8  |
|      | DIN-Ni1000 temperature sensor (6180 ppm / K) |              |          | 10 |
|      |                                              |              |          |    |

The switch that belongs to the analog input is located behind the front doors of the Control Unit.

• The switches for AI 0 and AI 1 (current/voltage) are located behind the lower front door of the Control Unit.



• The switch for AI 2 (temperature/current) is located behind the upper front door of the Control Unit.



#### Permissible measuring range of the temperature sensors

| LG-Ni1000, DIN-Ni1000 | – 88 °C 165 °C |
|-----------------------|----------------|
| Pt1000                | − 88 °C 240 °C |

For values outside the permissible measuring range, the converter outputs Alarm A03520 "Temperature sensor fault".

## Defining the function of an analog input

You define the analog input function by interconnecting a connector input of your choice with parameter p0755.

Parameter p0755 is assigned to the particular analog input via its index, e.g. parameter p0755[0] is assigned to analog input 0.

## Example

In order to enter the supplementary setpoint via analog input AI 0, you must interconnect AI 0 with the signal source for the supplementary setpoint.

Set p1075 = 755[0].

#### **Parameter**

Table 8-5 Frequently used connector inputs (CI) of the converter

| Parameter | Description                            | Factory setting |
|-----------|----------------------------------------|-----------------|
| p1070[C]  | CI: Main setpoint                      | 0               |
| p1075[C]  | CI: Supplementary setpoint             | 0               |
| p2253[C]  | CI: Technology controller setpoint 1   | 0               |
| p2264[C]  | CI: Technology controller actual value | 0               |

You can find additional connector inputs in the parameter list.

Overview of the manuals (Page 581)

8.4 Adapt the default setting of the terminal strip

#### **Further information**

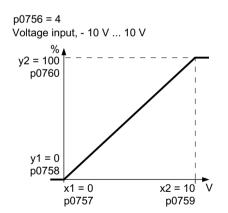
### Signal smoothing

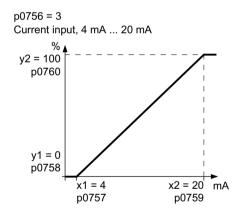
When required, you can smooth the signal, which you read-in via an analog input, using parameter p0753.

Additional information is provided in the parameter list and in function diagram 2251.

Overview of the manuals (Page 581)

## Using an analog input as a digital input

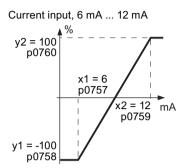

An analog input can also be used as a digital input.


Digital inputs (Page 250)

## 8.4.5 Adjusting characteristics for analog input

## **Function description**

If you change the analog input type using p0756, then the converter automatically selects the appropriate scaling of the analog input. The linear scaling characteristic is defined using two points (p0757, p0758) and (p0759, p0760). Parameters p0757 ... p0760 are assigned to an analog input via their index, e.g. parameters p0757[0] ... p0760[0] belong to analog input 0.






You must define your own characteristic if none of the default types match your particular application.

## Example

The converter should convert a 6 mA ... 12 mA signal into the value range -100% ... 100% via analog input 0. The wire-break monitoring of the converter should respond when 6 mA is fallen below.



#### **Procedure**

1. Set the DIP switch for analog input 0 on the Control Unit to current input ("I").



2. set p0756[0] = 3
You have defined analog input 0 as a current input with wire-break monitoring.

3. Set p0757[0] = 6.0 (x1)

4. Set p0758[0] = -100.0 (y1)

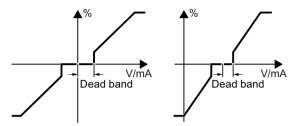
5. Set p0759[0] = 12.0 (x2)

6. Set p0760[0] = 100.0 (y2)

7. Set p0761[0] = 6 An input current < 6 mA results in fault F03505.

The characteristic for the application example is set.  $\Box$ 

# Parameters


| Parameter | Description                                                | Factory setting |
|-----------|------------------------------------------------------------|-----------------|
| p0757[0n] | CU analog inputs characteristic value x1                   | 0               |
| p0758[0n] | CU analog inputs characteristic value y1                   | 0%              |
| p0759[0n] | CU analog inputs characteristic value x2                   | 10              |
| p0760[0n] | CU analog inputs characteristic value y2                   | 100%            |
| p0761[0n] | CU analog inputs wire-break monitoring, response threshold | 2               |
| p0762[0n] | CU analog inputs wire breakage monitoring time             | 100 ms          |

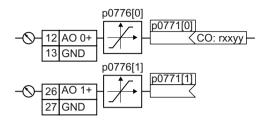
8.4 Adapt the default setting of the terminal strip

# 8.4.6 Setting the deadband

## **Function description**

With the control enabled, electromagnetic interference on the signal cable can cause the motor to slowly rotate in one direction, in spite of a speed setpoint = 0.




The deadband acts on the zero crossover of the analog input characteristic. Internally, the converter sets its speed setpoint = 0, even if the signal at the analog input terminals is slightly positive or negative. This prevents the converter from rotating the motor when the speed setpoint = 0.

#### **Parameter**

| Parameter | Description                  | Factory setting |
|-----------|------------------------------|-----------------|
| p0764[0]  | Analog inputs deadband, AI 0 | 0               |
| p0764[1]  | Analog inputs deadband, AI 1 | 0               |

## 8.4.7 Analog outputs

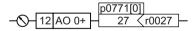
## **Function description**



#### Defining the analog output type

Define the analog output type using parameter p0776.

| AO 0 | Current output (factory setting) | 0 mA +20 mA  | p0776[0] = | 0 |
|------|----------------------------------|--------------|------------|---|
|      | Voltage output                   | 0 V +10 V    |            | 1 |
|      | Current output                   | +4 mA +20 mA |            | 2 |
| AO 1 | Current output (factory setting) | 0 mA +20 mA  | p0776[1] = | 0 |
|      | Voltage output                   | 0 V +10 V    |            | 1 |
|      | Current output                   | +4 mA +20 mA |            | 2 |


## Defining the function of an analog output

You define the analog output function by interconnecting parameter p0771 with a connector output of your choice. Parameter p0771 is assigned to the specific analog output via its index, e.g. parameter p0771[0] is assigned to analog output 0.

Connector outputs are designated in the parameter list with "CO".

Overview of the manuals (Page 581)

## **Example**



To output the converter output current via analog output 0, you must interconnect AO 0 with the signal for the output current.

Set p0771 = 27.

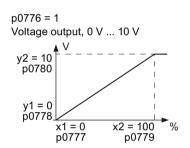
#### **Parameter**

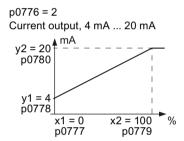
Table 8-6 Frequently used connector outputs (CO) of the converter

| Parameter | Description                      | Factory setting |
|-----------|----------------------------------|-----------------|
| r0021     | CO: Speed actual value, smoothed | - rpm           |
| r0025     | CO: Output voltage, smoothed     | - Vrms          |

## 8.4 Adapt the default setting of the terminal strip

| Parameter | Description                           | Factory setting |
|-----------|---------------------------------------|-----------------|
| r0026     | CO: DC link voltage, smoothed         | - V             |
| r0027     | CO: Absolute actual current, smoothed | - Arms          |
| r0063     | CO: Speed actual value                | - rpm           |


You can find additional connector outputs in the parameter list.

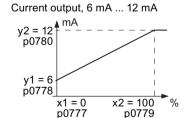

Overview of the manuals (Page 581)

#### 8.4.8 Adjusting characteristics for analog output

## **Function description**

If you change the analog output type, then the converter automatically selects the appropriate scaling of the analog output. The linear scaling characteristic is defined using two points (p0777, p0778) and (p0779, p0780).






Parameters p0777 ... p0780 are assigned to an analog output via their index, e.g. parameters p0777[0] ... p0770[0] belong to analog output 0.

You must define your own characteristic if none of the default types match your particular application.

## Example

Via analog output 0, the converter should convert a signal in the value range 0% ... 100% into an output signal 6 mA ... 12 mA.



## **Procedure**

- 1. Set p0776[0] = 2
  This defines analog output 0 as a current output.
- 2. Set p0777[0] = 0.0 (x1)
- 3. Set p0778[0] = 6.0 (y1)
- 4. Set p0779[0] = 100.0 (x2)
- 5. Set p0780[0] = 12.0 (y2)

The characteristic for the application example is set.

## **Parameters**

Table 8-7 Parameters for the scaling characteristic

| Parameter | Description                               | Factory setting |
|-----------|-------------------------------------------|-----------------|
| p0777[01] | CU analog outputs characteristic value x1 | -               |
| p0778[01] | CU analog outputs characteristic value y1 | 0 V             |
| p0779[01] | CU analog outputs characteristic value x2 | 100%            |
| p0780[01] | CU analog outputs characteristic value y2 | 20 V            |

# 8.5 Safe Torque Off (STO) safety function

# 8.5.1 Safe Torque Off (STO) safety function

#### Overview



The converter with active STO function prevents energy supply to the motor. The motor can no longer generate torque on the motor shaft.

Consequently, the STO function prevents the starting of an electrically-driven machine component.

## The STO safety function conforms to IEC/EN 61800-5-2.

The STO function is defined in IEC/EN 61800-5-2:

"[...] [The converter] does not supply the motor with power that can generate a torque (or for a linear motor, a force)".

## Precondition

The machine manufacturer has already performed a risk assessment, e.g. in compliance with EN ISO 1050, "Safety of machinery - Principles of risk assessment".

## **Function description**

|    | Safe Torque Off (STO)                                                            | Standard converter functions linked with STO                                    |
|----|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 1. | The converter detects that STO has been selected via the failsafe digital input. |                                                                                 |
| 2. | The converter prevents the energy supply to the motor.                           | If you use a motor holding brake, the converter closes the motor holding brake. |
|    |                                                                                  | If you use a line contactor, the converter opens the line contactor.            |

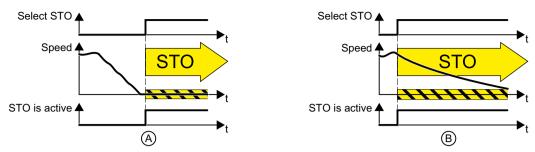



Figure 8-5 Functionality of STO when the motor is at standstill (A) and rotating (B)

(A): When selecting STO, if the motor is already stationary (zero speed), then STO prevents the motor from starting.

(B): If the motor is still rotating (B) when STO is selected, it coasts down to standstill.

## **Example**

The STO function is suitable for applications where the motor is already at a standstill or will come to a standstill in a short, safe period of time through friction.

When STO is active, the converter can no longer electrically brake the motor, so that STO does not shorten the time that it takes for machine components to coast down to zero speed.

| Application example                                                                                                  | Possible solution                                                                                                                                         |  |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| When the EMERGENCY STOP button is pressed, it is not permissible for a stationary motor to inadvertently accelerate. | <ul> <li>Connect the EMERGENCY STOP pushbutton with the fail-safe converter digital input.</li> <li>Select STO via the failsafe digital input.</li> </ul> |  |

## More information

EN 60204-1 defines "EMERGENCY SWITCHING OFF" and "EMERGENCY STOP" as actions taken in an emergency. Further, it defines various stop categories for EMERGENCY STOP. "EMERGENCY SWITCHING OFF" and "EMERGENCY STOP" minimize different risks in the system or machine.

Table 8-8 The distinction between EMERGENCY OFF and EMERGENCY STOP

| Action:             | EMERGENCY SWITCHING OFF                                       | EMERGENCY STOP                          |  |
|---------------------|---------------------------------------------------------------|-----------------------------------------|--|
|                     |                                                               | Stop Category 0 according to EN 60204-1 |  |
| Risk:               |                                                               |                                         |  |
|                     | Electric shock                                                | Unexpected movement                     |  |
| Measure to minimize | Switch off                                                    | Prevent movement                        |  |
| risk:               | Either completely or partially switch off hazardous voltages. | Prevent hazardous movement.             |  |

## 8.5 Safe Torque Off (STO) safety function

| Action:                                       | EMERGENCY SWITCHING OFF                          | EMERGENCY STOP                                                  |
|-----------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------|
|                                               |                                                  | Stop Category 0 according to EN 60204-1                         |
| Classic solution:                             | **************************************           | Switch off the drive power supply                               |
| Solution with the STO                         | Not possible.                                    | ###                                                             |
| safety function inte-<br>grated in the drive: | STO is not suitable for switching off a voltage. |                                                                 |
|                                               |                                                  | Select STO                                                      |
|                                               |                                                  | It is not necessary to switch off the voltage to minimize risk. |

# 8.5.2 Setting the feedback signal for Safe Torque Off

## Overview

The converter signals that the STO safety function is controlled to the higher-level control system using two digital outputs.

# **Function description**

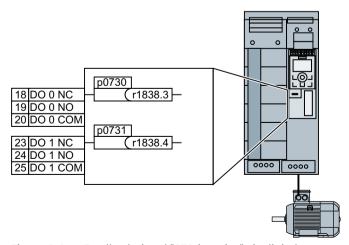



Figure 8-6 Feedback signal "STO is active" via digital outputs

8.5 Safe Torque Off (STO) safety function

For converters equipped with PM240-2 (FSD...FSG) and PM240P-2 (FSD...FSF) Power Modules, you must interconnect the "STO is active" feedback signals with two digital outputs of the Control Unit.

### **Procedure**

- 1. Set p0730 = 1838.3
- 2. Set p0731 = 1838.4

You have interconnected the feedback signal for safety function STO with the digital outputs of the converter.



#### **Parameter**

| Number | Name                                          | Factory setting |
|--------|-----------------------------------------------|-----------------|
| p0730  | BI: CU signal source for terminal DO 0        | 52.3            |
| p0731  | BI: CU signal source for terminal DO 1        | 52.7            |
| r1838  | CO/BO: Gating unit status word 1              |                 |
|        | .03 1 signal: Shutdown path STO_B is inactive |                 |
|        | .04 1 signal: Shutdown path STO_A is inactive |                 |

Further information is provided in the parameter list.

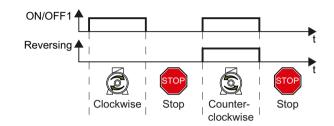


Overview of the manuals (Page 581)

#### Overview



The converter offers various methods to start and stop the motor and reverse its direction.


## Two-wire control, ON/reverse

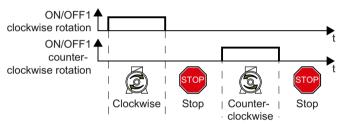
ON/OFF1:

Switches the motor on or off

Reversing:

Reverses the motor direction of rotation




Two-wire control, clockwise/counterclockwise rotation 1 and clockwise/counterclockwise rotation 2

ON/OFF1 clockwise rotation:

Switches the motor on or off, clockwise rotation

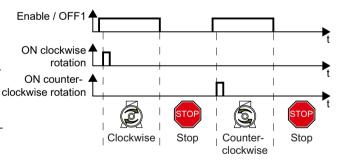
ON/OFF1 counter-clockwise rotation:

Switches the motor on or off, counterclockwise rotation



# Three-wire control, enable/clock-wise/counterclockwise rotation

Enable/OFF1:


Enables the motor to be switched on or switched off

ON clockwise rotation:

Switches on the motor, clockwise rotation

ON counter-clockwise rotation:

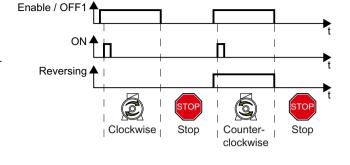
Switches on the motor, counter-clockwise rotation



## Three-wire control, enable/ON/ reverse

Enable/OFF1:

Enables the motor to be switched on or switched off


ON:

Switches on the motor

Reversing:

Reverses the motor direction of rota-

tion



Reversing is disabled in the factory setting. To use the "Reverse" function, you must release the negative rotational direction.



Enable direction of rotation (Page 333)

# 8.6.1 Two-wire control, ON/reverse

# **Function description**

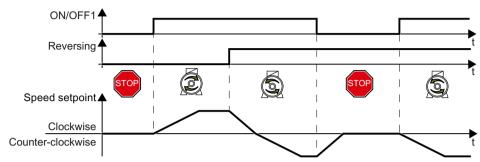



Figure 8-7 Two-wire control, ON/reverse

Command "ON/OFF1" switches the motor on and off. The "Reversing" command inverts the motor direction of rotation.

Table 8-9 Function table

| ON/OFF1 | Reversing | Function                         |
|---------|-----------|----------------------------------|
| 0       | 0         | The motor stops                  |
| 0       | 1         |                                  |
| 1       | 0         | Clockwise motor rotation         |
| 1       | 1         | Counter-clockwise motor rotation |

# **Examples**

Table 8-10 Two-wire control and setting the assignment of the digital inputs

| Parameter        | Description                             |  |
|------------------|-----------------------------------------|--|
| p3334 = 0        | 2/3 wire control selection              |  |
|                  | 0: Two-wire control, ON/reverse         |  |
| p0840[C] = 722.0 | BI: ON/OFF (OFF1)                       |  |
|                  | Command is received via digital input 0 |  |
| p1113[C] = 722.1 | BI: Setpoint inversion (reversing)      |  |
|                  | Command is received via digital input 1 |  |

Table 8-11 Set two-wire control, ON/reverse in quick commissioning

| Parameter  | Description                                  |  |
|------------|----------------------------------------------|--|
| p0015 = 12 | Macro drive unit                             |  |
|            | Assigning digital inputs to the commands:    |  |
|            | Digital input 0: ON/OFF1                     |  |
|            | Digital input 1: Reversing                   |  |
|            | Default setting of the interfaces (Page 124) |  |

## **Parameter**

| Parameter | Description                      | Factory setting |
|-----------|----------------------------------|-----------------|
| p0840[C]  | BI: ON/OFF (OFF1)                | 0               |
| p1113[C]  | BI: Setpoint inversion           | 0               |
| r0722.0n  | CO/BO: CU digital inputs, status | -               |
| p3334     | 2/3 wire control selection       | 0               |
|           | 0: Two-wire control, ON/reverse  |                 |

## 8.6.2 Two-wire control, clockwise/counterclockwise rotation 1

## **Function description**

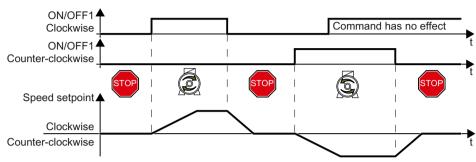



Figure 8-8 Two-wire control, clockwise/counterclockwise rotation 1

Commands "ON/OFF1 clockwise rotation" and "ON/OFF1 counter-clockwise rotation" switch on the motor - and simultaneously select a direction of rotation. The converter only accepts a new command when the motor is at a standstill.

Table 8-12 Function table

| ON/OFF1 clockwise rotation | ON/OFF1 counter-clock-<br>wise rotation | Function                                                                                |
|----------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------|
| 0                          | 0                                       | The motor stops.                                                                        |
| 1                          | 0                                       | Clockwise motor rotation.                                                               |
| 0                          | 1                                       | Counter-clockwise motor rotation.                                                       |
| 1                          | 1                                       | The motor direction of rotation is defined by the command that first reaches state "1". |

## **Examples**

Table 8-13 Two-wire control and setting the assignment of the digital inputs

| Parameter        | Description                                                         |  |
|------------------|---------------------------------------------------------------------|--|
| p3334 = 1        | 2/3 wire control selection                                          |  |
|                  | 1: Two-wire control, clockwise/counterclockwise rotation 1          |  |
| p3330[C] = 722.0 | BI: 2/3 wire control command 1 (ON/OFF1 clockwise rotation)         |  |
|                  | Command is received via digital input 0                             |  |
| p3331[C] = 722.1 | BI: 2/3 wire control command 2 (ON/OFF1 counter-clockwise rotation) |  |
|                  | Command is received via digital input 1                             |  |

Table 8-14 Set two-wire control, clockwise/counterclockwise rotation 1 in quick commissioning

| Parameter  | Description                                         |  |
|------------|-----------------------------------------------------|--|
| p0015 = 17 | Macro drive unit                                    |  |
|            | Assigning digital inputs to the commands:           |  |
|            | Digital input 0: ON/OFF1 clockwise rotation         |  |
|            | Digital input 1: ON/OFF1 counter-clockwise rotation |  |
|            | Default setting of the interfaces (Page 124)        |  |

## **Parameter**

| Parameter | Description                                                | Factory setting |
|-----------|------------------------------------------------------------|-----------------|
| r0722.0n  | CO/BO: CU digital inputs, status                           | -               |
| p0840[C]  | BI: ON/OFF (OFF1)                                          | 0               |
| p1113[C]  | BI: Setpoint inversion                                     | 0               |
| p3330[C]  | BI: 2/3 wire control command 1                             | 0               |
| p3331[C]  | BI: 2/3 wire control command 2                             | 0               |
| r3333.0n  | CO/BO: 2/3 wire control control word                       | -               |
| p3334     | 2/3 wire control selection                                 | 0               |
|           | 1: Two-wire control, clockwise/counterclockwise rotation 1 |                 |

# 8.6.3 Two-wire control, clockwise/counterclockwise rotation 2

## **Function description**

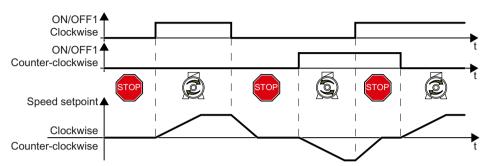



Figure 8-9 Two-wire control, clockwise/counterclockwise rotation 2

Commands "ON/OFF1 clockwise rotation" and "ON/OFF1 counter-clockwise rotation" switch on the motor - and simultaneously select a direction of rotation. The converter accepts a new command at any time, independent of the motor speed.

Table 8-15 Function table

| ON/OFF1 clockwise rotation | ON/OFF1 counter-clock-<br>wise rotation | Function                          |
|----------------------------|-----------------------------------------|-----------------------------------|
| 0                          | 0                                       | The motor stops.                  |
| 1                          | 0                                       | Clockwise motor rotation.         |
| 0                          | 1                                       | Counter-clockwise motor rotation. |
| 1                          | 1                                       | The motor stops.                  |

## **Examples**

Table 8-16 Two-wire control and setting the assignment of the digital inputs

| Parameter        | Description                                                         |  |
|------------------|---------------------------------------------------------------------|--|
| p3334 = 2        | 2/3 wire control selection                                          |  |
|                  | 2: Two-wire control, clockwise/counterclockwise rotation 2          |  |
| p3330[C] = 722.0 | BI: 2/3 wire control command 1 (ON/OFF1 clockwise rotation)         |  |
|                  | Command is received via digital input 0 (DI 0)                      |  |
| p3331[C] = 722.1 | BI: 2/3 wire control command 2 (ON/OFF1 counter-clockwise rotation) |  |
|                  | Command is received via digital input 1 (DI 1)                      |  |

Table 8-17 Set two-wire control, clockwise/counterclockwise rotation 2 in quick commissioning

| Parameter  | Description                                         |
|------------|-----------------------------------------------------|
| p0015 = 18 | Macro drive unit                                    |
|            | Assigning digital inputs to the commands:           |
|            | Digital input 0: ON/OFF1 clockwise rotation         |
|            | Digital input 1: ON/OFF1 counter-clockwise rotation |
|            | Default setting of the interfaces (Page 124)        |

## **Parameter**

| Parameter | Description                                                | Factory setting |
|-----------|------------------------------------------------------------|-----------------|
| r0722.0n  | CO/BO: CU digital inputs, status                           | -               |
| p0840[C]  | BI: ON/OFF (OFF1)                                          | 0               |
| p1113[C]  | BI: Setpoint inversion                                     | 0               |
| p3330[C]  | BI: 2/3 wire control command 1                             | 0               |
| p3331[C]  | BI: 2/3 wire control command 2                             | 0               |
| r3333.0n  | CO/BO: 2/3 wire control control word                       | -               |
| p3334     | 2/3 wire control selection                                 | 0               |
|           | 2: Two-wire control, clockwise/counterclockwise rotation 2 |                 |

## 8.6.4 Three-wire control, enable/clockwise/counterclockwise rotation

## **Function description**

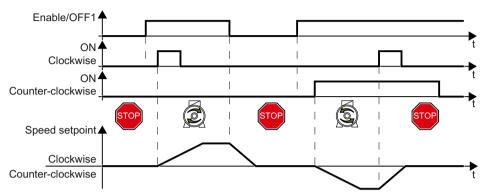



Figure 8-10 Three-wire control, enable/clockwise/counterclockwise rotation

The "Enable" command is a precondition for switching on the motor. Commands "ON clockwise rotation" and "ON counter-clockwise rotation" switch on the motor - and simultaneously select a direction of rotation. Removing the enable switches the motor off (OFF1).

Table 8-18 Function table

| Enable / OFF1 | ON clockwise rota-<br>tion | ON counter-clock-<br>wise rotation | Function                          |  |
|---------------|----------------------------|------------------------------------|-----------------------------------|--|
| 0             | 0 or 1                     | 0 or 1                             | The motor stops.                  |  |
| 1             | 0 →1                       | 0                                  | Clockwise motor rotation.         |  |
| 1             | 0                          | 0 →1                               | Counter-clockwise motor rotation. |  |
| 1             | 1                          | 1                                  | The motor stops.                  |  |

## **Examples**

Table 8-19 Three-wire control and setting the assignment of the digital inputs

| Parameter        | Description                                                      |
|------------------|------------------------------------------------------------------|
| p3334 = 3        | 2/3 wire control selection                                       |
|                  | 3: Three-wire control enable/clockwise/counterclockwise rotation |
| p3330[C] = 722.0 | BI: 2/3 wire control command 1 (enable/OFF1)                     |
|                  | Command is received via digital input 0                          |
| p3331[C] = 722.1 | BI: 2/3 wire control command 2 (ON clockwise rotation)           |
|                  | Command is received via digital input 0                          |
| p3332[C] = 722.2 | BI: 2/3 wire control command 3 (ON counter-clockwise rotation)   |
|                  | Command is received via digital input 0                          |

Table 8-20 Set three-wire control, enable/clockwise/counterclockwise rotation in quick commissioning

| Parameter  | Description                                    |
|------------|------------------------------------------------|
| p0015 = 19 | Macro drive unit                               |
|            | Assigning digital inputs to the commands:      |
|            | Digital input 0: Enable/OFF1                   |
|            | Digital input 1: ON clockwise rotation         |
|            | Digital input 2: ON counter-clockwise rotation |
|            | Default setting of the interfaces (Page 124)   |

## **Parameter**

| Parameter | Description                                                      | Factory setting |
|-----------|------------------------------------------------------------------|-----------------|
| r0722.0n  | CO/BO: CU digital inputs, status                                 | -               |
| p0840[C]  | BI: ON/OFF (OFF1)                                                | 0               |
| p1113[C]  | BI: Setpoint inversion                                           | 0               |
| p3330[C]  | BI: 2/3 wire control command 1                                   | 0               |
| p3331[C]  | BI: 2/3 wire control command 2                                   | 0               |
| p3332[C]  | BI: 2/3 wire control command 3                                   | 0               |
| r3333.0n  | CO/BO: 2/3 wire control control word                             | -               |
| p3334     | 2/3 wire control selection                                       | 0               |
|           | 3: Three-wire control enable/clockwise/counterclockwise rotation |                 |

# 8.6.5 Three-wire control, enable/ON/reverse

## **Function description**

The "Enable" command is a precondition for switching on the motor. The "ON" command switches the motor on. The "Reversing" command inverts the motor direction of rotation. Removing the enable switches the motor off (OFF1).

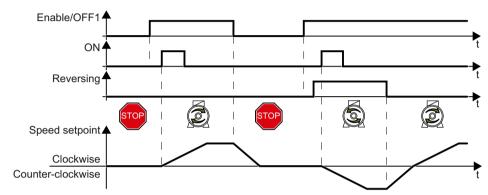



Figure 8-11 Three-wire control, enable/ON/reverse

Table 8-21 Function table

| Enable / OFF1 | ON     | Reversing | Function                          |  |
|---------------|--------|-----------|-----------------------------------|--|
| 0             | 0 or 1 | 0 or 1    | The motor stops.                  |  |
| 1             | 0→1    | 0         | Clockwise motor rotation.         |  |
| 1             | 0→1    | 1         | Counter-clockwise motor rotation. |  |

## **Examples**

Table 8-22 Changing the assignment of the digital inputs

| Parameter        | Description                                                      |
|------------------|------------------------------------------------------------------|
| p3334 = 4        | 2/3 wire control selection                                       |
|                  | 4: Three-wire control enable/clockwise/counterclockwise rotation |
| p3330[C] = 722.0 | BI: 2/3 wire control command 1 (enable/OFF1)                     |
|                  | Command is received via digital input 0                          |
| p3331[C] = 722.1 | BI: 2/3 wire control command 2 (ON)                              |
|                  | Command is received via digital input 0                          |
| p3332[C] = 722.2 | BI: 2/3 wire control command 3 (reversing)                       |
|                  | Command is received via digital input 0                          |

Table 8-23 Set three-wire control, enable/ON/reverse in quick commissioning

| Parameter  | Description                                  |
|------------|----------------------------------------------|
| p0015 = 20 | Macro drive unit                             |
|            | Assigning digital inputs to the commands:    |
|            | Digital input 0: Enable/OFF1                 |
|            | Digital input 1: ON                          |
|            | Digital input 2: Reversing                   |
|            | Default setting of the interfaces (Page 124) |

## **Parameter**

| Parameter | Description                             | Factory setting |
|-----------|-----------------------------------------|-----------------|
| r0722.0n  | CO/BO: CU digital inputs, status        | -               |
| p0840[C]  | BI: ON/OFF (OFF1)                       | 0               |
| p1113[C]  | BI: Setpoint inversion                  | 0               |
| p3330[C]  | BI: 2/3 wire control command 1          | 0               |
| p3331[C]  | BI: 2/3 wire control command 2          | 0               |
| p3332[C]  | BI: 2/3 wire control command 3          | 0               |
| r3333.0n  | CO/BO: 2/3 wire control control word    | -               |
| p3334     | 2/3 wire control selection              | 0               |
|           | 4: Three-wire control enable/ON/reverse |                 |

## 8.7 Drive control via PROFIBUS or PROFINET

#### 8.7.1 Receive data and send data

#### Overview

#### Cyclic data exchange



The converter receives cyclic data from the higher-level control - and returns cyclic data to the control.

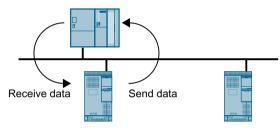



Figure 8-12 Cyclic data exchange

Converter and higher-level control system package their data in the form of telegrams.

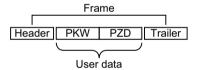


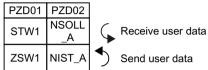

Figure 8-13 Telegram structure

A telegram has the following structure:

- Header and trailer form the protocol frame.
- User data is located within the frame:
  - PKW: The control system can read or change the parameters in the converter via "PKW data".
    - Not every telegram has a "PKW range".
  - PZD: The converter receives control commands and setpoints from the higher-level control - and sends status messages and actual values via "PZD data".

## PROFIdrive and telegram numbers

For typical applications, certain telegrams are defined in the PROFIdrive profile and are assigned a fixed PROFIdrive telegram number. As a consequence, behind a PROFIdrive telegram number, there is a defined signal composition. As a consequence, a telegram number uniquely describes cyclic data exchange.


The telegrams are identical for PROFIBUS and PROFINET.

# 8.7.2 Telegrams

## Overview

The user data of the telegrams that are available are described in the following.

#### Telegram 1



16-bit speed setpoint

## Telegram 20

| PZD01   | PZD02  | PZD03  | PZD04 | PZD05 | PZD06          |
|---------|--------|--------|-------|-------|----------------|
| STW1    | NSOLL_ |        |       |       |                |
|         | l A    |        |       |       |                |
| 70\\\/1 | NIST_A | IAIST_ | MIST_ | PIST_ | MELD_<br>NAMUR |
| 23001   | GLATT  | GLATT  | GLATT | GLATT | NAMUR          |

16-bit speed setpoint for VIK-Namur

#### Telegram 350

| PZD01 | PZD02           | PZD03           | PZD04 |
|-------|-----------------|-----------------|-------|
| STW1  | NSOLL<br>_A     | M_LIM           | STW3  |
| ZSW1  | NIST_A<br>GLATT | IAIST_<br>GLATT | ZSW3  |

<sup>16-</sup>bit speed setpoint with torque limiting

### Telegram 352

| PZD01 | PZD02           | PZD03             | PZD04          | PZD05         | PZD06          |
|-------|-----------------|-------------------|----------------|---------------|----------------|
| STW1  | _A              | Freely assignable |                |               |                |
| ZSW1  | NIST_A<br>GLATT | IAIST_<br>GLATT   | MIST_<br>GLATT | WARN_<br>CODE | FAULT_<br>CODE |

<sup>16-</sup>bit speed setpoint for PCS7

## Telegram 353

|   | PZD01 | PZD02           |
|---|-------|-----------------|
|   | STW1  | NSOLL<br>_A     |
| \ | ZSW1  | NIST_A<br>GLATT |

16-bit speed setpoint with reading and writing to parameters

## Telegram 354

|   |    |   | PZD01 | PZD02       | PZD03    | PZD04     | PZD05 | PZD06 |
|---|----|---|-------|-------------|----------|-----------|-------|-------|
|   | PK |   | STW1  | NSOLL<br>_A | Freely a | ssignable | )     |       |
| ſ |    | \ | 7SW1  | NIST_A      |          |           | WARN_ |       |
| L |    |   | 23001 | GLATT       | GLATT    | GLATT     | CODE  | CODE  |

16-bit speed setpoint for PCS7 with reading and writing to parameters

## 8.7 Drive control via PROFIBUS or PROFINET

## Telegram 999

| PZD01 | PZD02   | PZD03    | PZD04       | PZD05               | PZD06         | PZD07  | PZD08 | PZD09 | PZD10 | PZD11 | PZD12  | PZD <sup>2</sup> | 13 | . PZ | D17 |
|-------|---------|----------|-------------|---------------------|---------------|--------|-------|-------|-------|-------|--------|------------------|----|------|-----|
| STW1  | Telegra | m length | for the re  | l<br>ceive dat<br>l | l<br>ta<br>I  | l      |       |       |       | <br>  | l      |                  |    |      |     |
| ZSW1  | Telegra | m length | for the tra | l<br>ansmit da<br>I | l<br>ita<br>I | l<br>I | l     | l     |       | l     | l<br>I | 1 I<br>1 I       | 1  | 1    | _   |

Unassigned interconnection and length

Table 8-24 Abbreviations

| Abbreviation | Explanation                  | Abbreviation | Explanation                      |
|--------------|------------------------------|--------------|----------------------------------|
| PZD          | Process data                 | PKW          | Parameter channel                |
| STW          | Control word                 | MIST_GLATT   | Actual smoothed torque           |
| ZSW          | V Status word                |              | Actual smoothed active power     |
| NSOLL_A      | Speed setpoint               | M_LIM        | Torque limiting value            |
| NIST_A       | Speed actual value           | FAULT_CODE   | Fault code                       |
| NIST_A_GLATT | Smoothed actual speed value  | WARN_CODE    | Alarm code                       |
| IAIST_GLATT  | Smoothed current actual val- | MELD_NAMUR   | Message according to the VIK-NA- |
|              | ue                           |              | MUR definition                   |

# **Function description**

# Control word 1 (STW1)

| Bit | Significance             |                          | Explanation                                                                                                                        | Signal inter-                       |                                                                                                                    |  |
|-----|--------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|
|     | Telegram 20              | All other tele-<br>grams |                                                                                                                                    | connection<br>in the con-<br>verter |                                                                                                                    |  |
| 0   | 0 = OFF1                 |                          | The motor brakes with the ramp-down time p1121 of the ramp-function generator. The converter switches off the motor at standstill. | p0840[0] = r2090.0                  |                                                                                                                    |  |
|     | 0 → 1 = ON               |                          | $0 \rightarrow 1 = ON$                                                                                                             |                                     | The converter goes into the "ready" state. If, in addition bit $3 = 1$ , then the converter switches on the motor. |  |
| 1   | 0 = OFF2                 |                          | Switch off the motor immediately, the motor then coasts down to a standstill.                                                      |                                     |                                                                                                                    |  |
|     | 1 = No OFF2              |                          | The motor can be switched on (ON command).                                                                                         |                                     |                                                                                                                    |  |
| 2   | 0 = Quick stop (0        | OFF3)                    | Quick stop: The motor brakes to a standstill with the OFF3 ramp-down time p1135.                                                   | p0848[0] =<br>r2090.2               |                                                                                                                    |  |
|     | 1 = No quick stop (OFF3) |                          | The motor can be switched on (ON command).                                                                                         |                                     |                                                                                                                    |  |
| 3   | 0 = Inhibit operation    |                          | Immediately switch-off motor (cancel pulses).                                                                                      | p0852[0] =                          |                                                                                                                    |  |
|     | 1 = Enable operation     |                          | Switch-on motor (pulses can be enabled).                                                                                           | r2090.3                             |                                                                                                                    |  |
| 4   | 0 = Disable RFG          |                          | The converter immediately sets its ramp-function generator output to 0.                                                            | p1140[0] = r2090.4                  |                                                                                                                    |  |
|     | 1 = Do not disab         | le RFG                   | The ramp-function generator can be enabled.                                                                                        |                                     |                                                                                                                    |  |

| Bit  | Significance                           |                          | Explanation                                                                                                         | Signal inter-                       |
|------|----------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------|
|      | Telegram 20                            | All other tele-<br>grams |                                                                                                                     | connection<br>in the con-<br>verter |
| 5    | 0 = Stop RFG                           |                          | The output of the ramp-function generator stops at the actual value.                                                | p1141[0] = r2090.5                  |
|      | 1 = Enable RFG                         |                          | The output of the ramp-function generator follows the setpoint.                                                     |                                     |
| 6    | 0 = Inhibit setpo                      | int                      | The converter brakes the motor with the rampdown time p1121 of the ramp-function generator.                         | p1142[0] = r2090.6                  |
|      | 1 = Enable setpo                       | int                      | Motor accelerates to the setpoint with the rampup time p1120.                                                       |                                     |
| 7    | $0 \rightarrow 1 = Acknowledge faults$ |                          | Acknowledge fault. If the ON command is still active, the converter switches to the "switching on inhibited" state. | p2103[0] = r2090.7                  |
| 8, 9 | Reserved                               |                          |                                                                                                                     |                                     |
| 10   | 0 = No control v                       | ia PLC                   | Converter ignores the process data from the fieldbus.                                                               | p0854[0] =<br>r2090.10              |
|      | 1 = Control via P                      | LC                       | Control via fieldbus, converter accepts the process data from the fieldbus.                                         |                                     |
| 11   | 1 = Direction reversal                 |                          | Invert setpoint in the converter.                                                                                   | p1113[0] = r2090.11                 |
| 12   | Not used                               |                          |                                                                                                                     |                                     |
| 13   | <sup>1)</sup> 1 = MOP up               |                          | Increase the setpoint saved in the motorized potentiometer.                                                         | p1035[0] =<br>r2090.13              |
| 14   | <sup>1)</sup> 1 = MOP down             |                          | Reduce the setpoint saved in the motorized potentiometer.                                                           | p1036[0] = r2090.14                 |
| 15   | CDS bit 0                              | Reserved                 | Changes over between settings for different operation interfaces (command data sets).                               | p0810 =<br>r2090.15                 |

<sup>&</sup>lt;sup>1)</sup> If you change over from another telegram to telegram 20, then the assignment of the previous telegram is kept.

# Status word 1 (ZSW1)

| Bit | Significance               |                          | Remarks                                                                                                                                    | Signal inter-                       |
|-----|----------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
|     | Telegram 20                | All other tele-<br>grams |                                                                                                                                            | connection<br>in the con-<br>verter |
| 0   | 1 = Ready for switching on |                          | Power supply switched on; electronics initialized; pulses locked.                                                                          | p2080[0] =<br>r0899.0               |
| 1   | 1 = Ready                  |                          | Motor is switched on (ON/OFF1 = 1), no fault is active. With the command "Enable operation" (STW1.3), the converter switches on the motor. | p2080[1] = r0899.1                  |
| 2   | 1 = Operation enabled      |                          | Motor follows setpoint. See control word 1, bit 3.                                                                                         | p2080[2] =<br>r0899.2               |
| 3   | 1 = Fault active           |                          | The converter has a fault. Acknowledge fault using STW1.7.                                                                                 | p2080[3] =<br>r2139.3               |
| 4   | 1 = OFF2 inactive          |                          | Coast down to standstill is not active.                                                                                                    | p2080[4] =<br>r0899.4               |

## 8.7 Drive control via PROFIBUS or PROFINET

| Bit | it Significance                           |                                       | Remarks                                                                  | Signal inter-                        |
|-----|-------------------------------------------|---------------------------------------|--------------------------------------------------------------------------|--------------------------------------|
|     | Telegram 20                               | All other tele-<br>grams              |                                                                          | connection<br>in the con-<br>verter  |
| 5   | 1 = OFF3 inactive                         |                                       | Quick stop is not active.                                                | p2080[5] =<br>r0899.5                |
| 6   | 1 = Switching on                          | inhibited active                      | It is only possible to switch on the motor after an OFF1 followed by ON. | p2080[6] = r0899.6                   |
| 7   | 1 = Alarm active                          |                                       | Motor remains switched on; no acknowledgement is necessary.              | p2080[7] =<br>r2139.7                |
| 8   | 1 = Speed deviati<br>erance range         | on within the tol-                    | Setpoint / actual value deviation within the tolerance range.            | p2080[8] =<br>r2197.7                |
| 9   | 1 = Master contro                         | ol requested                          | The automation system is requested to accept the converter control.      | p2080[9] =<br>r0899.9                |
| 10  | 1 = Comparison s<br>exceeded              | peed reached or                       | Speed is greater than or equal to the corresponding maximum speed.       | p2080[10]<br>= r2199.1               |
| 11  | 1 = current or<br>torque limit<br>reached | 1 = torque limit<br>reached           | Comparison value for current or torque has been reached or exceeded.     | p2080[11]<br>= r0056.13 /<br>r1407.7 |
| 12  | 1)                                        | 1 = Holding<br>brake open             | Signal to open and close a motor holding brake.                          | p2080[12]<br>= r0899.12              |
| 13  | 0 = Alarm, motor overtemperature          |                                       |                                                                          | p2080[13]<br>= r2135.14              |
| 14  | 1 = Motor rotates clockwise               |                                       | Internal converter actual value > 0.                                     | p2080[14]                            |
|     | 0 = Motor rotates counter-clock-<br>wise  |                                       | Internal converter actual value < 0.                                     | = r2197.3                            |
| 15  | 1 = CDS display                           | 0 = Alarm, converter thermal overload |                                                                          | p2080[15]<br>= r0836.0 /<br>r2135.15 |

<sup>&</sup>lt;sup>1)</sup> If you change over from another telegram to telegram 20, then the assignment of the previous telegram is kept.

## Control word 3 (STW3)

| Bit | Significance                     | Explanation                             | Signal interconnec-      |
|-----|----------------------------------|-----------------------------------------|--------------------------|
|     | Telegram 350                     |                                         | tion in the converter 1) |
| 0   | 1 = fixed setpoint bit 0         | Selects up to 16 different fixed        | p1020[0] = r2093.0       |
| 1   | 1 = fixed setpoint bit 1         | setpoints.                              | p1021[0] = r2093.1       |
| 2   | 1 = fixed setpoint bit 2         |                                         | p1022[0] = r2093.2       |
| 3   | 1 = fixed setpoint bit 3         |                                         | p1023[0] = r2093.3       |
| 4   | 1 = DDS selection bit 0          | Changes over between settings           | p0820 = r2093.4          |
| 5   | 1 = DDS selection bit 1          | for different motors (drive data sets). | p0821 = r2093.5          |
| 6   | Not used                         |                                         |                          |
| 7   | Not used                         |                                         |                          |
| 8   | 1 = technology controller enable |                                         | p2200[0] = r2093.8       |
| 9   | 1 = enable DC braking            |                                         | p1230[0] = r2093.9       |
| 10  | Not used                         |                                         |                          |

| Bit | Significance                          | Explanation                                                                           | Signal interconnec-      |
|-----|---------------------------------------|---------------------------------------------------------------------------------------|--------------------------|
|     | Telegram 350                          |                                                                                       | tion in the converter 1) |
| 11  | Reserved                              |                                                                                       |                          |
| 12  | 1 = torque control active             | Changes over the control mode                                                         | p1501[0] = r2093.12      |
|     | 0 = speed control active              | for vector control.                                                                   |                          |
| 13  | 1 = no external fault                 |                                                                                       | p2106[0] = r2093.13      |
|     | 0 = external fault is active (F07860) |                                                                                       |                          |
| 14  | Not used                              |                                                                                       |                          |
| 15  | 1 = CDS bit 1                         | Changes over between settings for different operation interfaces (command data sets). | p0811[0] = r2093.15      |

<sup>&</sup>lt;sup>1)</sup> If you switch from telegram 350 to a different one, then the converter sets all interconnections p1020, ... to "0". Exception: p2106 = 1.

## Status word 3 (ZSW3)

| Bit | Significance                                           | Description                                         | Signal intercon-<br>nection in the<br>converter |
|-----|--------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|
| 0   | 1 = DC braking active                                  |                                                     | p2051[3] = r0053                                |
| 1   | 1 =  n_act   > p1226                                   | Absolute current speed > stationary state detection |                                                 |
| 2   | 1 =  n_act   > p1080                                   | Absolute actual speed > minimum speed               |                                                 |
| 3   | 1 = i_act ≧ p2170                                      | Actual current ≥ current threshold value            |                                                 |
| 4   | 1 =  n_act   > p2155                                   | Absolute actual speed > speed threshold value 2     |                                                 |
| 5   | 1 =  n_act   ≤ p2155                                   | Absolute actual speed < speed threshold value 2     |                                                 |
| 6   | 1 =  n_act   ≧ r1119                                   | Speed setpoint reached                              |                                                 |
| 7   | 1 = DC link voltage ≦ p2172                            | Actual DC link voltage ≤ threshold value            |                                                 |
| 8   | 1 = DC link voltage > p2172                            | Actual DC link voltage > threshold value            |                                                 |
| 9   | 1 = ramp-up or ramp-down completed                     | Ramp-function generator is not active.              |                                                 |
| 10  | 1 = technology controller output at<br>the lower limit | Technology controller output ≦ p2292                |                                                 |
| 11  | 1 = technology controller output at<br>the upper limit | Technology controller out-<br>put > p2291           |                                                 |
| 12  | Not used                                               |                                                     |                                                 |
| 13  | Not used                                               |                                                     |                                                 |
| 14  | Not used                                               |                                                     |                                                 |
| 15  | Not used                                               |                                                     |                                                 |

# 8.7 Drive control via PROFIBUS or PROFINET

# Fault word according to the VIK-NAMUR definition (MELD\_NAMUR)

| Bit | Significance                                                    | P no.            |
|-----|-----------------------------------------------------------------|------------------|
| 0   | 1 = Control Unit signals a fault                                | p2051[5] = r3113 |
| 1   | 1 = line fault: Phase failure or inadmissible voltage           |                  |
| 2   | 1 = DC link overvoltage                                         |                  |
| 3   | 1 = Power Module fault, e.g. overcurrent or overtemperature     |                  |
| 4   | 1 = converter overtemperature                                   |                  |
| 5   | 1 = ground fault/phase fault in the motor cable or in the motor |                  |
| 6   | 1 = motor overload                                              |                  |
| 7   | 1 = communication error to the higher-level control system      |                  |
| 8   | 1 = fault in a safety-relevant monitoring channel               |                  |
| 10  | 1 = fault in the internal converter communication               |                  |
| 11  | 1 = line fault                                                  |                  |
| 15  | 1 = other fault                                                 |                  |

## 8.7.3 Parameter channel

## Overview

The parameter channel allows parameter values to be cyclically read and written to.

| Parameter channel |                |            |                         |       |
|-------------------|----------------|------------|-------------------------|-------|
| PKE (1st word)    | IND (2nd word) |            | PWE (3rd and 4th words) |       |
| 1512:11: 10 0     | 15 8           | 7 0        | 15 0                    | 15 0  |
| AK S PNU          | Subindex       | Page index | PWE 1                   | PWE 2 |
| Р                 |                |            |                         |       |
| M                 |                |            |                         |       |

Structure of the parameter channel:

- PKE (1st word)
  - Type of task (read or write).
  - Bit 11 is reserved and is always assigned 0.
  - Parameter number
- IND (2nd word)
  - Parameter index
- PWE (3rd and 4th word)
  - Parameter value

## **Function description**

## AK: Request and response ID

Table 8-25 Request identifiers, control → converter

| AK              | Description                                    | Response | Response identifier |  |
|-----------------|------------------------------------------------|----------|---------------------|--|
|                 |                                                | positive | nega-<br>tive       |  |
| 0               | No request                                     | 0        | 7/8                 |  |
| 1               | Request parameter value                        | 1/2      | 7/8                 |  |
| 2               | Change parameter value (word)                  | 1        | 7/8                 |  |
| 3               | Change parameter value (double word)           | 2        | 7/8                 |  |
| 4               | Request descriptive element 1)                 | 3        | 7/8                 |  |
| 6 <sup>2)</sup> | Request parameter value (field) 1)             | 4/5      | 7/8                 |  |
| 7 2)            | Change parameter value (field, word) 1)        | 4        | 7/8                 |  |
| 8 2)            | Change parameter value (field, double word) 1) | 5        | 7/8                 |  |
| 9               | Request number of field elements               | 6        | 7/8                 |  |

<sup>&</sup>lt;sup>1)</sup> The required element of the parameter is specified in IND (2nd word).

The following request IDs are identical: 1 = 6, 2 = 7 and 3 = 8. We recommend that you use identifiers 6, 7 and 8.

## 8.7 Drive control via PROFIBUS or PROFINET

Table 8-26 Response identifiers, converter → control

| AK | Description                                                                                                                                                                    |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0  | No response                                                                                                                                                                    |  |
| 1  | Transfer parameter value (word)                                                                                                                                                |  |
| 2  | Transfer parameter value (double word)                                                                                                                                         |  |
| 3  | Transfer descriptive element 1)                                                                                                                                                |  |
| 4  | Transfer parameter value (field, word) <sup>2)</sup>                                                                                                                           |  |
| 5  | Transfer parameter value (field, double word) 2)                                                                                                                               |  |
| 6  | Transfer number of field elements                                                                                                                                              |  |
| 7  | Converter cannot process the request. In the most significant word of the parameter channel, the converter sends an error number to the control, refer to the following table. |  |
| 8  | No master controller status / no authorization to change parameters of the parameter channel interface                                                                         |  |

<sup>&</sup>lt;sup>1)</sup> The required element of the parameter is specified in IND (2nd word).

Table 8-27 Error numbers for response identifier 7

| No.    | Description                                                                                                                                                                         |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00 hex | Illegal parameter number (access to a parameter that does not exist)                                                                                                                |
| 01 hex | Parameter value cannot be changed (change request for a parameter value that cannot be changed)                                                                                     |
| 02 hex | Lower or upper value limit exceeded (change request with a value outside the value limits)                                                                                          |
| 03 hex | Incorrect subindex (access to a subindex that does not exist)                                                                                                                       |
| 04 hex | No array (access with a subindex to non-indexed parameters)                                                                                                                         |
| 05 hex | <b>Incorrect data type</b> (change request with a value that does not match the data type of the parameter)                                                                         |
| 06 hex | <b>Setting not permitted, only resetting</b> (change request with a value not equal to 0 without permission)                                                                        |
| 07 hex | <b>Descriptive element cannot be changed</b> (change request to a descriptive element error value that cannot be changed)                                                           |
| 0B hex | No master control (change request but with no master control, see also p0927)                                                                                                       |
| 0C hex | Keyword missing                                                                                                                                                                     |
| 11 hex | Request cannot be executed due to the operating state (access is not possible for temporary reasons that are not specified)                                                         |
| 14 hex | <b>Inadmissible value</b> (change request with a value that is within the limits but which is illegal for other permanent reasons, i.e. a parameter with defined individual values) |
| 65 hex | Parameter number is currently deactivated (depending on the mode of the converter)                                                                                                  |
| 66 hex | Channel width is insufficient (communication channel is too small for response)                                                                                                     |
| 68 hex | Illegal parameter value (parameter can only assume certain values)                                                                                                                  |
| 6A hex | Request not included / task is not supported (the valid request identifications can be found in table "Request identifications controller → converter")                             |
| 6B hex | No change access for a controller that is enabled. (The operating state of the converter prevents a parameter change)                                                               |

<sup>&</sup>lt;sup>2)</sup> The required element of the indexed parameter is specified in IND (2nd word).

| No.    | Description                                                                                                                                                             |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 86 hex | Write access only for commissioning (p0010 = 15) (operating state of the converter prevents a parameter change)                                                         |
| 87 hex | Know-how protection active, access locked                                                                                                                               |
| C8 hex | Change request below the currently valid limit (change request to a value that lies within the "absolute" limits, but is however below the currently valid lower limit) |
| C9 hex | <b>Change request above the currently valid limit</b> (example: a parameter value is too large for the converter power)                                                 |
| CC hex | Change request not permitted (change is not permitted as the access code is not available)                                                                              |

## PNU (parameter number) and page index

| Parameter number | PNU       | Page index |
|------------------|-----------|------------|
| 0000 1999        | 0000 1999 | 0 hex      |
| 2000 3999        | 0000 1999 | 80 hex     |
| 6000 7999        | 0000 1999 | 90 hex     |
| 8000 9999        | 0000 1999 | 20 hex     |
| 10000 11999      | 0000 1999 | A0 hex     |
| 20000 21999      | 0000 1999 | 50 hex     |
| 30000 31999      | 0000 1999 | F0 hex     |
| 60000 61999      | 0000 1999 | 74 hex     |

### Subindex

For indexed parameters, the parameter index is located in subindex as hexadecimal value.

### PWE: Parameter value or connector

Parameter values or connectors can be located in the PWE.

Table 8-28 Parameter value or connector

|                 | PWE 1                   | PWE 2                    |                                                |  |
|-----------------|-------------------------|--------------------------|------------------------------------------------|--|
| Parameter value | Bit 15 0                | Bit 15 8                 | Bit 7 0                                        |  |
|                 | 0                       | 0                        | 8-bit value                                    |  |
|                 | 0                       | 16-bit value             |                                                |  |
|                 | 32-bit                  | t value                  |                                                |  |
| Connector       | Bit 15 0                | Bit 15 0 Bit 15 10 Bit 9 |                                                |  |
|                 | Number of the connector | 3F hex                   | The index or bit field number of the connector |  |

### **Examples**

### Read request: Read out serial number of the Power Module (r7841[2])

To obtain the value of indexed parameter r7841, you must fill the parameter channel with the following data:

- PKE, Bit 12 ... 15 (AK): = 6 (request parameter value (field))
- PKE, Bit 0 ... 10 (PNU): = 1841 (parameter number without offset)
   Parameter number = PNU + offset (page index)
   (7841 = 1841 + 6000)
- IND, bit 8 ... 15 (subindex): = 2 (index of parameter)
- IND, bit 0 ... 7 (page index): = 90 hex (offset 6000 corresponds to 90 hex)
- Because you want to read the parameter value, words 3 and 4 in the parameter channel for requesting the parameter value are irrelevant. They should be assigned a value of 0, for example.

|           | Parameter channel                                                      |          |            |                     |                 |                 |
|-----------|------------------------------------------------------------------------|----------|------------|---------------------|-----------------|-----------------|
| F         | PKE, 1st word IND, 2nd word PWE1 - high, 3rd word PWE2 - low, 4th word |          |            |                     |                 |                 |
| 1512 11   | 10 0                                                                   | 15 8     | 7 0        | 15 0                | 15 8            | 7 0             |
| AK        | Parameter number                                                       | Subindex | Page index | Parameter value     | Parameter value | Parameter value |
| 0 1 1 0 0 | 11100110001                                                            | 00000010 | 10010000   | 0000000000000000000 | 0000000         | 00000000        |

Figure 8-14 Parameter channel for read request from r7841[2]

#### Write request: Change restart mode (p1210)

The restart mode is inhibited in the factory setting (p1210 = 0). In order to activate the automatic restart with "acknowledge all faults and restart for an ON command", p1210 must be set to 26:

- PKE, bit 12 ... 15 (AK): = 7 (change parameter value (field, word))
- PKE, bit 0 ... 10 (PNU): = 4BA hex (1210 = 4BA hex, no offset, as 1210 < 1999)
- IND, bit 8 ... 15 (subindex): = 0 hex (parameter is not indexed)
- IND, bit 0 ... 7 (page index): = 0 hex (offset 0 corresponds to 0 hex)
- PWE1, bit 0 ... 15: = 0 hex
- **PWE2, Bit 0 ... 15:** = **1A hex** (26 = 1A hex)

|           | Parameter channel                                                      |          |            |                             |                            |
|-----------|------------------------------------------------------------------------|----------|------------|-----------------------------|----------------------------|
| F         | PKE, 1st word IND, 2nd word PWE1 - high, 3rd word PWE2 - low, 4th word |          |            |                             |                            |
| 1512 11   | 10 0                                                                   | 15 8     | 7 0        | 15 0                        | 15 0                       |
| AK        | Parameter number                                                       | Subindex | Page index | Parameter value (bit 16 31) | Parameter value (bit 0 15) |
| 0 1 1 1 0 | 10010111010                                                            | 00000000 | 00000000   | 000000000000000000          | 00000000000011010          |

Figure 8-15 A parameter channel to activate the automatic restart with p1210 = 26

### Write request: Assign digital input 2 with the function ON/OFF1 (p0840[1] = 722.2)

In order to link digital input 2 with ON/OFF1, you must assign parameter p0840[1] (source, ON/OFF1) the value 722.2 (DI 2). To do this, you must fill the parameter channel as follows:

- PKE, bit 12 ... 15 (AK): = 7 hex (change parameter value (field, word))
- PKE, bit 0 ... 10 (PNU): = 348 hex (840 = 348 hex, no offset, as 840 < 1999)

- IND, bit 8 ... 15 (subindex): = 1 hex (CDS1 = Index 1)
- IND, bit 0 ... 7 (page index): = 0 hex (offset 0 corresponds to 0 hex)
- PWE1, Bit 0 ... 15: = 2D2 hex (722 = 2D2 hex)
- **PWE2, Bit 10 ... 15: = 3F hex** (drive object for SINAMICS G120, always 63 = 3f hex)
- PWE2, Bit 0 ... 9: = 2 hex (Index of Parameter (DI 2 = 2))

|         | Parameter channel                                                      |                     |          |            |                                 |              |             |
|---------|------------------------------------------------------------------------|---------------------|----------|------------|---------------------------------|--------------|-------------|
|         | PKE, 1st word IND, 2nd word PWE1 - high, 3rd word PWE2 - low, 4th word |                     |          |            |                                 |              |             |
| 1512    | 11                                                                     | 10 0                | 15 8     | 7 0        | 15 0                            | 15 10        | 9 0         |
| AK      |                                                                        | Parameter number    | Subindex | Page index | Parameter value                 | Drive Object | Index       |
| 0 1 1 1 | 0                                                                      | 0 1 1 0 1 0 0 1 0 0 | 00000001 | 00000000   | 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 | 1 1 1 1 1 1  | 00000000010 |

Figure 8-16 Parameter channel to assign digital input 2 with ON/OFF1

## **Function description**

### AK: Request and response ID

Table 8-29 Request identifiers, control → converter

| AK              | Description                                    |          | eidentifier   |
|-----------------|------------------------------------------------|----------|---------------|
|                 |                                                | positive | nega-<br>tive |
| 0               | No request                                     | 0        | 7/8           |
| 1               | Request parameter value                        | 1/2      | 7/8           |
| 2               | Change parameter value (word)                  | 1        | 7/8           |
| 3               | Change parameter value (double word)           | 2        | 7/8           |
| 4               | Request descriptive element 1)                 | 3        | 7/8           |
| 6 <sup>2)</sup> | Request parameter value (field) 1)             | 4/5      | 7/8           |
| 7 2)            | Change parameter value (field, word) 1)        | 4        | 7/8           |
| 8 2)            | Change parameter value (field, double word) 1) | 5        | 7/8           |
| 9               | Request number of field elements               | 6        | 7/8           |

<sup>1)</sup> The required element of the parameter is specified in IND (2nd word).

Table 8-30 Response identifiers, converter → control

| AK | Description                                      |
|----|--------------------------------------------------|
| 0  | No response                                      |
| 1  | Transfer parameter value (word)                  |
| 2  | Transfer parameter value (double word)           |
| 3  | Transfer descriptive element 1)                  |
| 4  | Transfer parameter value (field, word) 2)        |
| 5  | Transfer parameter value (field, double word) 2) |
| 6  | Transfer number of field elements                |

The following request IDs are identical: 1 = 6, 2 = 7 and 3 = 8. We recommend that you use identifiers 6, 7 and 8.

## 8.7 Drive control via PROFIBUS or PROFINET

| AK | Description                                                                                                                                                                    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7  | Converter cannot process the request. In the most significant word of the parameter channel, the converter sends an error number to the control, refer to the following table. |
| 8  | No master controller status / no authorization to change parameters of the parameter channel interface                                                                         |

<sup>1)</sup> The required element of the parameter is specified in IND (2nd word).

Table 8-31 Error numbers for response identifier 7

| No.    | Description                                                                                                                                                                         |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00 hex | Illegal parameter number (access to a parameter that does not exist)                                                                                                                |
| 01 hex | Parameter value cannot be changed (change request for a parameter value that cannot be changed)                                                                                     |
| 02 hex | Lower or upper value limit exceeded (change request with a value outside the value limits)                                                                                          |
| 03 hex | Incorrect subindex (access to a subindex that does not exist)                                                                                                                       |
| 04 hex | No array (access with a subindex to non-indexed parameters)                                                                                                                         |
| 05 hex | <b>Incorrect data type</b> (change request with a value that does not match the data type of the parameter)                                                                         |
| 06 hex | <b>Setting not permitted, only resetting</b> (change request with a value not equal to 0 without permission)                                                                        |
| 07 hex | <b>Descriptive element cannot be changed</b> (change request to a descriptive element error value that cannot be changed)                                                           |
| 0B hex | No master control (change request but with no master control, see also p0927.)                                                                                                      |
| 0C hex | Keyword missing                                                                                                                                                                     |
| 11 hex | <b>Request cannot be executed due to the operating state</b> (access is not possible for temporary reasons that are not specified)                                                  |
| 14 hex | <b>Inadmissible value</b> (change request with a value that is within the limits but which is illegal for other permanent reasons, i.e. a parameter with defined individual values) |
| 65 hex | Parameter number is currently deactivated (depending on the mode of the converter)                                                                                                  |
| 66 hex | Channel width is insufficient (communication channel is too small for response)                                                                                                     |
| 68 hex | Illegal parameter value (parameter can only assume certain values)                                                                                                                  |
| 6A hex | Request not included / task is not supported (the valid request identifications can be found in table "Request identifications controller → converter")                             |
| 6B hex | No change access for a controller that is enabled. (The operating state of the conerter prevents a parameter change)                                                                |
| 86 hex | Write access only for commissioning (p0010 = 15) (operating state of the converter prevents a parameter change)                                                                     |
| 87 hex | Know-how protection active, access locked                                                                                                                                           |
| C8 hex | Change request below the currently valid limit (change request to a value that lies within the "absolute" limits, but is however below the currently valid lower limit)             |
| C9 hex | Change request above the currently valid limit (example: a parameter value is too large for the converter power)                                                                    |
| CC hex | Change request not permitted (change is not permitted as the access code is not available)                                                                                          |
|        | !                                                                                                                                                                                   |

<sup>&</sup>lt;sup>2)</sup> The required element of the indexed parameter is specified in IND (2nd word).

### PNU (parameter number) and page index

| Parameter number | PNU       | Page index |
|------------------|-----------|------------|
| 0000 1999        | 0000 1999 | 0 hex      |
| 2000 3999        | 0000 1999 | 80 hex     |
| 6000 7999        | 0000 1999 | 90 hex     |
| 8000 9999        | 0000 1999 | 20 hex     |
| 10000 11999      | 0000 1999 | A0 hex     |
| 20000 21999      | 0000 1999 | 50 hex     |
| 29000 29999      | 0000 1999 | 70 hex     |
| 30000 31999      | 0000 1999 | F0 hex     |
| 60000 61999      | 0000 1999 | 74 hex     |

#### **Subindex**

For indexed parameters, the parameter index is located in subindex as hexadecimal value.

#### PWE: Parameter value or connector

Parameter values or connectors can be located in the PWE.

Table 8-32 Parameter value or connector

|                 | PWE 1                   | PWE 2        |                                                        |  |
|-----------------|-------------------------|--------------|--------------------------------------------------------|--|
| Parameter value | Bit 15 0                | Bit 15 8     | Bit 7 0                                                |  |
|                 | 0                       | 0            | 8-bit value                                            |  |
|                 | 0                       | 16-bit value |                                                        |  |
|                 | 32-bit value            |              |                                                        |  |
| Connector       | Bit 15 0                | Bit 15 10    | Bit 9 0                                                |  |
|                 | Number of the connector | 3F hex       | The index or bit field<br>number of the connec-<br>tor |  |

## **Examples**

### Read request: Read out serial number of the Power Module (r7841[2])

To obtain the value of the indexed parameter r7841, you must fill the telegram of the parameter channel with the following data:

- PKE, Bit 12 ... 15 (AK): = 6 (request parameter value (field))
- PKE, Bit 0 ... 10 (PNU): = 1841 (parameter number without offset)
   Parameter number = PNU + offset (page index)
   (7841 = 1841 + 6000)
- IND, bit 8 ... 15 (page index): = 2 (index of parameter)

- IND, bit 0 ... 7 (subindex): = 90 hex (offset 6000 corresponds to 90 hex)
- Because you want to read the parameter value, words 3 and 4 in the parameter channel for requesting the parameter value are irrelevant. They should be assigned a value of 0, for example.

| Γ             | Parameter channel |    |                       |            |          |                       |                 |                 |
|---------------|-------------------|----|-----------------------|------------|----------|-----------------------|-----------------|-----------------|
| PKE, 1st word |                   |    | KE, 1st word          | IND, 2r    | nd word  | PWE1 - high, 3rd word | PWE2 - lov      | v, 4th word     |
| Γ             | 1512              | 11 | 10 0                  | 15 8       | 7 0      | 15 0                  | 15 8            | 7 0             |
| Γ             | AK                |    | Parameter number      | Page index | Subindex | Parameter value       | Parameter value | Parameter value |
| (             | 0 1 1 0           | 0  | 1 1 1 0 0 1 1 0 0 0 1 | 00000010   | 10010000 | 0000000000000000000   | 0000000         | 00000000        |

Figure 8-17 Telegram for a read request from r7841[2]

### PNU (parameter number) and page index

| Parameter number | PNU       | Page index |
|------------------|-----------|------------|
| 0000 1999        | 0000 1999 | 0 hex      |
| 2000 3999        | 0000 1999 | 80 hex     |
| 6000 7999        | 0000 1999 | 90 hex     |
| 8000 9999        | 0000 1999 | 20 hex     |
| 10000 11999      | 0000 1999 | A0 hex     |
| 20000 21999      | 0000 1999 | 50 hex     |
| 30000 31999      | 0000 1999 | F0 hex     |
| 60000 61999      | 0000 1999 | 74 hex     |

#### **Subindex**

For indexed parameters, the parameter index is located in subindex as hexadecimal value.

### PWE: Parameter value or connector

Parameter values or connectors can be located in the PWE.

Table 8-33 Parameter value or connector

|                 | PWE 1                   |           | PWE 2                                          |
|-----------------|-------------------------|-----------|------------------------------------------------|
| Parameter value | Bit 15 0                | Bit 15 8  | Bit 7 0                                        |
|                 | 0                       | 0         | 8-bit value                                    |
|                 | 0                       | 16        | -bit value                                     |
|                 | 32-bit                  | value     |                                                |
| Connector       | Bit 15 0                | Bit 15 10 | Bit 9 0                                        |
|                 | Number of the connector | 3F hex    | The index or bit field number of the connector |

### 8.7.4 Examples

### Read request: Read out serial number of the Power Module (p7841[2])

To obtain the value of the indexed parameter p7841, you must fill the telegram of the parameter channel with the following data:

- PKE, Bit 12 ... 15 (AK): = 6 (request parameter value (field))
- PKE, Bit 0 ... 10 (PNU): = 1841 (parameter number without offset)
   Parameter number = PNU + offset (page index)
   (7841 = 1841 + 6000)
- IND, bit 8 ... 15 (subindex): = 2 (index of parameter)
- IND, bit 0 ... 7 (page index): = 90 hex (offset 6000 corresponds to 90 hex)
- Because you want to read the parameter value, words 3 and 4 in the parameter channel for requesting the parameter value are irrelevant. They should be assigned a value of 0, for example.

|               | Parameter channel |                       |          |            |                       |              |                 |
|---------------|-------------------|-----------------------|----------|------------|-----------------------|--------------|-----------------|
| PKE, 1st word |                   | PKE, 1st word         | IND, 2r  | nd word    | PWE1 - high, 3rd word | PWE2         | - low, 4th word |
| 1512          | 11                | 10 0                  | 15 8     | 7 0        | 15 0                  | 15 10        | 9 0             |
| AK            |                   | Parameter number      | Subindex | Page index | Parameter value       | Drive object | Index           |
| 0 1 1 0       | 0                 | 1 1 1 0 0 1 1 0 0 0 1 | 00000010 | 10010000   | 0000000000000000000   | 000000       | 00000000000     |

Figure 8-18 Telegram for a read request from p7841[2]

#### Write request: Change restart mode (p1210)

The restart mode is inhibited in the factory setting (p1210 = 0). In order to activate the automatic restart with "acknowledge all faults and restart for an ON command", p1210 must be set to 26:

- PKE, bit 12 ... 15 (AK): = 7 (change parameter value (field, word))
- PKE, bit 0 ... 10 (PNU): = 4BA hex (1210 = 4BA hex, no offset, as 1210 < 1999)
- IND, bit 8 ... 15 (subindex): = 0 hex (parameter is not indexed)
- IND, bit 0 ... 7 (page index): = 0 hex (offset 0 corresponds to 0 hex)
- PWE1, bit 0 ... 15: = 0 hex
- **PWE2, Bit 0 ... 15:** = **1A hex** (26 = 1A hex)

|               | Parameter channel |                  |          |            |                             |                            |
|---------------|-------------------|------------------|----------|------------|-----------------------------|----------------------------|
| PKE, 1st word |                   | PKE, 1st word    | IND, 2r  | nd word    | PWE1 - high, 3rd word       | PWE2 - low, 4th word       |
| 1512          | 11                | 10 0             | 15 8     | 7 0        | 15 0                        | 15 0                       |
| AK            |                   | Parameter number | Subindex | Page index | Parameter value (bit 16 31) | Parameter value (bit 0 15) |
| 0 1 1 1       | 0                 | 10010111010      | 00000000 | 0000000    | 0000000000000000000         | 00000000000011010          |

Figure 8-19 Telegram, to activate the automatic restart with p1210 = 26

## Write request: Assign digital input 2 with the function ON/OFF1 (p0840[1] = 722.2)

In order to link digital input 2 with ON/OFF1, you must assign parameter p0840[1] (source, ON/OFF1) the value 722.2 (DI 2). To do this, you must populate the telegram of the parameter channel as follows:

- PKE, bit 12 ... 15 (AK): = 7 hex (change parameter value (field, word))
- **PKE, bit 0 ... 10 (PNU): = 348 hex** (840 = 348 hex, no offset, as 840 < 1999)

## 8.7 Drive control via PROFIBUS or PROFINET

- IND, bit 8 ... 15 (subindex): = 1 hex (CDS1 = Index 1)
- IND, bit 0 ... 7 (page index): = 0 hex (offset 0 corresponds to 0 hex)
- **PWE1, Bit 0 ... 15**: = **2D2 hex** (722 = 2D2 hex)
- **PWE2, Bit 10 ... 15: = 3F hex** (drive object for SINAMICS G120, always 63 = 3f hex)
- **PWE2, Bit 0 ... 9: = 2 hex** (Index of Parameter (DI 2 = 2))

|                               | Parameter channel |                  |          |                                 |                       |              |                 |
|-------------------------------|-------------------|------------------|----------|---------------------------------|-----------------------|--------------|-----------------|
| PKE, 1st word                 |                   |                  | IND, 2r  | nd word                         | PWE1 - high, 3rd word | PWE2         | - low, 4th word |
| 1512                          | 11                | 10 0             | 15 8     | 7 0                             | 15 0                  | 15 10        | 9 0             |
| AK                            |                   | Parameter number | Subindex | Page index                      | Parameter value       | Drive Object | Index           |
| 0 1 1 1 0 0 1 1 0 1 0 0 1 0 0 |                   | 00000001         | 00000000 | 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 | 1 1 1 1 1 1           | 00000000010  |                 |

Figure 8-20 Telegram, to assign DI 2 with ON/OFF1

## 8.7.5 Expanding or freely interconnecting telegrams

#### Overview

When you have selected a telegram, the converter interconnects the corresponding signals with the fieldbus interface. Generally, these interconnections are locked so that they cannot be changed. However, with the appropriate setting in the converter, the telegram can be extended or even freely interconnected.

## **Function description**

#### Interconnection of send data and receive data

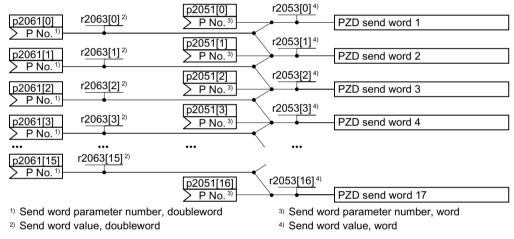



Figure 8-21 Interconnection of the send data

In the converter, the send data are available in the "Word" format (p2051) - and in the "Double word" format (p2061). If you set a specific telegram, or you change the telegram, the converter automatically interconnects parameters p2051 and p2061 with the appropriate signals.

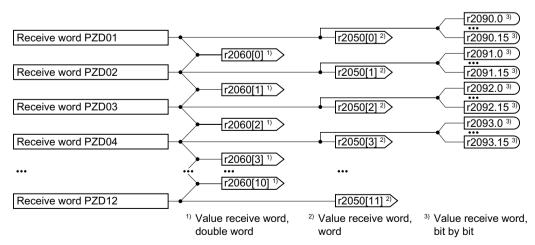



Figure 8-22 Interconnection of the receive data

#### 8.7 Drive control via PROFIBUS or PROFINET

The converter saves the receive data as follows:

- "Word" format in r2050
- "Double word" format in r2060
- Bit-by-bit in r2090 ... r2093

### **Extending a telegram: Procedure**

- 1. Set p0922 = 999.
- 2. Set parameter p2079 to the value of the corresponding telegram.
- 3. Interconnect additional send words and receive words with signals of your choice via parameters r2050 and p2051.

You have extended a telegram.

### Freely interconnecting signals in the telegram: Procedure

- 1. Set p0922 = 999.
- 2. Set p2079 = 999.
- 3. Interconnect additional send words and receive words with signals of your choice via parameters r2050 and p2051.

You have freely interconnected a telegram.

## Example

You wish to extend telegram 1 to 6 send words and 6 receive words. You want to test the extension by initiating that the converter returns each receive word back to the higher-level control system.

### **Procedure**

- 1. p0922 = 999
- 2. p2079 = 1
- 3. p2051[2] = r2050[2]
- 4. ...
- 5. p2051[5] = r2050[5]
- 6. Test the telegram length for received and sent words:
  - r2067[0] = 6
  - r2067[1] = 6

You wish to extend telegram 1 to 6 send words and 6 receive words.

### **Parameter**

| Number     | Name                                            | Factory setting                    |
|------------|-------------------------------------------------|------------------------------------|
| p0922      | PROFIdrive PZD telegram selection               | 1                                  |
| r2050[011] | CO: PROFIdrive PZD receive word                 | -                                  |
| p2051[016] | CI: PROFIdrive PZD send word                    | 0 or dependent on<br>the converter |
| r2053[016] | PROFIdrive diagnostics send PZD word            | -                                  |
| r2060[010] | CO: PROFIdrive PZD receive double word          | -                                  |
| p2061[015] | CI: PROFIdrive PZD send double word             | 0                                  |
| r2063[015] | PROFIdrive diagnostics PZD send double word     | -                                  |
| r2067      | PZD maximum interconnected                      | -                                  |
|            | [0] Receive (r2050, r2060)                      |                                    |
|            | [1] Send (p2051, p2061)                         |                                    |
| p2079      | PROFIdrive PZD telegram selection extended      | 1                                  |
| p2080[015] | BI: Binector-connector converter, status word 1 | [0] 899                            |
|            |                                                 | [1] 899.1                          |
|            |                                                 | [2] 899.2                          |
|            |                                                 | [3] 2139.3                         |
|            |                                                 | [4] 899.4                          |
|            |                                                 | [5] 899.5                          |
|            |                                                 | [6] 899.6                          |
|            |                                                 | [7] 2139.7                         |
|            |                                                 | [8] 2197.7                         |
|            |                                                 | [9] 899.9                          |
|            |                                                 | [10] 2199.1                        |
|            |                                                 | [11] 1407.7                        |
|            |                                                 | [12] 0                             |
|            |                                                 | [13] 2135.14                       |
|            |                                                 | [14] 2197.3                        |
|            |                                                 | [15] 2135.15                       |
| r2090.015  | BO: PROFIdrive receive PZD1 bit by bit          | -                                  |
| r2091.015  | BO: PROFIdrive PZD2 receive bit-serial          | -                                  |
| r2092.015  | BO: PROFIdrive PZD3 receive bit-serial          | -                                  |
| r2093.015  | BO: PROFIdrive PZD4 receive bit-serial          | -                                  |

## 8.7.6 Device-to-device communication

### Overview

"Direct data exchange" is sometimes called "device-to-device communication" or "data exchange broadcast". With direct data exchange, devices exchange data without any direct involvement of the master.

#### 8.7 Drive control via PROFIBLIS or PROFINET

### Additional information

Further information about the "Direct data exchange" function is provided in the Fieldbus function manual.

Overview of the manuals (Page 581)

#### 8.7.7 Acyclically reading and writing converter parameters

### Overview

The converter supports the writing and reading of parameters via acyclic communication:

- For PROFIBUS: Up to 240 bytes per write or read request via data set 47
- For PROFINET: Write or read requests via B02E hex and B02F hex

### Example

### Application example, "Read and write to parameters"

Further information is provided on the Internet:



Application examples (<a href="https://support.industry.siemens.com/cs/ww/en/view/29157692">https://support.industry.siemens.com/cs/ww/en/view/29157692</a>)

## **Further information**

Further information about acyclic communication is provided in the Fieldbus function manual.



Overview of the manuals (Page 581)

## 8.8 Drive control via USS

### Overview



USS is used to transfer cyclic process data and acyclic parameter data between precisely one master and up to 31 devices. The converter is always the device, and sends data when requested to do so by the master. Device-to-device communication is not possible.

## **Function description**

## Control word 1 (STW1)

| Bit  | Meaning                                | Explanation                                                                                                                              | Signal inter-<br>connection<br>in the con-<br>verter |
|------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 0    | 0 = OFF1                               | The motor brakes with the ramp-down time p1121 of<br>the ramp-function generator. The converter switches<br>off the motor at standstill. | p0840[0] = r2090.0                                   |
|      | $0 \rightarrow 1 = ON$                 | The converter goes into the "ready" state. If, in addition, bit $3 = 1$ , the converter switches on the motor.                           |                                                      |
| 1    | 0 = OFF2                               | Switch off the motor immediately, the motor then coasts down to a standstill.                                                            | p0844[0] = r2090.1                                   |
|      | 1 = No OFF2                            | The motor can be switched on (ON command).                                                                                               |                                                      |
| 2    | 0 = Quick stop (OFF3)                  | Quick stop: The motor brakes with the OFF3 rampdown time p1135 down to standstill.                                                       | p0848[0] = r2090.2                                   |
|      | 1 = No quick stop (OFF3)               | The motor can be switched on (ON command).                                                                                               |                                                      |
| 3    | 0 = Inhibit operation                  | Immediately switch-off motor (cancel pulses).                                                                                            | p0852[0] =                                           |
|      | 1 = Enable operation                   | Switch-on motor (pulses can be enabled).                                                                                                 | r2090.3                                              |
| 4    | 0 = Disable RFG                        | The converter immediately sets its ramp-function generator output to 0.                                                                  | p1140[0] = r2090.4                                   |
|      | 1 = Do not disable RFG                 | The ramp-function generator can be enabled.                                                                                              |                                                      |
| 5    | 0 = Stop RFG                           | The output of the ramp-function generator stops at the actual value.                                                                     | p1141[0] = r2090.5                                   |
|      | 1 = Enable RFG                         | The output of the ramp-function generator follows the setpoint.                                                                          |                                                      |
| 6    | 0 = Inhibit setpoint                   | The converter brakes the motor with the ramp-down time p1121 of the ramp-function generator.                                             | p1142[0] = r2090.6                                   |
|      | 1 = Enable setpoint                    | Motor accelerates with the ramp-up time p1120 to the setpoint.                                                                           |                                                      |
| 7    | $0 \rightarrow 1 = Acknowledge$ faults | Acknowledge fault. If the ON command is still active, the converter switches to the "switching on inhibited" state.                      | p2103[0] = r2090.7                                   |
| 8, 9 | Reserved                               |                                                                                                                                          |                                                      |
| 10   | 0 = No control via PLC                 | Converter ignores the process data from the fieldbus.                                                                                    | p0854[0] =                                           |
|      | 1 = Control via PLC                    | Control via fieldbus, converter accepts the process data from the fieldbus.                                                              | r2090.10                                             |

## 8.8 Drive control via USS

| Bit | Meaning                | Explanation                                                 | Signal inter-<br>connection<br>in the con-<br>verter |
|-----|------------------------|-------------------------------------------------------------|------------------------------------------------------|
| 11  | 1 = Direction reversal | Invert setpoint in the converter.                           | p1113[0] =<br>r2090.11                               |
| 12  | Reserved               |                                                             |                                                      |
| 13  | 1 = MOP up             | Increase the setpoint saved in the motorized potentiometer. | p1035[0] =<br>r2090.13                               |
| 14  | 1 = MOP down           | Reduce the setpoint saved in the motorized potentiometer.   | p1036[0] =<br>r2090.14                               |
| 15  | Reserved               |                                                             |                                                      |

## Status word 1 (ZSW1)

| Bit | Meaning                                             | Remarks                                                                                                                                    | Signal inter-<br>connection<br>in the con-<br>verter |
|-----|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 0   | 1 = Ready for switching on                          | Power supply switched on; electronics initialized; pulses locked.                                                                          | p2080[0] =<br>r0899.0                                |
| 1   | 1 = Ready                                           | Motor is switched on (ON/OFF1 = 1), no fault is active. With the command "Enable operation" (STW1.3), the converter switches on the motor. | p2080[1] = r0899.1                                   |
| 2   | 1 = Operation enabled                               | Motor follows setpoint. See control word 1, bit 3.                                                                                         | p2080[2] =<br>r0899.2                                |
| 3   | 1 = Fault active                                    | The converter has a fault. Acknowledge fault using STW1.7.                                                                                 | p2080[3] =<br>r2139.3                                |
| 4   | 1 = OFF2 inactive                                   | Coast down to standstill is not active.                                                                                                    | p2080[4] = r0899.4                                   |
| 5   | 1 = OFF3 inactive                                   | Quick stop is not active.                                                                                                                  | p2080[5] =<br>r0899.5                                |
| 6   | 1 = Switching on inhibited active                   | It is only possible to switch on the motor after an OFF1 followed by ON.                                                                   | p2080[6] =<br>r0899.6                                |
| 7   | 1 = Alarm active                                    | Motor remains switched on; no acknowledgement is necessary.                                                                                | p2080[7] =<br>r2139.7                                |
| 8   | 1 = Speed deviation with-<br>in the tolerance range | Setpoint / actual value deviation within the tolerance range.                                                                              | p2080[8] =<br>r2197.7                                |
| 9   | 1 = Master control requested                        | The automation system is requested to accept the converter control.                                                                        | p2080[9] =<br>r0899.9                                |
| 10  | 1 = Comparison speed reached or exceeded            | Speed is greater than or equal to the corresponding maximum speed.                                                                         | p2080[10] =<br>r2199.1                               |
| 11  | 1 = Torque limit not reached                        | Comparison value for current or torque has been fallen below.                                                                              | p2080[11] =<br>r0056.13 /<br>r1407.7                 |
| 12  | Reserved                                            |                                                                                                                                            | p2080[12] =<br>r0899.12                              |
| 13  | 0 = Alarm, motor over-<br>temperature               |                                                                                                                                            | p2080[13] =<br>r2135.14                              |

| Bit | Meaning                                  | Remarks                             | Signal inter-<br>connection<br>in the con-<br>verter |
|-----|------------------------------------------|-------------------------------------|------------------------------------------------------|
| 14  | 1 = Motor rotates clock-<br>wise         | Internal converter actual value > 0 | p2080[14] =<br>r2197.3                               |
|     | 0 = Motor rotates counter-clockwise      | Internal converter actual value < 0 |                                                      |
| 15  | 0 = Alarm, converter<br>thermal overload |                                     | p2080[15] =<br>r2135.15                              |

### **Parameter**

| Parameter | Description                           | Factory setting                     |
|-----------|---------------------------------------|-------------------------------------|
| p2020     | Fieldbus interface baud rate          | 8                                   |
| p2021     | Fieldbus interface address            | 0                                   |
| p2022     | Fieldbus interface USS PZD number     | 2                                   |
| p2023     | Fieldbus interface USS PKW number     | 127                                 |
| p2024     | Fieldbus interface times              | [0] 1000 ms<br>[1] 0 ms<br>[2] 0 ms |
| r2029     | Fieldbus interface error statistics   | -                                   |
| p2030     | Fieldbus interface protocol selection | 0                                   |
| p2031     | Fieldbus interface Modbus parity      | 2                                   |
| p2040     | Fieldbus interface monitoring time    | 100 ms                              |

## **Further information**

Additional information about USS is provided in the "Fieldbus" function manual.



Overview of the manuals (Page 581)

## 8.9 Drive control via Modbus RTU

### Overview



Modbus RTU is used to transfer cyclic process data and acyclic parameter data between precisely one master and up to 247 slaves. The converter is always the slave, and sends data when requested to do so by the master. Slave-to-slave communication is not possible.

## **Function description**

## Control word 1 (STW1)

| Bit  | Meaning                                | Explanation                                                                                                                              | Signal inter-<br>connection<br>in the con-<br>verter |  |
|------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--|
| 0    | 0 = OFF1                               | The motor brakes with the ramp-down time p1121 of<br>the ramp-function generator. The converter switches<br>off the motor at standstill. |                                                      |  |
|      | $0 \rightarrow 1 = ON$                 | The converter goes into the "ready" state. If, in addition, bit $3 = 1$ , the converter switches on the motor.                           |                                                      |  |
| 1    | 0 = OFF2                               | Switch off the motor immediately, the motor then coasts down to a standstill.                                                            | p0844[0] = r2090.1                                   |  |
|      | 1 = No OFF2                            | The motor can be switched on (ON command).                                                                                               |                                                      |  |
| 2    | 0 = Quick stop (OFF3)                  | Quick stop: The motor brakes with the OFF3 rampdown time p1135 down to standstill.                                                       | p0848[0] =<br>r2090.2                                |  |
|      | 1 = No quick stop (OFF3)               | The motor can be switched on (ON command).                                                                                               |                                                      |  |
| 3    | 0 = Inhibit operation                  | Immediately switch-off motor (cancel pulses).                                                                                            | p0852[0] =                                           |  |
|      | 1 = Enable operation                   | Switch-on motor (pulses can be enabled).                                                                                                 | r2090.3                                              |  |
| 4    | 0 = Disable RFG                        | The converter immediately sets its ramp-function generator output to 0.                                                                  | its ramp-function gen-<br>r2090.4                    |  |
|      | 1 = Do not disable RFG                 | The ramp-function generator can be enabled.                                                                                              |                                                      |  |
| 5    | 0 = Stop RFG                           | The output of the ramp-function generator stops at the actual value.                                                                     | p1141[0] =<br>r2090.5                                |  |
|      | 1 = Enable RFG                         | The output of the ramp-function generator follows the setpoint.                                                                          |                                                      |  |
| 6    | 0 = Inhibit setpoint                   | The converter brakes the motor with the ramp-down time p1121 of the ramp-function generator.                                             | p1142[0] = r2090.6                                   |  |
|      | 1 = Enable setpoint                    | Motor accelerates with the ramp-up time p1120 to the setpoint.                                                                           |                                                      |  |
| 7    | $0 \rightarrow 1 = Acknowledge$ faults | Acknowledge fault. If the ON command is still active, the converter switches to the "switching on inhibited" state.                      | p2103[0] = r2090.7                                   |  |
| 8, 9 | Reserved                               |                                                                                                                                          |                                                      |  |
| 10   | 0 = No control via PLC                 | Converter ignores the process data from the fieldbus.                                                                                    | p0854[0] =                                           |  |
|      | 1 = Control via PLC                    | Control via fieldbus, converter accepts the process data from the fieldbus.                                                              | r2090.10                                             |  |

| Bit | Meaning                | Explanation                                                 | Signal inter-<br>connection<br>in the con-<br>verter |  |  |
|-----|------------------------|-------------------------------------------------------------|------------------------------------------------------|--|--|
| 11  | 1 = Direction reversal | Invert setpoint in the converter.                           | p1113[0] =<br>r2090.11                               |  |  |
| 12  | Reserved               |                                                             |                                                      |  |  |
| 13  | 1 = MOP up             | Increase the setpoint saved in the motorized potentiometer. | p1035[0] =<br>r2090.13                               |  |  |
| 14  | 1 = MOP down           | Reduce the setpoint saved in the motorized potentiometer.   | p1036[0] =<br>r2090.14                               |  |  |
| 15  | Reserved               |                                                             |                                                      |  |  |

## Status word 1 (ZSW1)

| Bit | Meaning                                        | Remarks                                                                                                                                    | Signal intercon-<br>nection in the<br>converter |
|-----|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 0   | 1 = Ready for switching on                     | Power supply switched on; electronics initialized; pulses locked.                                                                          | p2080[0] =<br>r0899.0                           |
| 1   | 1 = Ready                                      | Motor is switched on (ON/OFF1 = 1), no fault is active. With the command "Enable operation" (STW1.3), the converter switches on the motor. | p2080[1] = r0899.1                              |
| 2   | 1 = Operation enabled                          | Motor follows setpoint. See control word 1, bit 3.                                                                                         | p2080[2] =<br>r0899.2                           |
| 3   | 1 = Fault active                               | The converter has a fault. Acknowledge fault using STW1.7.                                                                                 | p2080[3] =<br>r2139.3                           |
| 4   | 1 = OFF2 inactive                              | Coast down to standstill is not active.                                                                                                    | p2080[4] =<br>r0899.4                           |
| 5   | 1 = OFF3 inactive                              | Quick stop is not active.                                                                                                                  | p2080[5] =<br>r0899.5                           |
| 6   | 1 = Switching on inhibited active              | It is only possible to switch on the motor after an OFF1 followed by ON.                                                                   | p2080[6] =<br>r0899.6                           |
| 7   | 1 = Alarm active                               | Motor remains switched on; no acknowledgement is necessary.                                                                                | p2080[7] =<br>r2139.7                           |
| 8   | 1 = Speed deviation within the tolerance range | Setpoint / actual value deviation within the tolerance range.                                                                              | p2080[8] =<br>r2197.7                           |
| 9   | 1 = Master control requested                   | The automation system is requested to accept the converter control.                                                                        | p2080[9] =<br>r0899.9                           |
| 10  | 1 = Comparison speed reached or exceeded       | Speed is greater than or equal to the corresponding maximum speed.                                                                         | p2080[10] =<br>r2199.1                          |
| 11  | 1 = Torque limit not reached                   | Comparison value for current or torque has been fallen below.                                                                              | p2080[11] =<br>r0056.13 /<br>r1407.7            |
| 12  | Reserved                                       |                                                                                                                                            | p2080[12] =<br>r0899.12                         |
| 13  | 0 = Alarm, motor overtemperature               |                                                                                                                                            | p2080[13] =<br>r2135.14                         |

### 8.9 Drive control via Modbus RTU

| Bit | Meaning                                 | Remarks                             | Signal intercon-<br>nection in the<br>converter |
|-----|-----------------------------------------|-------------------------------------|-------------------------------------------------|
| 14  | 1 = Motor rotates clockwise             | Internal converter actual value > 0 | p2080[14] =                                     |
|     | 0 = Motor rotates counter-<br>clockwise | Internal converter actual value < 0 | r2197.3                                         |
| 15  | 0 = Alarm, converter thermal overload   |                                     | p2080[15] = r2135.15                            |

<sup>1)</sup> If you change over from another telegram to telegram 20, then the assignment of the previous telegram is kept.

### **Parameter**

Table 8-34 Settings for Modbus RTU

| Parameter | Description                           | Factory setting                     |
|-----------|---------------------------------------|-------------------------------------|
| p2020     | Fieldbus interface baud rate          | 8                                   |
| p2021     | Fieldbus interface address            | 0                                   |
| p2024     | Fieldbus interface times              | [0] 1000 ms<br>[1] 0 ms<br>[2] 0 ms |
| r2029     | Fieldbus interface error statistics   | -                                   |
| p2030     | Fieldbus interface protocol selection | 0                                   |
| p2031     | Fieldbus interface Modbus parity      | 2                                   |
| p2040     | Fieldbus interface monitoring time    | 100 ms                              |

### **Further information**

Further informationAdditional information about Modbus RTU is provided in the "Fieldbus" function manual.

Overview of the manuals (Page 581)

# 8.10 Drive control via Ethernet/IP

### Overview

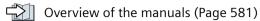


EtherNet/IP is an Ethernet-based fieldbus. EtherNet/IP is used to transfer cyclic process data as well as acyclic parameter data.

## **Function description**

| Parameter  | Description                                                  |                                        |                           |  |
|------------|--------------------------------------------------------------|----------------------------------------|---------------------------|--|
| p2030 = 10 | Fieldbus interface protocol selection: Ethernet/IP           |                                        |                           |  |
| p8924      | PN DHCP mode                                                 | 0: DHCP off                            |                           |  |
|            |                                                              | 2: DHCP on, identification b           | ased on MAC address       |  |
|            |                                                              | 3: DHCP on, identification b           | ased on Name of Station   |  |
| p8925      | PN interfaces configuration                                  | 0: No function                         |                           |  |
|            |                                                              | 1: Reserved                            |                           |  |
|            |                                                              | 2: Save the configuration and activate |                           |  |
|            |                                                              | 3: Delete configuration                |                           |  |
| p8980      | Ethernet/IP profile                                          |                                        | 0: SINAMICS               |  |
|            | A change only becomes active supply is switched off and swit |                                        | 1: ODVA AC/DC             |  |
| p8982      | Ethernet/IP ODVA speed scal                                  | ing                                    |                           |  |
|            | A change only becomes active switched on again.              | after the converter power su           | upply is switched off and |  |
|            | 123: 32                                                      | 127: 2                                 | 131: 0.125                |  |
|            | 124: 16                                                      | 128: 1                                 | 132: 0.0625               |  |
|            | 125: 8                                                       | 129: 0.5                               | 133: 0.03125              |  |
|            | 126: 4                                                       | 130: 0.25                              |                           |  |

### **Parameter**


## Settings for Ethernet/IP

| Parameter | Description                           | Factory setting |
|-----------|---------------------------------------|-----------------|
| p2030     | Fieldbus interface protocol selection | 0               |
| p8920     | PN Name of Station                    | -               |
| p8921[03] | PN IP Address                         | 0               |
| p8922[03] | PN Default Gateway                    | 0               |
| p8923[03] | PN Subnet Mask                        | 0               |
| p8924     | PN DHCP mode                          | 0               |
| p8925     | Activate PN interface configuration   | 0               |
| p8980     | EtherNet/IP profile                   | 0               |
| p8982     | EtherNet/IP ODVA speed scaling        | 128             |

## 8.10 Drive control via Ethernet/IP

## **Further information**

Additional information about USS is provided in the "Fieldbus" function manual.



## 8.11 Drive control via BACnet MS/TP

## **Settings for BACnet MS/TP**

| Parameter | Explanation                                                                                            |                                                                                                                                     |                                                                                                                                                                         |  |
|-----------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| p2020     | Fieldbus interface baudrate (Factory setting: 8)                                                       | 6: 9600 baud<br>7: 19200 baud                                                                                                       | 8: 38400 baud<br>10: 76800 baud                                                                                                                                         |  |
| p2021     | · ·                                                                                                    |                                                                                                                                     |                                                                                                                                                                         |  |
| p2024     | Fieldbus interface times                                                                               | [0] maximum permissible proce                                                                                                       | essing time (APDU timeout)                                                                                                                                              |  |
| p2025     | Fieldbus SS BACnet set-<br>tings                                                                       | et- [0] = device object instance number [1] = info maximum number frames [2] = APDU number of retries [3] = maximum manager address |                                                                                                                                                                         |  |
| p2026     | Fieldbus interface BACn<br>Change in value at which<br>and ConfirmedCOVNotific                         | point the converter sends and l                                                                                                     | JnConfirmedCOVNotification or                                                                                                                                           |  |
| r2029     | Fieldbus interface error statistics                                                                    | [0] number of error-free telegrams [1] number of rejected telegrams [2] number of framing errors [3] number of overrun errors       | <ul><li>[4] number of parity errors</li><li>[5] number of starting character errors</li><li>[6] number of checksum errors</li><li>[7] number of length errors</li></ul> |  |
| p2030 = 5 | Fieldbus interface protocol selection p0015 = 110 sets p2013 = 5 → BACnet MS/TP                        |                                                                                                                                     |                                                                                                                                                                         |  |
| p2040     | <b>Fieldbus interface monitoring time</b> (Factory setting: 10 s) p2040 = 0: Monitoring is deactivated |                                                                                                                                     |                                                                                                                                                                         |  |

## Control word 1 (STW1)

| Bit | Meaning    | Explanation                                                                                                                        | BACNet | Signal inter-<br>connection in<br>the converter |
|-----|------------|------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------|
| 0   | 0 = OFF1   | The motor brakes with the ramp-down time p1121 of the ramp-function generator. The converter switches off the motor at standstill. |        | p0840[0] =<br>r2090.0                           |
|     | 0 → 1 = ON | The converter goes into the "ready" state. If, in addition, bit 3 = 1, the converter switches on the motor.                        |        |                                                 |

## 8.11 Drive control via BACnet MS/TP

| Bit  | Meaning                    | Explanation                                                                                                         | BACNet | Signal inter-<br>connection in<br>the converter |
|------|----------------------------|---------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------|
| 1    | 0 = OFF2                   | Switch off the motor immediately, the motor then coasts down to a standstill.                                       | BV27   | p0844[0] = r2090.1                              |
|      | 1 = No OFF2                | The motor can be switched on (ON command).                                                                          | ·      |                                                 |
| 2    | 0 = Quick stop (OFF3)      | Quick stop: The motor brakes with the OFF3 ramp-down time p1135 down to standstill.                                 | BV28   | p0848[0] = r2090.2                              |
|      | 1 = No quick stop (OFF3)   | The motor can be switched on (ON command).                                                                          |        |                                                 |
| 3    | 0 = Inhibit operation      | Immediately switch-off motor (cancel pulses).                                                                       | BV26   | p0852[0] =<br>r2090.3                           |
|      | 1 = Enable operation       | Switch-on motor (pulses can be enabled).                                                                            |        |                                                 |
| 4    | 0 = Disable RFG            | The converter immediately sets its ramp-function generator output to 0.                                             | BV26   | p1140[0] = r2090.4                              |
|      | 1 = Do not disable RFG     | The ramp-function generator can be enabled.                                                                         |        |                                                 |
| 5    | 0 = Stop RFG               | The output of the ramp-function generator stops at the actual value.                                                | BV26   | p1141[0] = r2090.5                              |
|      | 1 = Enable RFG             | The output of the ramp-function generator follows the setpoint.                                                     |        |                                                 |
| 6    | 0 = Inhibit setpoint       | The converter brakes the motor with the ramp-down time p1121 of the ramp-function generator.                        | BV26   | p1142[0] = r2090.6                              |
|      | 1 = Enable setpoint        | Motor accelerates with the ramp-up time p1120 to the setpoint.                                                      |        |                                                 |
| 7    | 0 → 1 = Acknowledge faults | Acknowledge fault. If the ON command is still active, the converter switches to the "switching on inhibited" state. | BV22   | p2103[0] =<br>r2090.7                           |
| 8, 9 | Reserved                   |                                                                                                                     | N/A    |                                                 |
| 10   | 0 = No control via PLC     | Converter ignores the process data from the fieldbus.                                                               | BV93   | p0854[0] = r2090.10                             |
|      | 1 = Control via PLC        | Control via fieldbus, converter accepts the process data from the fieldbus.                                         |        |                                                 |
| 11   | 1 = Direction reversal     | Invert setpoint in the converter.                                                                                   | BV21   | p1113[0] = r2090.11                             |
| 12   | Reserved                   |                                                                                                                     | N/A    |                                                 |
| 13   | 1 = MOP up                 | Increase the setpoint saved in the motorized potentiometer.                                                         | N/A    | p1035[0] =<br>r2090.13                          |
| 14   | 1 = MOP down               | Reduce the setpoint saved in the motorized potentiometer.                                                           | N/A    | p1036[0] =<br>r2090.14                          |
| 15   | Reserved                   |                                                                                                                     | N/A    |                                                 |

## Status word 1 (ZSW1)

| Bit | Meaning                                        | Remarks                                                                                                                                    | Signal interconnection in the converter |
|-----|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 0   | 1 = Ready for switching on                     | Power supply switched on; electronics initialized; pulses locked.                                                                          | p2080[0] = r0899.0                      |
| 1   | 1 = Ready                                      | Motor is switched on (ON/OFF1 = 1), no fault is active. With the command "Enable operation" (STW1.3), the converter switches on the motor. | p2080[1] = r0899.1                      |
| 2   | 1 = Operation enabled                          | Motor follows setpoint. See control word 1, bit 3.                                                                                         | p2080[2] = r0899.2                      |
| 3   | 1 = Fault active                               | The converter has a fault. Acknowledge fault using STW1.7.                                                                                 | p2080[3] = r2139.3                      |
| 4   | 1 = OFF2 inactive                              | Coast down to standstill is not active.                                                                                                    | p2080[4] = r0899.4                      |
| 5   | 1 = OFF3 inactive                              | Quick stop is not active.                                                                                                                  | p2080[5] = r0899.5                      |
| 6   | 1 = Switching on inhibited active              | It is only possible to switch on the motor after an OFF1 followed by ON.                                                                   | p2080[6] = r0899.6                      |
| 7   | 1 = Alarm active                               | Motor remains switched on; no acknowledgement is necessary.                                                                                | p2080[7] = r2139.7                      |
| 8   | 1 = Speed deviation within the tolerance range | Setpoint / actual value deviation within the tolerance range.                                                                              | p2080[8] = r2197.7                      |
| 9   | 1 = Master control requested                   | The automation system is requested to accept the converter control.                                                                        | p2080[9] = r0899.9                      |
| 10  | 1 = Comparison speed reached or exceeded       | Speed is greater than or equal to the corresponding maximum speed.                                                                         | p2080[10] = r2199.1                     |
| 11  | 1 = Torque limit not reached                   | Comparison value for current or torque has been fallen below.                                                                              | p2080[11] =<br>r0056.13 / r1407.7       |
| 12  | Reserved                                       |                                                                                                                                            | p2080[12] = r0899.12                    |
| 13  | 0 = Alarm, motor overtemperature               |                                                                                                                                            | p2080[13] = r2135.14                    |
| 14  | 1 = Motor rotates clockwise                    | Internal converter actual value > 0                                                                                                        | p2080[14] = r2197.3                     |
|     | 0 = Motor rotates counter-clock-<br>wise       | Internal converter actual value < 0                                                                                                        |                                         |
| 15  | 0 = Alarm, converter thermal overload          |                                                                                                                                            | p2080[15] = r2135.15                    |

<sup>1)</sup> If you change over from another telegram to telegram 20, then the assignment of the previous telegram is kept.

### **Further information**

You can find additional information about BACnet MS/TP in the "Fieldbus" function manual:

Overview of the manuals (Page 581).

#### **Drive control via P1** 8.12

## **Settings for P1**

| Parameter                                                          | Explanation                                                                          |                                                     |                             |  |  |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------|--|--|
| p2020                                                              | Fieldbus interface baudrate                                                          | 5: 4800 baud                                        |                             |  |  |
|                                                                    | (Factory setting: 5)                                                                 | 6: 9600 baud                                        |                             |  |  |
|                                                                    |                                                                                      | 7: 19200 baud                                       |                             |  |  |
| p2021                                                              | Fieldbus interface address (F                                                        | actory setting: 99)                                 |                             |  |  |
|                                                                    | Valid addresses: 1 99.                                                               |                                                     |                             |  |  |
|                                                                    | The parameter is only active if address 0 is set at the Control Unit address switch. |                                                     |                             |  |  |
|                                                                    | A change only becomes active switched on again.                                      | after the converter power su                        | upply is switched off and   |  |  |
| p2024                                                              | Fieldbus interface times                                                             | [0] Maximum permissible telegram processing time of |                             |  |  |
|                                                                    | (Factory setting: [0] 1000 ms, [1] 0 ms, [2] 0 ms)                                   | the Modbus device                                   |                             |  |  |
|                                                                    |                                                                                      | [1] Character delay time                            |                             |  |  |
|                                                                    |                                                                                      | [2] Dead time between two                           | telegrams                   |  |  |
| r2029                                                              | Fieldbus interface error sta-                                                        | [0] number of error-free                            | [4] number of parity errors |  |  |
|                                                                    | tistics                                                                              | telegrams                                           | [5] number of starting      |  |  |
|                                                                    |                                                                                      | [1] number of rejected telegrams                    | character errors            |  |  |
|                                                                    |                                                                                      | [2] number of framing er-                           | [6] number of checksum      |  |  |
|                                                                    |                                                                                      | rors                                                | [7] number of length errors |  |  |
|                                                                    |                                                                                      | [3] number of overrun er-                           | [/] number of length enois  |  |  |
|                                                                    |                                                                                      | rors                                                |                             |  |  |
| p2030 = 8                                                          | Fieldbus interface protocol se                                                       | election: P1                                        |                             |  |  |
| p2040 Fieldbus interface monitoring time (Factory setting: 100 ms) |                                                                                      |                                                     | ms)                         |  |  |
|                                                                    | p2040 = 0: Monitoring is deactivated                                                 |                                                     |                             |  |  |

## **Further information**

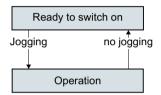
Additional information about P1 is provided in the "Fieldbus" function manual.



Overview of the manuals (Page 581).

## 8.13 Jogging

#### Overview




The "Jog" function is typically used to temporarily move a motor using local control commands.

### Requirement

The OFF1 command must be active. With an active ON command, the converter ignores the commands "Jogging 1" and "Jogging 2".

### **Function description**



Commands "Jog 1" or "Jog 2" switch the motor on and off.

The commands are only active when the converter is in the "Ready for switching on" state.

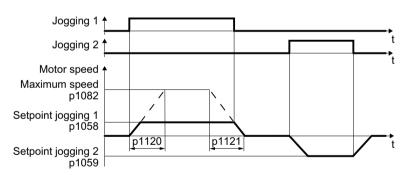



Figure 8-23 Behavior of the motor when "jogging"

After switching on, the motor accelerates to the setpoint, jog 1 or setpoint, jog 2. The two different setpoints can, for example, be assigned to motor clockwise and counter-clockwise rotation.

When jogging, the same ramp-function generator is active as for the ON/OFF1 command.

## Example

| Parameter     | Description                                         |
|---------------|-----------------------------------------------------|
| p1055 = 722.0 | Jogging bit 0: Select jogging 1 via digital input 0 |
| p1056 = 722.1 | Jogging bit 1: Select jogging 2 via digital input 1 |

## 8.13 Jogging

## Parameter

| Number   | Name                                   | Factory setting            |
|----------|----------------------------------------|----------------------------|
| p1055[C] | BI: Jogging bit 0                      | Depending on the converter |
| p1056[C] | BI: Jogging bit 1                      | Depending on the converter |
| p1058[D] | Jogging 1 speed setpoint               | 150 rpm                    |
| p1059[D] | Jogging 2 speed setpoint               | -150 rpm                   |
| p1082[D] | Maximum speed                          | 1500 rpm                   |
| p1110[C] | BI: Inhibit negative direction         | Depending on the converter |
| p1111[C] | BI: Inhibit positive direction         | 0                          |
| p1113[C] | BI: Setpoint inversion                 | 0                          |
| p1120[D] | Ramp-function generator ramp-up time   | Depending on the converter |
| p1121[D] | Ramp-function generator ramp-down time | Depending on the converter |

## 8.14 Switching over the drive control (command data set)

#### Overview



Several applications require the option of switching over the master control to operate the converter.

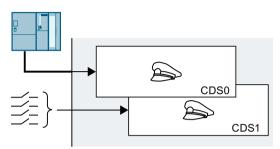



Figure 8-24 Converter control either via fieldbus or via terminal strip

## **Function description**

#### Command data set (CDS)

You can set the converter control in various ways and toggle between the settings.

The settings in the converter, which are assigned to a specific master control, are called the command data set.

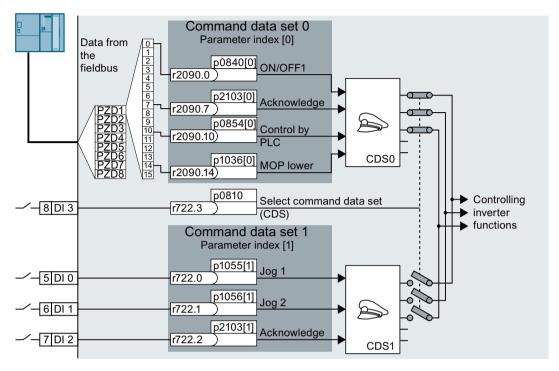
You select the command data set using parameters p0810 and p0811. To do this, you must interconnect parameters p0810 and p0811 with control commands of your choice, e.g. a digital input.

#### Changing the number of command data sets

Up to 4 command data sets are possible.

- 1. Set p0010 = 15.
- 2. The number of command data sets is configured with p0170.
- 3. Set p0010 = 0.

You have changed the number of command data sets.


## Copying command data sets

- 1. Set p0809[0] to the number of the command data set whose settings you wish to copy (source).
- 2. Set p0809[1] to the number of the command data set into which you wish to copy the settings.
- 3. Set p0809[2] = 1
- 4. The converter sets p0809[2] = 0.

You have copied the settings of a command data set into another command data set.

8.14 Switching over the drive control (command data set)

## Example



The converter evaluates its control commands depending on digital input DI 3:

- Via a fieldbus from a central control system
- Via the converter digital inputs at the installation.

#### Note

The converter requires approx. 4 ms to switch over the command data set.

#### **Parameters**

| Number     | Name                                     | Factory setting            |
|------------|------------------------------------------|----------------------------|
| p0010      | Drive commissioning parameter filter     | 1                          |
| r0050      | CO/BO: Command data set CDS effective    | -                          |
| p0170      | Number of command data sets (CDS)        | 2                          |
| p0809[0 2] | Copy command data set CDS                | 0                          |
| p0810      | BI: Command data set selection CDS bit 0 | Dependent on the converter |
| p0811      | BI: Command data set selection CDS bit 1 | 0                          |

## 8.15 Free function blocks

## 8.15.1 Overview

### Overview



The free function blocks permit configurable signal processing in the converter.

## **Function description**

The following free function blocks are available:

Table 8-35 Free function blocks

| Logic blocks          | AND 0                | OR 0              | XOR 0          | NOT 0          |                  |                |          |
|-----------------------|----------------------|-------------------|----------------|----------------|------------------|----------------|----------|
| Logic blocks          | AND 1                | OR 1              | XOR 1          | NOT 1          |                  |                |          |
|                       | AND 2                | OR 2              | XOR 2          | NOT 2          |                  |                |          |
|                       | AND 3                | OR 3              | XOR 2<br>XOR 3 | NOT 3          |                  |                |          |
|                       | AIND 3               | OK 5              | AUK 3          | NOT 4          |                  |                |          |
|                       |                      |                   |                | NOT 5          |                  |                |          |
|                       |                      | 6.1.              | N.A. 111 11    |                | 6                | A1 1 .         | D 1 11   |
| Calculation<br>blocks | Adder                | Subtractor        | Multiplier     | Divider        | Compara-<br>tor  | Absolute value | Polyline |
|                       | ADD 0                | SUB 0             | MUL 0          | DIV 0          | NCM 0            | AVA 0          | PLI 0    |
|                       | ADD 1                | SUB 1             | MUL 1          | DIV 1          | NCM 1            | AVA 1          | PLI 1    |
|                       | ADD 2                |                   |                |                |                  |                |          |
| Timer blocks          | Pulse gen-<br>erator | Pulse<br>shorten- | ON delay       | OFF delay      | Pulse stretching |                |          |
|                       |                      | ing               |                |                |                  |                |          |
|                       | MFP 0                | PCL 0             | PDE 0          | PDF 0          | PST 0            |                |          |
|                       | MFP 1                | PCL 1             | PDE 1          | PDF 1          | PST 1            |                |          |
|                       | MFP 2                |                   | PDE 2          | PDF 2          |                  |                |          |
|                       | MFP 3                |                   | PDE 3          | PDF 3          |                  |                |          |
| Memory block          | RS flip-flop         | D flip-flop       |                |                |                  |                |          |
|                       | RSR 0                | DFR 0             |                |                |                  |                |          |
|                       | RSR 1                | DFR 1             |                |                |                  |                |          |
|                       | RSR 2                | DFR 2             |                |                |                  |                |          |
| Breaker block         | Analog<br>switch     | Binary switch     |                |                |                  |                |          |
|                       | NSW 0                | BSW 0             |                |                |                  |                |          |
|                       | NSW 1 BSW 1          |                   |                |                |                  |                |          |
| Control block         | Limiter              | Smooth-<br>ing    | Integrator     | Differentiator |                  |                |          |
|                       | LIM 0                | PT1 0             | INT 0          | DIF 0          |                  |                |          |
|                       | LIM 1                | PT1 1             |                |                |                  |                |          |

## 8.15 Free function blocks

| Complex block | Limit monitor |
|---------------|---------------|
|               | LVM 0         |
|               | LVM 1         |

You can only use a function block once. The converter has 3 adders for instance, ADD 0, ADD 1, and ADD 2. If you have already configured 3 adders, then no other adders are available.

## Application description for the free function blocks

Further information is provided on the Internet:



FAQ (http://support.automation.siemens.com/WW/view/en/85168215)

## 8.16 Physical units

#### 8.16.1 Motor standard

### Selection options and parameters involved



The converter represents the motor data corresponding to motor standard IEC or NEMA in different system units: SI units or US units.

Table 8-36 Parameters involved when selecting the motor standard

| Parame- | Designation                     | Motor standard IEC/NEMA, p0100 = |                 |                 |  |  |
|---------|---------------------------------|----------------------------------|-----------------|-----------------|--|--|
| ter     |                                 | O <sup>1)</sup>                  | 1               | 2               |  |  |
|         |                                 | IEC motor                        | NEMA motor      | NEMA motor      |  |  |
|         |                                 | 50 Hz, SI units                  | 60 Hz, US units | 60 Hz, SI units |  |  |
| r0206   | Power Module rated power        | kW                               | hp              | kW              |  |  |
| p0219   | Braking resistor braking power  | kW                               | hp              | kW              |  |  |
| p0307   | Rated motor power               | kW                               | hp              | kW              |  |  |
| p0316   | Motor torque constant           | Nm/A                             | lbf ft/A        | Nm/A            |  |  |
| r0333   | Rated motor torque              | Nm                               | lbf ft          | Nm              |  |  |
| p0341   | Motor moment of inertia         | kgm²                             | lb ft²          | kgm²            |  |  |
| p0344   | Motor weight                    | kg                               | Lb              | kg              |  |  |
| r0394   | Rated motor power               | kW                               | hp              | kW              |  |  |
| r1493   | Total moment of inertia, scaled | kgm²                             | lb ft²          | kgm²            |  |  |

<sup>1)</sup> Factory setting

It is only possible to change the motor standard during quick commissioning.

## 8.16.2 Unit system

Some physical units depend on the system of units selected (SI or US), for example the power [kW or hp] or the torque [Nm or lbf ft]. You can select in which system of units the converter represents its physical values.

## Options when selecting the system of units

The following options apply when selecting the system of units:

- p0505 = 1: System of units SI (factory setting)
   Torque [Nm], power [kW], temperature [°C or K]
- p0505 = 2: Referred system of units/SI Represented as [%]

#### 8.16 Physical units

- p0505 = 3: US system of units
   Torque [lbf ft], power [hp], temperature [°F]
- p0505 = 4: System of units, referred/US Represented as [%]

### **Special features**

The values for p0505 = 2 and for p0505 = 4 - represented in the converter - are identical. However, the reference to SI or US units is required for internal calculations and to output physical variables.

For variables, which cannot be represented as [%], then the following applies:

- p0505 = 1 corresponds to setting p0505 = 2
- p0505 = 3 corresponds to setting p0505 = 4

In the case of variables whose units are identical in the SI system and US system, and which can be displayed as a percentage, the following applies:

- p0505 = 1 corresponds to setting p0505 = 3
- p0505 = 2 corresponds to setting p0505 = 4

#### Reference variables

There is a reference variable in the converter for most parameters with physical units. When the referred representation [%] is set, then the converter scales the physical variables based on the particular reference variable.

When the reference variable changes, then the significance of the scaled value also changes. Example:

- Reference speed = 1500 rpm → fixed speed = 80 % corresponds to the speed = 1200 rpm
- Reference speed = 3000 rpm → fixed speed = 80 % corresponds to the speed = 2400 rpm

For each parameter you can find the associated reference variable for scaling in the parameter list. Example: r0065 is scaled with reference variable p2000.

If scaling is not specified in the parameter list, then the converter always shows/displays the parameter unscaled.

#### **Groups of units**

In the parameter list you will find the following information for parameters with changeable units:

- Unit group
   Designates the group to which the parameter belongs
- Unit selection
   Designates the parameter that changes over the unit

#### **Example:**

Unit group: 7 1, unit selection: p0505

The parameter belongs to the unit group 7 1 and p0505 changes over the unit.

Table 8-37 Unit group (p0100)

| Unit group |       | Unit selection for p0100 = |       |  |  |
|------------|-------|----------------------------|-------|--|--|
|            | 0     | 1                          | 2     |  |  |
| 7_4        | Nm    | lbf ft                     | Nm    |  |  |
| 14_6       | kW    | hp                         | kW    |  |  |
| 25_1       | kg m² | lbf ft²                    | kg m² |  |  |
| 27_1       | kg    | Ib                         | kg    |  |  |
| 28_1       | Nm/A  | lbf ft/A                   | Nm/A  |  |  |

Table 8-38 Unit group (p0505)

| Unit group | Unit selection for p0505 = |    |        | Reference value for % |       |
|------------|----------------------------|----|--------|-----------------------|-------|
|            | 1                          | 2  | 3      | 4                     |       |
| 2_1        | Hz                         | %  | Hz     | %                     | p2000 |
| 3_1        | rpm                        | %  | rpm    | %                     | p2000 |
| 5_1        | Vrms                       | %  | Vrms   | %                     | P2001 |
| 5_2        | V                          | %  | V      | %                     | p2001 |
| 5_3        | V                          | %  | V      | %                     | p2001 |
| 6_2        | Arms                       | %  | Arms   | %                     | p2002 |
| 6_5        | А                          | %  | Α      | %                     | p2002 |
| 7_1        | Nm                         | %  | lbf ft | %                     | p2003 |
| 7_2        | Nm                         | Nm | lbf ft | lbf ft                | -     |
| 14_5       | kW                         | %  | hp     | %                     | r2004 |
| 14_10      | kW                         | kW | hp     | hp                    | -     |
| 21_1       | ° C                        | °C | °F     | °F                    | -     |
| 21_2       | К                          | К  | °F     | °F                    | -     |
| 39_1       | 1/s²                       | %  | 1/s²   | %                     | p2007 |

## 8.16.3 Technological unit of the technology controller

## Options when selecting the technological unit

p0595 defines in which technological unit the input and output variables of the technology controller are calculated, e.g. [bar], [m³/min] or [kg/h].

### Reference variable

p0596 defines the reference variable of the technological unit for the technology controller.

### 8.16 Physical units

### **Unit group**

Parameters involved with p0595 belong to unit group 9\_1.

The values that can be set and the technological units are shown in p0595.

### **Special features**

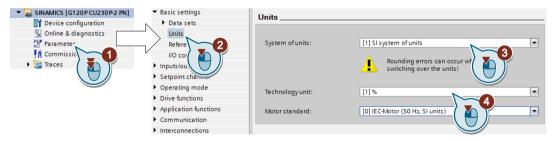
You must optimize the technology controller after changing p0595 or p0596.

## Additional technology controllers

You can set the technological unit for each additional technology controller.

|                                    | Technological<br>unit | Reference variable for the technological unit | Unit group |
|------------------------------------|-----------------------|-----------------------------------------------|------------|
| Additional technology controller 0 | p11026                | p11027                                        | 9_2        |
| Additional technology controller 1 | p11126                | p11127                                        | 9_3        |
| Additional technology controller 2 | p11226                | p11227                                        | 9_4        |

## 8.16.4 Setting the system of units and technology unit


### **Setting using Startdrive**

### Requirement

You are offline with Startdrive.

#### **Procedure**

- 1. In the project, select "Parameter".
- 2. Select "Units".



- 3. Select the system of units.
- 4. Select the technological unit of the technology controller.
- 5. Save your settings.

6. Go online.

The converter signals that offline, other units and process variables are set than in the converter itself.

7. Accept these settings in the converter.

You have selected the motor standard and system of units.

## 8.17 Setpoints

### Overview



The converter receives its main setpoint from the setpoint source. The main setpoint generally specifies the motor speed.

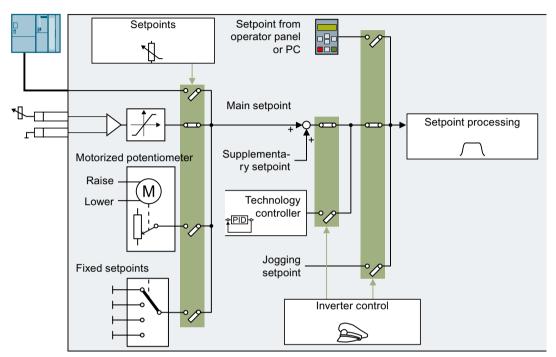



Figure 8-25 Setpoint sources for the converter

You have the following options when selecting the source of the main setpoint:

- Converter fieldbus interface
- Analog input of the converter
- Motorized potentiometer emulated in the converter
- Fixed setpoints saved in the converter

You have the same selection options when selecting the source of the supplementary setpoint.

Under the following conditions, the converter switches from the main setpoint to other setpoints:

- When the technology controller is active and appropriately interconnected, its output specifies the motor speed.
- When jogging is active
- When controlled from an operator panel or a PC

# 8.17.1 Analog input as setpoint source

# **Function description**

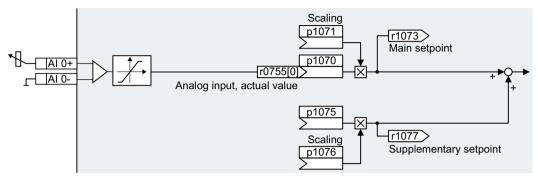



Figure 8-26 Example: Analog input 0 as setpoint source

In the quick commissioning, you define the preassignment for the converter interfaces. Depending on what has been preassigned, after quick commissioning, the analog input can be interconnected with the main setpoint.

# Example

Setting with analog input 0 as setpoint source:

| Parameter      | Description                                              |  |
|----------------|----------------------------------------------------------|--|
| p1070 = 755[0] | Interconnects main setpoint with analog input 0          |  |
| p1075 = 755[0] | Interconnects supplementary setpoint with analog input 0 |  |

| Number     | Name                                          | Factory setting            |
|------------|-----------------------------------------------|----------------------------|
| r0755[0 1] | CO: CU analog inputs, actual value in percent | - %                        |
| p1070[C]   | CI: Main setpoint                             | Dependent on the converter |
| p1071[C]   | CI: Main setpoint scaling                     | 1                          |
| r1073      | CO: Main setpoint active                      | - rpm                      |
| p1075[C]   | CI: Supplementary setpoint                    | 0                          |
| p1076[C]   | CI: Supplementary setpoint scaling            | 1                          |
| r1077      | CO: Supplementary setpoint effective          | - rpm                      |

# 8.17.2 Specifying the setpoint via the fieldbus

# **Function description**

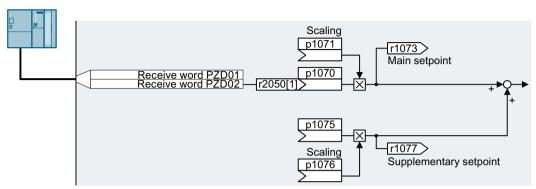



Figure 8-27 Fieldbus as setpoint source

In the quick commissioning, you define the preassignment for the converter interfaces. Depending on what has been preassigned, after quick commissioning, the receive word PZD02 can be interconnected with the main setpoint.

# Example

Setting with receive word PZD02 as setpoint source:

| Parameter       | Description                                                                          |
|-----------------|--------------------------------------------------------------------------------------|
| p1070 = 2050[1] | Interconnects the main setpoint with the receive word PZD02 from the fieldbus.       |
| p1075 = 2050[1] | Interconnects the supplementary setpoint with receive word PZD02 from the field-bus. |

| Number     | Name                                 | Factory setting            |
|------------|--------------------------------------|----------------------------|
| p1070[C]   | CI: Main setpoint                    | Dependent on the converter |
| p1071[C]   | CI: Main setpoint scaling            | 1                          |
| r1073      | CO: Main setpoint active             | - rpm                      |
| p1075[C]   | CI: Supplementary setpoint           | 0                          |
| p1076[C]   | CI: Supplementary setpoint scaling   | 1                          |
| r1077      | CO: Supplementary setpoint effective | - rpm                      |
| r2050[011] | CO: PROFIdrive PZD receive word      | -                          |

# 8.17.3 Motorized potentiometer as setpoint source

# **Function description**

The "Motorized potentiometer" function emulates an electromechanical potentiometer. The output value of the motorized potentiometer can be set with the "higher" and "lower" control signals.

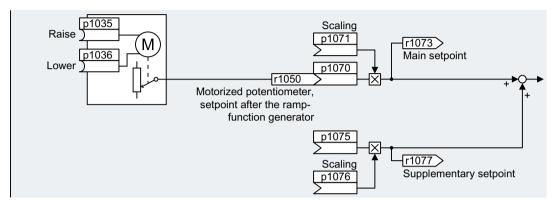



Figure 8-28 Motorized potentiometer as setpoint source

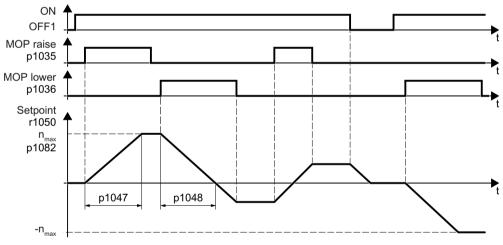



Figure 8-29 Function chart of the motorized potentiometer

### Example

Setting with the motorized potentiometer as setpoint source:

| Parameter    | Description                                                              |
|--------------|--------------------------------------------------------------------------|
| p1070 = 1050 | Interconnects the main setpoint with the motorized potentiometer output. |

# 8.17 Setpoints

Table 8-39 Basic setup of motorized potentiometer

| Number   | Name                                                                | Factory setting            |
|----------|---------------------------------------------------------------------|----------------------------|
| p1035[C] | BI: Motorized potentiometer setpoint higher                         | 0                          |
| p1036[C] | BI: Motorized potentiometer setpoint lower                          | Dependent on the converter |
| p1040[D] | Motorized potentiometer start value                                 | 0 rpm                      |
| p1047[D] | Motorized potentiometer, ramp-up time                               | 10 s                       |
| p1048[D] | Motorized potentiometer, ramp-down time                             | 10 s                       |
| r1050    | Motorized potentiometer, setpoint after the ramp-function generator | - rpm                      |
| p1070[C] | CI: Main setpoint                                                   | Dependent on the converter |
| p1071[C] | CI: Main setpoint scaling                                           | 1                          |
| r1073    | CO: Main setpoint active                                            | - rpm                      |
| p1075[C] | CI: Supplementary setpoint                                          | 0                          |
| p1076[C] | CI: Supplementary setpoint scaling                                  | 1                          |

Table 8-40 Extended setup of motorized potentiometer

| Number   | Name                                              | Factory setting |
|----------|---------------------------------------------------|-----------------|
| p1030[D] | Motorized potentiometer configuration             | 0000 0110 bin   |
| p1037[D] | Motorized potentiometer, maximum speed            | 0 rpm           |
| p1038[D] | Motorized potentiometer, minimum speed            | 0 rpm           |
| p1043[C] | BI: Motorized potentiometer, accept setting value | 0               |
| p1044[C] | CI: Motorized potentiometer, setting value        | 0               |

# 8.17.4 Fixed speed setpoint as setpoint source

# **Function description**

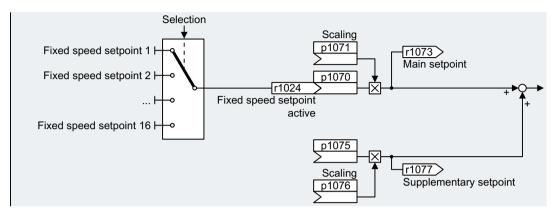



Figure 8-30 Fixed speed setpoint as setpoint source

The converter makes a distinction between two methods when selecting the fixed speed setpoints:

### Directly selecting a fixed speed setpoint

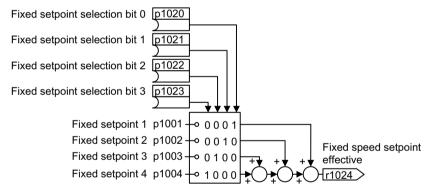



Figure 8-31 Direct selection of the fixed speed setpoint

Table 8-41 Resulting setpoint

| p1020 | p1021 | p1022 | p1023 | Resulting setpoint    |
|-------|-------|-------|-------|-----------------------|
| 0     | 0     | 0     | 0     | 0                     |
| 1     | 0     | 0     | 0     | p1001                 |
| 0     | 1     | 0     | 0     | p1002                 |
| 1     | 1     | 0     | 0     | p1001 + p1002         |
| 0     | 0     | 1     | 0     | p1003                 |
| 1     | 0     | 1     | 0     | p1001 + p1003         |
| 0     | 1     | 1     | 0     | p1002 + p1003         |
| 1     | 1     | 1     | 0     | p1001 + p1002 + p1003 |
| 0     | 0     | 0     | 1     | p1004                 |

### 8.17 Setpoints

| p1020 | p1021 | p1022 | p1023 | Resulting setpoint            |
|-------|-------|-------|-------|-------------------------------|
| 1     | 0     | 0     | 1     | p1001 + p1004                 |
| 0     | 1     | 0     | 1     | p1002 + p1004                 |
| 1     | 1     | 0     | 1     | p1001 + p1002 + p1004         |
| 0     | 0     | 1     | 1     | p1003 + p1004                 |
| 1     | 0     | 1     | 1     | p1001 + p1003 + p1004         |
| 0     | 1     | 1     | 1     | p1002 + p1003 + p1004         |
| 1     | 1     | 1     | 1     | p1001 + p1002 + p1003 + p1004 |

### Selecting the fixed speed setpoint, binary

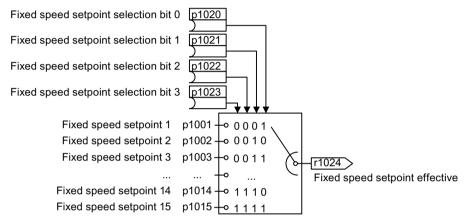



Figure 8-32 Binary selection of the fixed speed setpoint

Table 8-42 Resulting setpoint

| p1020 | p1021 | p1022 | p1023 | Resulting setpoint |
|-------|-------|-------|-------|--------------------|
| 0     | 0     | 0     | 0     | 0                  |
| 1     | 0     | 0     | 0     | p1001              |
| 0     | 1     | 0     | 0     | p1002              |
| 1     | 1     | 0     | 0     | p1003              |
| 0     | 0     | 1     | 0     | p1004              |
| 1     | 0     | 1     | 0     | p1005              |
| 0     | 1     | 1     | 0     | p1006              |
| 1     | 1     | 1     | 0     | p1007              |
| 0     | 0     | 0     | 1     | p1008              |
| 1     | 0     | 0     | 1     | p1009              |
| 0     | 1     | 0     | 1     | p1010              |
| 1     | 1     | 0     | 1     | p1011              |
| 0     | 0     | 1     | 1     | p1012              |
| 1     | 0     | 1     | 1     | p1013              |
| 0     | 1     | 1     | 1     | p1014              |
| 1     | 1     | 1     | 1     | p1015              |

# Example

After it has been switched on, a conveyor belt only runs with two different velocities. The motor should now operate with the following corresponding speeds:

- The signal at digital input 0 switches the motor on and accelerates it up to 300 rpm.
- The signal at digital input 1 accelerates the motor up to 2000 rpm.
- With signals at both digital inputs, the motor accelerates up to 2300 rpm.

Table 8-43 Settings for the application example

| Parameter           | Description                                                                                             |
|---------------------|---------------------------------------------------------------------------------------------------------|
| p1001[0] = 300.000  | Fixed speed setpoint 1                                                                                  |
| p1002[0] = 2000.000 | Fixed speed setpoint 2                                                                                  |
| p0840[0] = 722.0    | ON/OFF1: Switches on the motor with digital input 0                                                     |
| p1070[0] = 1024     | Main setpoint: Interconnects the main setpoint with a fixed speed setpoint.                             |
| p1020[0] = 722.0    | Fixed speed setpoint selection bit 0: Interconnects fixed speed setpoint 1 with digital input 0 (DI 0). |
| p1021[0] = 722.1    | Fixed speed setpoint selection bit 1: Interconnects fixed speed setpoint 2 with digital input 1 (DI 1). |
| p1016 = 1           | Fixed speed setpoint mode: Directly selects fixed speed setpoints.                                      |

Table 8-44 Resulting fixed speed setpoints for the application example

| Fixed speed setpoint selected via | Resulting setpoint |
|-----------------------------------|--------------------|
| DI 0 = 0                          | Motor stops        |
| DI 0 = 1 and DI 1 = 0             | 300 rpm            |
| DI 0 = 1 and DI 1 = 1             | 2300 rpm           |

| Parameter | Description                 | Factory setting |
|-----------|-----------------------------|-----------------|
| p1001[D]  | CO: Fixed speed setpoint 1  | 0 rpm           |
| p1002[D]  | CO: Fixed speed setpoint 2  | 0 rpm           |
| p1003[D]  | CO: Fixed speed setpoint 3  | 0 rpm           |
| p1004[D]  | CO: Fixed speed setpoint 4  | 0 rpm           |
| p1005[D]  | CO: Fixed speed setpoint 5  | 0 rpm           |
| p1006[D]  | CO: Fixed speed setpoint 6  | 0 rpm           |
| p1007[D]  | CO: Fixed speed setpoint 7  | 0 rpm           |
| p1008[D]  | CO: Fixed speed setpoint 8  | 0 rpm           |
| p1009[D]  | CO: Fixed speed setpoint 9  | 0 rpm           |
| p1010[D]  | CO: Fixed speed setpoint 10 | 0 rpm           |
| p1011[D]  | CO: Fixed speed setpoint 11 | 0 rpm           |
| p1012[D]  | CO: Fixed speed setpoint 12 | 0 rpm           |

# 8.17 Setpoints

| Parameter | Description                           | Factory setting            |
|-----------|---------------------------------------|----------------------------|
| p1013[D]  | CO: Fixed speed setpoint 13           | 0 rpm                      |
| p1014[D]  | CO: Fixed speed setpoint 14           | 0 rpm                      |
| p1015[D]  | CO: Fixed speed setpoint 15           | 0 rpm                      |
| p1016     | Fixed speed setpoint selection mode   | 1                          |
| p1020[C]  | Fixed speed setpoint selection, bit 0 | 0                          |
| p1021[C]  | Fixed speed setpoint selection, bit 1 | 0                          |
| p1022[C]  | Fixed speed setpoint selection, bit 2 | 0                          |
| p1023[C]  | Fixed speed setpoint selection, bit 3 | 0                          |
| r1024     | Fixed speed setpoint active           | - rpm                      |
| r1025.0   | Fixed speed setpoint status           | -                          |
| p1070[C]  | CI: Main setpoint                     | Dependent on the converter |
| p1071[C]  | CI: Main setpoint scaling             | 1                          |
| r1073     | CO: Main setpoint active              | - rpm                      |
| p1075[C]  | CI: Supplementary setpoint            | 0                          |
| p1076     | CI: Supplementary setpoint scaling    | 1                          |
| r1077     | CO: Supplementary setpoint effective  | - rpm                      |

# 8.18 Setpoint processing

#### 8.18.1 Overview

#### Overview



Setpoint processing influences the setpoint using the following functions:

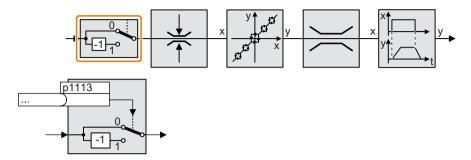

- "Invert" inverts the motor direction of rotation.
- The "direction of rotation deactivate" function prevents the motor rotating in the incorrect direction.
- The "Skip frequency bands" prevent the motor from being continuously operated within these skip bands. This function avoids mechanical resonance effects by only permitting the motor to operate briefly at specific speeds.
- The "Speed limitation" function protects the motor and the driven load against excessively high speeds.
- The "Ramp-function generator" function prevents the setpoint from suddenly changing. As a consequence, the motor accelerates and brakes with a reduced torque.



Figure 8-33 Setpoint processing in the converter

# 8.18.2 Invert setpoint

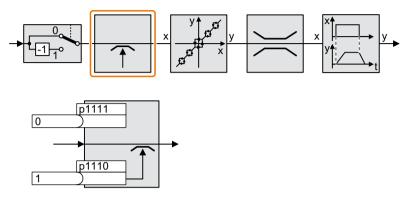
# **Function description**



The function inverts the sign of the setpoint using a binary signal.

# Example

To invert the setpoint via an external signal, interconnect parameter p1113 with a binary signal of your choice.


Table 8-45 Application examples showing how a setpoint is inverted

| Parameter       | Description                                                                                           |
|-----------------|-------------------------------------------------------------------------------------------------------|
| p1113 = 722.1   | Digital input 1 = 0: Setpoint remains unchanged. Digital input 1 = 1: Converter inverts the setpoint. |
| p1113 = 2090.11 | Inverts the setpoint via the fieldbus (control word 1, bit 11).                                       |

| Number   | Name                   | Factory setting  |
|----------|------------------------|------------------|
| p1113[C] | BI: Setpoint inversion | Dependent on the |
|          |                        | converter        |

# 8.18.3 Enable direction of rotation

# **Function description**



In the factory setting of the converter, the negative direction of rotation of the motor is inhibited.

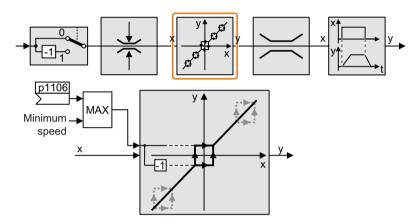
Set parameter p1110 = 0 to permanently enable the negative direction of rotation.

Set parameter p1111 = 1 to permanently inhibit the positive direction of rotation.

Table 8-46 Application examples for inhibiting and enabling the direction of rotation

| Number | Name                           | Factory setting |
|--------|--------------------------------|-----------------|
| p1110  | BI: Inhibit negative direction | 1               |
| p1111  | BI: Inhibit positive direction | 0               |

# 8.18.4 Skip frequency bands and minimum speed


#### Overview

The converter has a minimum speed and four skip frequency bands:

- The minimum speed prevents continuous motor operation at speeds less than the minimum speed.
- Each skip frequency band prevents continuous motor operation within a specific speed range.

# **Function description**

#### Minimum speed



Speeds where the absolute value is less than the minimum speed are only possible when the motor is accelerating or braking.

### Skip frequency bands

Additional information on the skip frequency bands is provided in the function diagram.

Table 8-47 Minimum speed

| Number   | Name                                                                       | Factory setting |
|----------|----------------------------------------------------------------------------|-----------------|
| p1051[C] | CI: Speed limit of ramp-function generator, positive direction of rotation | 9733            |
| p1052[C] | CI: Speed limit of ramp-function generator, negative direction of rotation | 1086            |
| p1080[D] | Minimum speed                                                              | 0 rpm           |
| p1083[D] | CO: Speed limit in positive direction of rotation                          | 210000 rpm      |
| r1084    | CO: Speed limit positive active                                            | - rpm           |
| p1085[C] | CI: Speed limit in positive direction of rotation                          | 1083            |

| Number   | Name                                              | Factory setting |
|----------|---------------------------------------------------|-----------------|
| p1091[D] | Skip speed 1                                      | 0 rpm           |
| p1092[D] | Skip speed 2                                      | 0 rpm           |
| p1093[D] | Skip speed 3                                      | 0 rpm           |
| p1094[D] | Skip speed 4                                      | 0 rpm           |
| p1098[C] | CI: Skip speed scaling                            | 1               |
| r1099    | CO/BO: Skip frequency band of status word         | -               |
| p1101    | Skip speed bandwidth                              | 0 rpm           |
| p1106    | CI: Minimum speed signal source                   | 0               |
| r1112    | CO: Speed setpoint according to minimum limit     | - rpm           |
| r1114    | CO: Setpoint after direction limiting             | - rpm           |
| r1119    | CO: Ramp-function generator setpoint at the input | - rpm           |
| r1170    | CO: Speed controller setpoint sum                 | - rpm           |

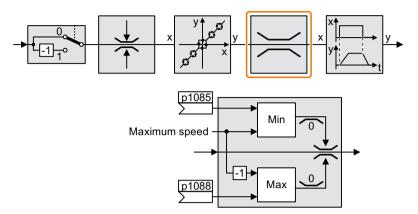
#### Note

In order that a stationary motor – after all of the enable signals have been switched on, can operate at the minimum

speed/minimum velocity once all of the enable signals are available, the direction must be entered using one of the

- following options:
- direction input via small setpoint.
- direction input by inhibiting the negative or positive direction (p1110, p1111).

#### NOTICE


#### Incorrect direction of motor rotation if the parameterization is not suitable

If you are using an analog input as speed setpoint source, then for a setpoint = 0 V, noise voltages can be superimposed on the analog input signal. After the on command, the motor accelerates up to the minimum frequency in the direction of the random polarity of the noise voltage. A motor rotating in the wrong direction can cause significant material damage to the machine or system.

• Inhibit the motor direction of rotation that is not permissible.

# 8.18.5 Speed limitation

The maximum speed limits the speed setpoint range for both directions of rotation.

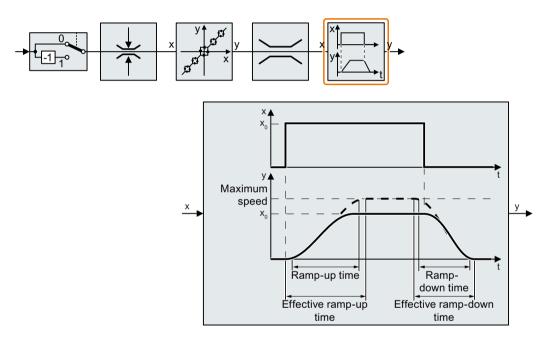


The converter generates a message (fault or alarm) when the maximum speed is exceeded.

If you must limit the speed depending on the direction of rotation, then you can define speed limits for each direction.

Table 8-48 Parameters for the speed limitation

| Number   | Name                                              | Factory setting |
|----------|---------------------------------------------------|-----------------|
| p1082[D] | Maximum speed                                     | 1500 rpm        |
| p1083[D] | CO: Speed limit in positive direction of rotation | 210000 rpm      |
| p1085[C] | CI: Speed limit in positive direction of rotation | 1083            |
| p1086[D] | CO: Speed limit in negative direction of rotation | -210000 rpm     |
| p1088[C] | CI: Speed limit in negative direction of rotation | 1086            |


### 8.18.6 Ramp-function generator

The ramp-function generator in the setpoint channel limits the rate change of the speed setpoint (acceleration). A reduced acceleration reduces the accelerating torque of the motor. As a consequence, the motor reduces the stress on the mechanical system of the driven machine.

The extended ramp-function generator not only limits the acceleration, but by rounding the setpoint, also acceleration changes (jerk). This means that the motor does not suddenly generate a torque.

### **Extended ramp-function generator**

The ramp-up and ramp-down times of the extended ramp-function generator can be set independently of each other. The optimal times depend on the application, and can lie in the range from a few 100 ms to several minutes.



Initial and final rounding permit smooth, jerk-free acceleration and braking.

The ramp-up and ramp-down times of the motor are increased by the rounding times:

- Effective ramp-up time =  $p1120 + 0.5 \times (p1130 + p1131)$ .
- Effective ramp-down time =  $p1121 + 0.5 \times (p1130 + p1131)$ .

#### **Parameter**

Table 8-49 Additional parameters to set the extended ramp-function generator

| Number   | Name                                                                | Factory setting            |
|----------|---------------------------------------------------------------------|----------------------------|
| p1120[D] | Ramp-function generator ramp-up time                                | Dependent on the converter |
| p1121[D] | Ramp-function generator ramp-down time                              |                            |
| p1130[D] | Ramp-function generator initial rounding time                       |                            |
| p1131[D] | Ramp-function generator final rounding time                         |                            |
| p1134[D] | Ramp-function generator rounding type                               | 0 (continuous smoothing)   |
| p1135[D] | OFF3 ramp-down time                                                 | Dependent on the           |
| p1136[D] | OFF3 initial rounding time                                          | converter                  |
| p1137[D] | OFF3 final rounding time                                            | 0 s                        |
| p1138[C] | CI: Ramp-function generator ramp-up time scaling                    | 1                          |
| p1139[C] | CI: Ramp-function generator ramp-down time scaling                  | 1                          |
| p1140[C] | BI: Enable ramp-function generator/disable ramp-function generator  | Dependent on the converter |
| p1141[C] | BI: Continue ramp-function generator/freeze ramp-function generator |                            |
| p1142[C] | BI: Enable setpoint/inhibit setpoint                                | 1                          |
| p1143[C] | BI: Accept ramp-function generator setting value                    | 0                          |
| p1144[C] | CI: Ramp-function generator setting value                           | 0                          |
| p1148[D] | Ramp-function generator tolerance for ramp-up and ramp-down active  | 19.8 rpm                   |
| r1149    | CO: Ramp-function generator acceleration                            | -                          |

# Setting the extended ramp-function generator

#### **Procedure**

- 1. Enter the highest possible speed setpoint.
- 2. Switch on the motor.
- 3. Evaluate your drive response.
  - If the motor accelerates too slowly, then reduce the ramp-up time.
     An excessively short ramp-up time means that the motor will reach its current limiting when accelerating, and will temporarily not be able to follow the speed setpoint. In this case, the drive exceeds the set time.
  - If the motor accelerates too fast, then extend the ramp-up time.
  - Increase the initial rounding if the acceleration is jerky.
  - In most applications, it is sufficient when the final rounding is set to the same value as the initial rounding.
- 4. Switch off the motor.

- 5. Evaluate your drive response.
  - If the motor decelerates too slowly, then reduce the ramp-down time.
     The minimum ramp-down time that makes sense depends on your particular application.
     Depending on the Power Module used, for an excessively short ramp-down time, the converter either reaches the motor current, or the DC link voltage in the converter becomes too high.
  - Extend the ramp-down time if the motor is braked too quickly or the converter goes into a fault condition when braking.
- 6. Repeat steps 1 ... 5 until the drive behavior meets the requirements of the machine or plant. You have set the extended ramp-function generator.

# 8.19 PID technology controller

#### Overview



The technology controller controls process variables, e.g. pressure, temperature, level or flow.

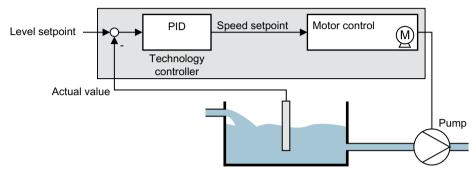
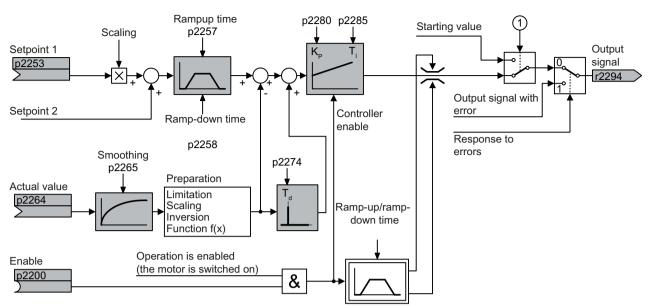



Figure 8-34 Example: Technology controller as a level controller


# Requirement

The U/f control or the vector control have been set.

# **Function description**

### **Function diagram**

The technology controller is implemented as a PID controller (controller with proportional, integral, and derivative action).

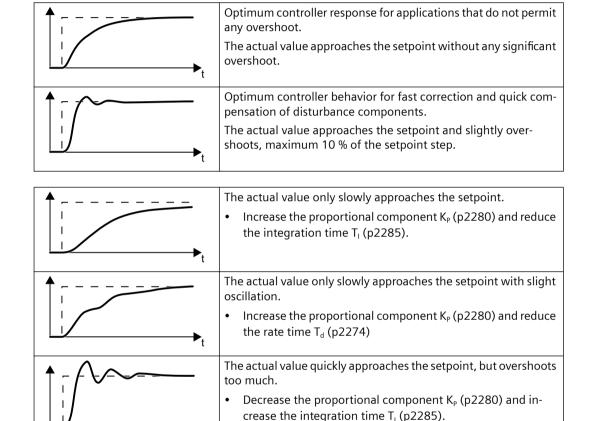


- 1 The converter uses the start value when all the following conditions are simultaneously satisfied:
  - The technology controller supplies the main setpoint (p2251 = 0).
  - The ramp-function generator output of the technology controller has not yet reached the start value.

Figure 8-35 Simplified representation of the technology controller

#### **Basic settings**

The settings required as a minimum are marked in gray in the function diagram:


- Interconnect setpoint and actual values with signals of your choice
- Set ramp-function generator and controller parameters K<sub>P</sub>, T<sub>I</sub> and T<sub>d</sub>.

#### Set controller parameters K<sub>P</sub>, T<sub>I</sub> and T<sub>d</sub>.

#### **Procedure**

- 1. Temporarily set the ramp-up and ramp-down times of the ramp-function generator (p2257 and p2258) to zero.
- 2. Enter a setpoint step and monitor the associated actual value.

  The slower the response of the process to be controlled, the longer you must monitor the controller response. Under certain circumstances (e.g. for a temperature control), you need to wait several minutes until you can evaluate the controller response.



3. Set the ramp-up and ramp-down times of the ramp-function generator back to their original value.

You have manually set the technology controller.  $\Box$ 

### Limiting the output of the technology controller

In the factory setting, the output of the technology controller is limited to  $\pm$  maximum speed. You must change this limit, depending on your particular application.

Example: The output of the technology controller supplies the speed setpoint for a pump. The pump should only run in the positive direction.

Table 8-50 Basic settings

| Number     | Name                                                                      | Factory setting    |
|------------|---------------------------------------------------------------------------|--------------------|
| r0046[031] | CO/BO: Missing enable signals                                             | -                  |
| r0052[015] | CO/BO: Status word 1                                                      | -                  |
| r0056[015] | CO/BO: Status word, closed-loop control                                   | -                  |
| r1084      | CO: Speed limit positive active                                           | -                  |
| r1087      | CO: Speed limit negative active                                           | - rpm              |
| p2200[C]   | BI: Technology controller enable                                          | 0                  |
| p2252      | Technology controller configuration                                       | See parameter list |
| p2253[C]   | CI: Technology controller setpoint 1                                      | 0                  |
| p2254[C]   | CI: Technology controller setpoint 2                                      | 0                  |
| p2255      | Technology controller setpoint 1 scaling                                  | 100%               |
| p2256      | Technology controller setpoint 2 scaling                                  | 100%               |
| p2257      | Technology controller ramp-up time                                        | 1 s                |
| p2258      | Technology controller ramp-down time                                      | 1 s                |
| r2260      | CO: Technology controller setpoint after ramp-function generator          | - %                |
| p2261      | Technology controller setpoint filter time constant                       | 0 s                |
| r2262      | CO: Technology controller setpoint after filter                           | - %                |
| p2263      | Technology controller type                                                | 0                  |
| r2273      | CO: Technology controller system deviation                                | - %                |
| p2274      | Technology controller differentiation time constant                       | 0 s                |
| p2280      | Technology controller proportional gain                                   | See parameter list |
| p2285      | Technology controller integral time                                       | See parameter list |
| p2286      | BI: Hold technology controller integrator                                 | 56.13              |
| p2289[C]   | CI: Technology controller precontrol signal                               | 0                  |
| p2306      | Technology controller system deviation inversion                          | 0                  |
| p2339      | Technology controller threshold value for I proportion stop at skip speed | - S                |
| r2344      | CO: Technology controller last speed setpoint (smoothed)                  | - %                |
| p2345      | Technology controller fault response                                      | 0                  |
| r2349[013] | CO/BO: Technology controller status word                                  | -                  |
| r3889[010] | CO/BO: ESM status word                                                    | -                  |

Table 8-51 Limiting the output of the technology controller

| Number   | Name                                         | Factory setting |
|----------|----------------------------------------------|-----------------|
| p2290[C] | BI: Technology controller limitation enable  | 1               |
| p2291    | CO: Technology controller maximum limiting   | 100%            |
| p2292    | CO: Technology controller minimum limiting   | 0%              |
| p2293    | Technology controller ramp-up/ramp-down time | 1 s             |

# 8.19 PID technology controller

| Number   | Name                                                     | Factory setting |
|----------|----------------------------------------------------------|-----------------|
| r2294    | CO: Technology controller output signal                  | - %             |
| p2295    | CO: Technology controller output scaling                 | 100%            |
| p2296[C] | CI: Technology controller output scaling                 | 2295            |
| p2297[C] | CI: Technology controller maximum limiting signal source | 1084            |
| p2298[C] | CI: Technology controller minimum limiting signal source | 1087            |
| p2299[C] | CI: Technology controller limitation offset              | 0               |
| p2302    | Technology controller output signal start value          | 0%              |

Table 8-52 Adapting the actual value of the technology controller

| Number   | Name                                                    | Factory setting |
|----------|---------------------------------------------------------|-----------------|
| p2264[C] | CI: Technology controller actual value                  | 0               |
| p2265    | Technology controller actual value filter time constant | 0 s             |
| p2266    | CO: Technology controller actual value after filter     | - %             |
| p2267    | Technology controller upper limit actual value          | 100%            |
| p2268    | Technology controller lower limit actual value          | -100%           |
| p2269    | Technology controller gain actual value                 | 100%            |
| p2270    | Technology controller actual value function             | 0               |
| p2271    | Technology controller actual value inversion            | 0               |
| r2272    | CO: Technology controller actual value scaled           | - %             |

Table 8-53 PID technology controller, fixed values (binary selection)

| Number   | Name                                               | Factory setting |
|----------|----------------------------------------------------|-----------------|
| p2201[D] | CO: Technology controller fixed value 1            | 10%             |
| p2202[D] | CO: Technology controller fixed value 2            | 20%             |
| p2203[D] | CO: Technology controller fixed value 3            | 30%             |
| p2204[D] | CO: Technology controller fixed value 4            | 40%             |
| p2205[D] | CO: Technology controller fixed value 5            | 50%             |
| p2206[D] | CO: Technology controller fixed value 6            | 60%             |
| p2207[D] | CO: Technology controller fixed value 7            | 70%             |
| p2208[D] | CO: Technology controller fixed value 8            | 80%             |
| p2209[D] | CO: Technology controller fixed value 9            | 90%             |
| p2210[D] | CO: Technology controller fixed value 10           | 100%            |
| p2211[D] | CO: Technology controller fixed value 11           | 110%            |
| p2212[D] | CO: Technology controller fixed value 12           | 120%            |
| p2213[D] | CO: Technology controller fixed value 13           | 130%            |
| p2214[D] | CO: Technology controller fixed value 14           | 140%            |
| p2215[D] | CO: Technology controller fixed value 15           | 150%            |
| p2216[D] | Technology controller fixed value selection method | 1               |
| r2224    | CO: Technology controller fixed value active       | - %             |

| Number | Name                                                           | Factory setting |
|--------|----------------------------------------------------------------|-----------------|
| r2225  | CO/BO: Technology controller fixed value selection status word | - %             |
| r2229  | Technology controller number actual                            | -               |

Table 8-54 PID technology controller, fixed values (direct selection)

| Number   | Name                                                           | Factory setting |
|----------|----------------------------------------------------------------|-----------------|
| p2216[D] | Technology controller fixed value selection method             | 1               |
| p2220[C] | BI: Technology controller fixed value selection bit 0          | 0               |
| p2221[C] | BI: Technology controller fixed value selection bit 1          | 0               |
| p2222[C] | BI: Technology controller fixed value selection bit 2          | 0               |
| p2223[C] | BI: Technology controller fixed value selection bit 3          | 0               |
| r2224    | CO: Technology controller fixed value active                   | - %             |
| r2225    | CO/BO: Technology controller fixed value selection status word | - %             |
| r2229    | Technology controller number actual                            | -               |

Table 8-55 PID technology controller, motorized potentiometer

| Number   | Name                                                                   | Factory setting |
|----------|------------------------------------------------------------------------|-----------------|
| r2231    | Technology controller motorized potentiometer setpoint memory          | - %             |
| p2235[C] | BI: Technology controller motorized potentiometer, setpoint, raise     | 0               |
| p2236[C] | BI: Technology controller motorized potentiometer, setpoint, lower     | 0               |
| p2237[D] | Technology controller motorized potentiometer maximum value            | 100%            |
| p2238[D] | Technology controller motorized potentiometer minimum value            | -100%           |
| p2240[D] | Technology controller motorized potentiometer start value              | 0%              |
| r2245    | CO: Technology controller motorized potentiometer, setpoint before RFG | - %             |
| p2247[D] | Technology controller motorized potentiometer ramp-up time             | 10 s            |
| p2248[D] | Technology controller motorized potentiometer ramp-down time           | 10 s            |
| r2250    | CO: Technology controller motorized potentiometer, setpoint after RFG  | - %             |

#### 8.19 PID technology controller

#### **Further information**

You will find additional information on the following PID controller components on the Internet at:

- Setpoint input: Analog value or fixed setpoint
- · Setpoint channel: Scaling, ramp-function generator and filter
- · Actual value channel: Filter, limiting and signal processing
- PID controller: Principle of operation of the D component, inhibiting the I component and the control sense
- Enable, limiting the controller output and fault response
- FAQ (http://support.automation.siemens.com/WW/view/en/92556266)

Additional information for setting the technology controller in certain applications is provided on the Internet:

- Closed-loop air intake control (<a href="https://support.industry.siemens.com/cs/ww/en/view/43296889">https://support.industry.siemens.com/cs/ww/en/view/43296889</a>)
- Closed-loop air discharge control (<a href="https://support.industry.siemens.com/cs/ww/en/view/77490904">https://support.industry.siemens.com/cs/ww/en/view/77490904</a>)
- Closed-loop fan control for a stairwell (<a href="https://support.industry.siemens.com/cs/ww/en/view/77491576">https://support.industry.siemens.com/cs/ww/en/view/77491576</a>)
- Closed-loop fan control for a parking garage or a tunnel (<a href="https://support.industry.siemens.com/cs/ww/en/view/77491575">https://support.industry.siemens.com/cs/ww/en/view/77491575</a>)
- Pressure-controlled pump (<a href="https://support.industry.siemens.com/cs/ww/en/view/43297279">https://support.industry.siemens.com/cs/ww/en/view/43297279</a>)
- Level-controlled pump (<a href="https://support.industry.siemens.com/cs/ww/en/view/43297280">https://support.industry.siemens.com/cs/ww/en/view/43297280</a>)
- Closed-loop control for the cooling circuit (<a href="https://">https://</a> support.industry.siemens.com/cs/ww/en/view/43297284)

### 8.19.1 Autotuning the PID technology controller

#### Overview

Autotuning is a converter function for the automatic optimization of the PID technology controller.

# Requirement

The following requirements apply:

- The motor closed-loop control is set
- The PID technology controller must be set the same as when used in subsequent operation:
  - The actual value is interconnected.
  - Scalings, filter and ramp-function generator have been set.
  - The PID technology controller is enabled (p2200 = 1 signal).

### **Function description**

For active autotuning, the converter interrupts the connection between the PID technology controller and the speed controller. Instead of the PID technology controller output, the autotuning function specifies the speed setpoint.

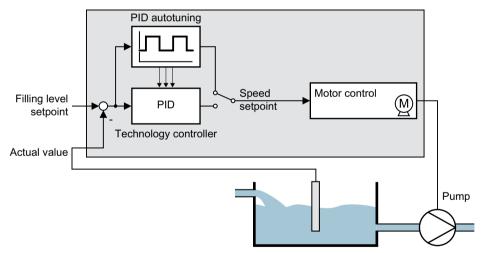



Figure 8-36 Autotuning using closed-loop level control as example

The speed setpoint results from the technology setpoint and a superimposed rectangular signal with amplitude p2355. If actual value = technology setpoint  $\pm$  p2355, the autotuning function switches the polarity of the superimposed signal. This causes the converter to excite the process variable for an oscillation.

#### 8.19 PID technology controller



Figure 8-37 Example for speed setpoint and actual process value for autotuning

The converter calculates the parameters of the PID controller from the determined oscillation frequency.

#### **Executing autotuning**

- 1. Select with p2350 the appropriate controller setting.
- 2. Switch on the motor. The converter signals Alarm A07444.
- 3. Wait until alarm A07444 goes away.
  The converter has recalculated parameters p2280, p2274 and p2285.
  If the converter signals fault F07445:
  - If possible, double p2354 and p2355.
  - Repeat the autotuning with the changed parameters.
- 4. Back up the calculated values so that they are protected against power failure, e.g. using the BOP-2: OPTIONS → RAM-ROM.

You have auto tuned the PID controller.

| Number | Name                                                | Factory setting    |
|--------|-----------------------------------------------------|--------------------|
| p2274  | Technology controller differentiation time constant | 0.0 s              |
| p2280  | Technology controller proportional gain             | See parameter list |
| p2285  | Technology controller integral time                 | See parameter list |

| Enable PID autotuning Automatic controller setting based on the "Ziegler Nichols" method.  After completion of the autotuning, the converter sets p2350 = 0.  0: No function 1: The process variable follows the setpoint after a sudden setpoint change (step function) relatively quickly, however with an overshoot.  2: Faster controller setting than for p2350 = 1 with larger overshoot of the controlled variable.  3: Slower controller setting than for p2350 = 1. Overshoot of the controlled variable is, to a large extent, avoided.  4: Controller setting after completion of the autotuning as for p2350 = 1. Optimize only the P and I action of the PID controller. | Number | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Factory setting |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| F t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | Enable PID autotuning Automatic controller setting based on the "Ziegler Nichols" method.  After completion of the autotuning, the converter sets p2350 = 0.  0: No function  1: The process variable follows the setpoint after a sudden setpoint change (step function) relatively quickly, however with an overshoot.  2: Faster controller setting than for p2350 = 1 with larger overshoot of the controlled variable.  3: Slower controller setting than for p2350 = 1. Overshoot of the controlled variable is, to a large extent, avoided.  4: Controller setting after completion of the autotuning as for p2350 = 1. Optimize only the P and I action of the PID con- | -               |
| p2354 PID autotuning monitoring time 240 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | p2354  | PID autotuning monitoring time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 240 s           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | p2355  | PID autotuning offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5%              |

# 8.19.2 Adapting Kp and Tn

#### Overview

This function adapts the PID technology controller to the process, e.g. depending on the control deviation of the technology controller.

# **Function description**

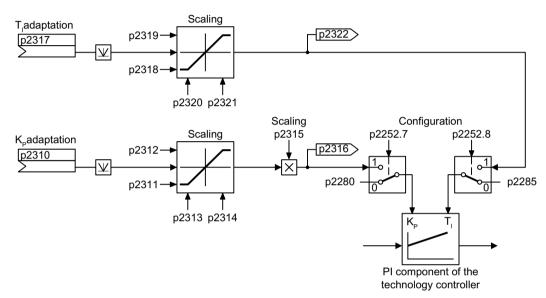



Figure 8-38 Controller adaptation

| Number | Name                                                              | Factory setting            |
|--------|-------------------------------------------------------------------|----------------------------|
| p2252  | Technology controller configuration                               | 0000 0000 0000<br>0000 bin |
| p2280  | Technology controller proportional gain                           | see parameter list         |
| p2285  | Technology controller integral time                               | see parameter list         |
| p2310  | CI: Technology controller Kp adaptation input value signal source | 0                          |
| p2311  | Technology controller, lower Kp adaptation value                  | 1                          |
| p2312  | Technology controller, upper Kp adaptation value                  | 10                         |
| p2313  | Technology controller lower Kp adaptation transition point        | 0%                         |
| p2314  | Technology controller upper Kp adaptation transition point        | 100%                       |
| p2315  | CI: Technology controller Kp adaptation scaling signal source     | 1                          |
| r2316  | CO: Technology controller Kp adaptation output                    | -                          |
| p2317  | CI: Technology controller Tn adaptation input value signal source | 0                          |
| p2318  | Technology controller, lower Tn adaptation value                  | 3 s                        |

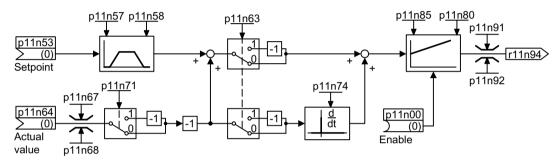
# 8.19 PID technology controller

| Number | Name                                                       | Factory setting |
|--------|------------------------------------------------------------|-----------------|
| p2319  | Technology controller, upper Tn adaptation value           | 10 s            |
| p2320  | Technology controller lower Tn adaptation transition point | 0%              |
| p2321  | Technology controller upper Tn adaptation transition point | 100%            |
| r2322  | CO: Technology controller Tn adaptation output             | - S             |

#### Free technology controllers 8.20

#### Overview




The converter has three additional technology controllers.

The three "free technology controllers" have fewer setting options compared with the PID technology controller described above.



PID technology controller (Page 340)

### **Function description**



- n = 0 Free technology controller 0
- n = 1 Free technology controller 1
- n = 2 Free technology controller 2

Simplified function chart of the additional PID technology controllers, n = 0 ... 2

The additional technology controllers allow several process variables to be simultaneously controlled using one converter.

### Example

An HVAC system with heating and cooling valves to process the air:

- The main controller controls the speed of the fan drive.
- The additional technology controllers control the cooling and heating via the two analog outputs.

Table 8-56 Parameters for the free technology controller 0

| Number     | Name                                    | Factory setting |
|------------|-----------------------------------------|-----------------|
| p11000     | BI: Free tec_ctrl 0 enable              | 0               |
| p11026     | Free tec_ctrl 0 unit selection          | 1 (%)           |
| p11027     | Free tec_ctrl 0 unit reference variable | 1.00            |
| p11028     | Free tec_ctrl 0 sampling time           | 2 (256 ms)      |
| r11049.011 | CO/BO: Free tec_ctrl 0 status word      | -               |

# 8.20 Free technology controllers

| Number | Name                                                            | Factory setting |
|--------|-----------------------------------------------------------------|-----------------|
| p11053 | CI: Free tec_ctrl 0 setpoint signal source                      | 0               |
| p11057 | Free tec_ctrl 0 setpoint ramp-up time                           | 1 s             |
| p11058 | Free tec_ctrl 0 setpoint ramp-down time                         | 1 s             |
| p11063 | Free tec_ctrl 0 error signal inversion                          | 0               |
| p11064 | CI: Free tec_ctrl 0 actual value signal source                  | 0               |
| p11065 | Free tec_ctrl 0 actual value smoothing time constant            | 0 s             |
| p11067 | Free tec_ctrl 0 actual value upper limit                        | 100%            |
| p11068 | Free tec_ctrl 0 actual value lower limit                        | -100 %          |
| p11071 | Free tec_ctrl 0 actual value inversion                          | 0               |
| r11072 | CO: Free tec_ctrl 0 actual value after limiter                  | -               |
| r11073 | CO: Free tec_ctrl 0 control deviation                           | -               |
| p11074 | Free tec_ctrl 0 differentiation time constant (T <sub>d</sub> ) | 0 s             |
| p11080 | Free tec_ctrl 0 proportional gain (K <sub>P</sub> )             | 1               |
| p11085 | Free tec_ctrl 0 integral time (T <sub>I</sub> )                 | 30 s            |
| p11091 | CO: Free tec_ctrl 0 maximum limit                               | 100%            |
| p11092 | CO: Free tec_ctrl 0 minimum limit                               | 0%              |
| p11093 | Free tec_ctrl 0 ramp-up/ramp-down time limit                    | 1 s             |
| r11094 | CO: Free tec_ctrl 0 output signal                               | -               |
| p11097 | CI: Free tec_ctrl 0 maximum limit signal source                 | 11091[0]        |
| p11098 | CI: Free tec_ctrl 0 minimum limit signal source                 | 11092[0]        |
| p11099 | CI: Free tec_ctrl 0 offset limit signal source                  | 0               |

# See also

Overview of the manuals (Page 581)

### 8.21 Multi-zone control

#### Overview



Multi-zone control is used to control variables such as pressure or temperature via the technology setpoint deviation.

#### **Function description**

#### Configuration

p31021 specifies the configuration of multi-zone control:

- 1 setpoint and 1, 2 or 3 actual values
- Maximum value control (cooling)

The maximum value control compares 2 pairs of setpoint and actual value.

The converter controls the setpoint / actual value pair for which the actual value is greater than the associated setpoint.

If both actual values are greater than the associated setpoints, the converter controls the setpoint / actual value pair with the greater deviation. The converter only switches over to the other setpoint / actual value pair if the deviation of the controlled setpoint / actual value pair is more than two percent lower than the deviation of the uncontrolled value pair.

The control pauses if both actual values lie below the associated setpoints.

Minimum valve control (heating)

The minimum value control compares 2 pairs of setpoint and actual value.

The converter controls the setpoint / actual value pair for which the actual value is less than the associated setpoint.

If both actual values are smaller than the associated setpoints, the converter controls the setpoint / actual value pair with the greater deviation. The converter only switches over to the other setpoint / actual value pair if the deviation of the controlled setpoint / actual value pair is more than two percent lower than the deviation of the uncontrolled value pair.

The control pauses if both actual values lie above the associated setpoints.

#### Day to night mode

You have the following opportunities to switch from day to night mode:

- 1 signal at digital input 4
- Via p31025 with the aid of the free function blocks and the real-time clock

#### Activate multi-zone control

p31020 = 1 activates the multi-zone control and switches the analog inputs as sources for the setpoint and actual value:

```
p31023[0] = 755[0] (AI 0)
p31023[2] = 755[1] (AI 1)
p31026[0] = 755[2] (AI 2)
p31026[1] = 755[3] (AI 3)
p2253 = 31024 (setpoint output technology controller)
p2264 = 31027 (actual value output technology controller)
```

p31020 = 0 deactivates the multi-zone control and resets the interconnection of the analog inputs to the factory setting:

p31023[0] = 0 p31023[2] = 0 p31026[0] = 0 p31026[1] = 0 p2253 = 0 p2264 = 0

# Example

In an open plan office, temperature sensors (Lg-Ni1000) are installed in three different places. The converter receives the measured values and temperature setpoint via its analog inputs. Temperature setpoints between 8  $^{\circ}$ C ... 30  $^{\circ}$ C are permissible. Overnight, the average temperature should be 16 $^{\circ}$ C.

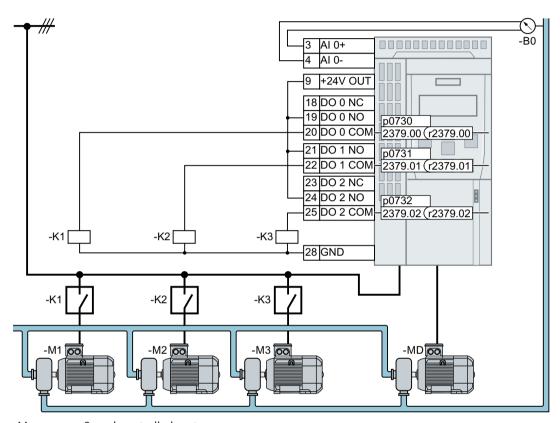
| Parameter          | Description                                                                                                                 |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------|
| p2200[0] = 1       | Technology controller enable                                                                                                |
| p2900[0] = 16      | Temperature setpoint overnight as a fixed percentage value                                                                  |
| p31020 = 1         | Activate multi-zone control                                                                                                 |
| p31021 = 0         | Multi-zone control with one setpoint and three actual values                                                                |
| p31022 = 7         | Three actual values, one setpoint. The actual value of the closed-loop control is the average value of three actual values. |
| p31023[0] = 755[0] | Temperature setpoint via analog input Al 0                                                                                  |
| p0756[0] = 0       | Select analog input type (voltage input 0 10 V)                                                                             |
| p0757[0] = 0       | Lower value = $8^{\circ}$ C (0 V $\triangleq$ $8^{\circ}$ C)                                                                |
| p0758[0] = 8       |                                                                                                                             |
| p0759[0] = 10      | Upper value = $30^{\circ}$ C ( $10 \text{ V} \triangleq 30^{\circ}$ C)                                                      |
| p0760[0] = 30      |                                                                                                                             |
| p31023[1] = 2900   | Interconnect p31023[1] with the value from p2900 for the reduction overnight                                                |
| p31026[0]= 755.2   | Temperature actual value 1 via analog input 2 as a percentage value                                                         |
| p0756[2] = 6       | Analog input type (temperature sensor LG-Ni1000)                                                                            |
| p0757[2] = 0       | Lower value of the scaling characteristic                                                                                   |
| p0758[2] = 0       |                                                                                                                             |
| p31023[1] = 2900   | Interconnect p31023[1] with the value from p2900 for the reduction overnight                                                |
| p31026[0]= 755.2   | Temperature actual value 1 via analog input 2 as a percentage value                                                         |
| p0756[2] = 6       | Analog input type (temperature sensor LG-Ni1000)                                                                            |
| p0757[2] = 0       | Lower value of the scaling characteristic                                                                                   |
| p0758[2] = 0       |                                                                                                                             |
| p0759[2] = 100     | Upper value of the scaling characteristic                                                                                   |
| p0760[2] = 100     |                                                                                                                             |
| p31026[1]=755[3]   | Temperature actual value 2 via analog input Al 3 in %                                                                       |
| p0756[3] = 6       | Select analog input type (temperature sensor LG-Ni1000)                                                                     |
| p0757[3] = 0       | Lower value of the scaling characteristic                                                                                   |
| p0758[3] = 0       |                                                                                                                             |

# 8.21 Multi-zone control

| Parameter          | Description                                                                                                |
|--------------------|------------------------------------------------------------------------------------------------------------|
| p0759[3] = 100     | Upper value of the scaling characteristic                                                                  |
| p0760[3] = 100     |                                                                                                            |
| p31026[2] = 755[1] | Temperature actual value 3 via a temperature sensor with current output (0 mA 20 mA) via analog input Al 1 |
| p0756[1] = 2       | Analog input type (current input 0 20 mA)                                                                  |
| p0757[1] = 0       | Lower value of the scaling characteristic (0 mA $\triangleq$ 0 °C)                                         |
| p0758[1] = 0       |                                                                                                            |
| p0759[1] = 20      | Upper value of the scaling characteristic (20 mA ≜ 100%)                                                   |
| p0760[1] = 100     |                                                                                                            |
| p31025 = 722.4     | Switch over from day to night via digital input 4                                                          |

# **Parameters**

| Number     | Name                                        | Factory setting |
|------------|---------------------------------------------|-----------------|
| p2200      | BI: Technology controller enable            | 0               |
| p31020     | Multi-zone control interconnection          | 0               |
| p31021     | Configuration of multi-zone control         | 0               |
|            | 0: Setpoint 1 / multiple actual values      |                 |
|            | 1: Two zones /maximum value setting         |                 |
|            | 2: Two zones / minimum value setting        |                 |
| p31022     | Multi-zone control actual value processing  | 0               |
|            | 0: Only actual value 1                      |                 |
|            | 1: Only actual value 2                      |                 |
|            | 2: Only actual value 3                      |                 |
|            | 3: Difference (actual value 1, 2)           |                 |
|            | 4: Addition (actual value 1, 2)             |                 |
|            | 5: Addition (actual value 1, 2 and 3)       |                 |
|            | 6: Mean value (actual value 1, 2)           |                 |
|            | 7: Mean value (actual value 1, 2 and 3)     |                 |
|            | 8: Minimum (actual value 1, 2)              |                 |
|            | 9: Minimum (actual value 1, 2 and 3)        |                 |
|            | 10: Maximum (actual value 1, 2)             |                 |
|            | 11: Maximum (actual value 1, 2 and 3)       |                 |
| p31023[03] | CI: Multi-zone control setpoint input       | 0               |
| r31024     | CO: Multi-zone control setpoint output      | -               |
| p31025     | BI: Multi-zone control day/night switchover | 0               |
| p31026[02] | CI: Multi-zone control actual value input   | 0               |
| r31027     | CO: Multi-zone control actual value output  | -               |


You will find more information about this multi-zone control in the parameter list and in function diagram 7032 of the List Manual.

### 8.22 Cascade control

#### Overview



The cascade control is ideal for applications in which, for example, significantly fluctuating pressures or flow rates are equalized.



 $M_D$  Speed-controlled motor

M<sub>1</sub> ... M<sub>3</sub> Uncontrolled motors

B<sub>0</sub> Pressure sensor. Interconnect the signal of the pressure sensor with the actual value input of the technology controller.

Figure 8-40 Example: Cascade control for the pressure in a liquid pipe

Depending on the control deviation of the technology controller, the converter cascade control switches a maximum of three additional motors directly to the line supply via contactors.

#### Precondition

To deploy the cascade control, you must activate the technology controller.

### **Function description**

### Activate uncontrolled motors M<sub>1</sub> ... M<sub>3</sub>

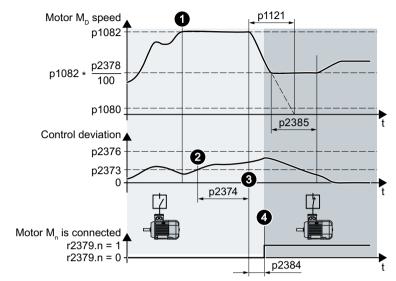



Figure 8-41 Activate uncontrolled motors M<sub>1</sub> ... M<sub>3</sub>

Procedure for connecting an uncontrolled motor:

- 1. The speed-controlled motor turns with maximum speed p1082.
- 2. The control deviation of the technology controller is greater than p2373.
- 3. Time p2374 has expired.
  The converter brakes the speed-controlled motor with ramp-down time p1121 to the activation/deactivation speed p2378. Until the activation/deactivation speed p2378 is attained, the converter deactivates the technology controller temporarily.
- 4. After switch-on delay p2384, the converter connects an uncontrolled motor.

# Deactivate uncontrolled motors $M_1 \dots M_3$

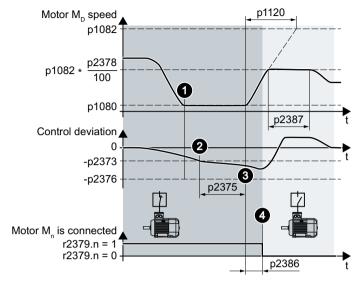



Figure 8-42 Deactivate uncontrolled motors M<sub>1</sub> ... M<sub>3</sub>

Procedure for switching off an uncontrolled motor:

- 1. The speed-controlled motor turns with minimum speed p1080.
- 2. The control deviation of the technology controller is less than -p2373.
- 3. Time p2375 has expired.

  The converter accelerates the speed-controlled motor with ramp-up time p1120 to the activation/deactivation speed p2378. Until the activation/deactivation speed p2378 is attained, the converter deactivates the technology controller temporarily.
- 4. After shutdown delay p2386, the converter disconnects an uncontrolled motor.

## Sequence for activating and deactivating the M<sub>1</sub> ... M<sub>3</sub> motors

Table 8-57 p2371 specifies the sequence for activating and deactivating the motors

| p2371 | $\rightarrow$ $\rightarrow$ Sequence for activating motors $\rightarrow$ $\rightarrow$   |                                |                                |                   |                                                | Power of the activated M <sub>1</sub> M <sub>3</sub>   |                                 |                                 |                |
|-------|------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|-------------------|------------------------------------------------|--------------------------------------------------------|---------------------------------|---------------------------------|----------------|
|       | $\rightarrow$ $\rightarrow$ Sequence for deactivating motors $\rightarrow$ $\rightarrow$ |                                |                                |                   |                                                | motors compared with the speed-<br>controlled DM motor |                                 |                                 |                |
|       | Stage 1                                                                                  | Stage 2                        | Stage 3                        | Stage 4           | Stage 5                                        | Stage 6                                                | 1 × M <sub>D</sub>              | 2 × M <sub>D</sub>              | $3 \times M_D$ |
| 1     | M <sub>1</sub>                                                                           |                                |                                |                   |                                                |                                                        | M <sub>1</sub>                  |                                 |                |
| 2     | M <sub>1</sub>                                                                           | M <sub>1</sub> +M <sub>2</sub> |                                |                   |                                                |                                                        | M <sub>1</sub> , M <sub>2</sub> |                                 |                |
| 3     | M <sub>1</sub>                                                                           | M <sub>2</sub>                 | M <sub>1</sub> +M <sub>2</sub> |                   |                                                |                                                        | M <sub>1</sub>                  | M <sub>2</sub>                  |                |
| 4     | M <sub>1</sub>                                                                           | M <sub>1</sub> +M <sub>2</sub> | $M_1 + M_2 + M_3$              |                   |                                                |                                                        | $M_1, M_2, M_3$                 |                                 |                |
| 5     | M <sub>1</sub>                                                                           | M <sub>3</sub>                 | $M_1+M_3$                      | $M_1 + M_2 + M_3$ |                                                |                                                        | M <sub>1</sub> , M <sub>2</sub> | M <sub>3</sub>                  |                |
| 6     | M <sub>1</sub>                                                                           | M <sub>2</sub>                 | $M_1+M_2$                      | $M_2+M_3$         | $M_1 + M_2 + M_3$                              |                                                        | M <sub>1</sub>                  | M <sub>2</sub> , M <sub>3</sub> |                |
| 7     | M <sub>1</sub>                                                                           | M <sub>1</sub> +M <sub>2</sub> | M <sub>3</sub>                 | $M_1+M_3$         | M <sub>1</sub> +M <sub>2</sub> +M <sub>3</sub> |                                                        | M <sub>1</sub> , M <sub>2</sub> |                                 | $M_3$          |
| 8     | M <sub>1</sub>                                                                           | M <sub>2</sub>                 | M <sub>3</sub>                 | $M_1+M_3$         | $M_2+M_3$                                      | $M_1 + M_2 + M_3$                                      | M <sub>1</sub>                  | M <sub>2</sub>                  | $M_3$          |

#### **Parameter**

| Parameter | Description                                      | Factory setting |
|-----------|--------------------------------------------------|-----------------|
| p2200     | Technology controller enable                     | 0               |
| p2251     | Technology controller mode                       | 0               |
| p2370     | Cascade control enable                           | 0               |
| p2371     | Cascade control configuration                    | 0               |
| p2372     | Cascade control motor selection mode             | 0               |
| p2373     | Cascade control activation threshold             | 20 %            |
| p2374     | Cascade control activation delay                 | 30 s            |
| p2375     | Cascade control deactivation delay               | 30 s            |
| p2376     | Cascade control overload threshold               | 25 %            |
| p2377     | Cascade control interlock time                   | 0 s             |
| p2378     | Cascade control activation/deactivation speed    | 50 %            |
| r2379     | Cascade control status word                      |                 |
| p2380     | Cascade control operating hours                  | 0 h             |
| p2381     | Cascade control maximum time for continuous mode | 24 h            |
| p2382     | Cascade control absolute operating time limit    | 24 h            |
| p2383     | Cascade control deactivation sequence            | 0               |
| p2384     | Cascade control motor switch-on delay            | 0 s             |
| p2385     | Cascade control stop time activation speed       | 0 s             |
| p2386     | Cascade control motor switch-off delay           | 0 s             |
| p2387     | Cascade control stop time deactivation speed     | 0 s             |

Additional information is provided in the parameter list and in function diagram 7036.

## **Further information**

#### Interaction with the "Hibernation mode" function

In order that the "Cascade control" and "Hibernation mode" functions do not influence each other, you must make the following settings in the cascade control:

- p2392 < p2373
  - The restart value of the hibernation mode p2392 must be lower than the activation threshold for the cascade control p2373.
- p2373 < p2376
  - The activation threshold for the cascade control p2373 must be lower than the overload threshold for the cascade control p2376.
- The actual speed must be higher than the restart speed for hibernation mode  $(p1080 + p2390) \times 1.05$ .
- The value for the activation delay of the cascade control p2374 must be higher than the rampup time t<sub>v</sub> from hibernation mode.
  - $t_v = (p1080 + p2390) \times 1.05 \times p1120 \times p1139/p1082$

#### 8.23 Real time clock (RTC)



The real-time clock is the basis for time-dependent process controls, e.g.:

- To reduce the temperature of a heating control during the night
- To increase the pressure of a water supply at certain times during the day

## Accept the real-time clock in the alarm and fault buffer

Using the real-time clock, you can track the sequence of alarms and faults over time. When an appropriate message occurs, the converter converts the real-time clock into the UTC time format (Universal Time Coordinated):

Date, time  $\Rightarrow$  01.01.1970, 0:00 + d (days) + m (milliseconds)

The converter takes the number "d" of the days and the number "m" of the milliseconds in the alarm and fault times of the alarm and/or fault buffer.



Alarms, faults and system messages (Page 441)

## **Converting UTC to RTC**

An RTC can again be calculated in the UTC format from the saved fault or alarm time. In the Internet, you will find programs to convert from UTC to RTC, e.g.



UTC to RTC (http://unixtime-converter.com/)

#### **Example:**

Saved as alarm time in the alarm buffer:

r2123[0] = 2345 [ms]r2145[0] = 14580 [days]

Number of seconds =  $2345 / 1000 + 14580 \times 86400 = 1259712002$ Converting this number of seconds to RTC provides the date: 02.12.2009, 01:00:02.

The times specified for alarms and faults always refer to standard time.

# **Function and settings**

The real time clock starts as soon as the converter's power supply is switched on for the first time. The real-time clock comprises the time in a 24 hour format and the date in the "day, month, year" format.

After a power supply interruption, the real time clock continues to run for approx. five days.

If you wish to use the real-time clock, you must set the time and date once when commissioning.

If you restore the converter factory setting, the converter only resets parameters p8402 and p8405 of the real-time clock. P8400 and p8401 are not reset.

# 8.23 Real time clock (RTC)

# **Parameters**

| Number     | Name                                       | Factory setting |
|------------|--------------------------------------------|-----------------|
| p8400[0 2] | RTC time                                   | 0               |
| p8401[0 2] | RTC date                                   | 1.1.1970        |
| p8402[0 8] | RTC daylight saving time setting           | 0               |
| r8403      | RTC daylight saving time actual difference | -               |
| r8404      | RTC weekday                                | -               |
| p8405      | Activate/deactivate RTC alarm A01098       | 1               |

# 8.24 Time switch (DTC)



The "time switch" (DTC) function, along with the real-time clock in the converter, offers the option of controlling when signals are switched on and off.

#### **Examples:**

- Switching temperature control from day to night mode.
- Switching a process control from weekday to weekend.

# Principle of operation of the time switch (DTC)

The converter has three independently adjustable time switches. The time switch output can be interconnected with every binector input of your converter, e.g. with a digital output or a technology controller's enable signal.

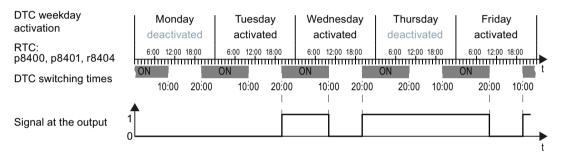



Figure 8-43 Example of the response of the time switch.

#### Settings for the example with DTC1

- Enable parameterization of the DTC: p8409 = 0. As long as the parameterization of the DTC is enabled, the converter holds the output of all three DTC (r84x3, x = 1, 2, 3; r84x3.0 normal, r84x3.1 inverted status message) at LOW.
- Activate/deactivate the weekday
  - p8410[0] = 0 Monday
  - p8410[1] = 1 Tuesday
  - p8410[2] = 1 Wednesday
  - p8410[3] = 0 Thursday
  - p8410[4] = 1 Friday
  - -p8410[5] = 1 Saturday
  - -p8410[6] = 0 Sunday
- Setting switching times:
  - ON: p8411[0] = 20 (hh), p8411[1] = 0 (MM)
  - OFF: p8412[0] = 10 (hh), p4812[1] = 0 (MM)
- Enable the setting: p8409 = 1. The converter re-enables the DTC output.

## 8.25 Motor control

#### Overview



The converter has two alternative methods to ensure the motor speed follows the configured speed setpoint:

- U/f control
- Vector control

# 8.25.1 Reactor, filter and cable resistance at the converter output

#### Overview

Components between the converter and the motor influence the closed-loop control quality of the converter:

- Output reactor or sine-wave filter In the factory setting, for the motor data identification, the converter assumes that neither output reactor nor sine wave filter are connected at the converter output.
- Motor cable with unusually high cable resistance.
   For the motor data identification, the converter assumes a cable resistance = 20 % of the stator resistance of the cold motor.

## **Function description**

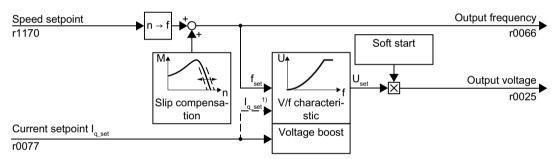
You must correctly set the components between the converter and motor to achieve an optimum closed-loop control quality

#### **Procedure**

- 1. Set p0010 = 2.
- 2. Set the cable resistance in p0352.
- 3. Set p0230 to the appropriate value.
- 4. Set p0235 to the appropriate value.
- 5. Set p0010 = 0.
- 6. Carry out the guick commissioning and the motor identification again.
  - Commissioning (Page 165)

You have set the reactor, filter and cable resistance between the converter and motor.

#### **Parameter**


| Number   | Name                                 | Factory setting |
|----------|--------------------------------------|-----------------|
| p0010    | Drive commissioning parameter filter | 1               |
| p0230    | Drive filter type, motor side        | 0               |
| p0235    | Number of motor reactors in series   | 1               |
| p0350[M] | Motor stator resistance, cold        | 0 Ω             |
| p0352[M] | Cable resistance                     | 0 Ω             |

For further information on parameters, please refer to the parameter list.

## 8.25.2 U/f control

## 8.25.2.1 U/f control

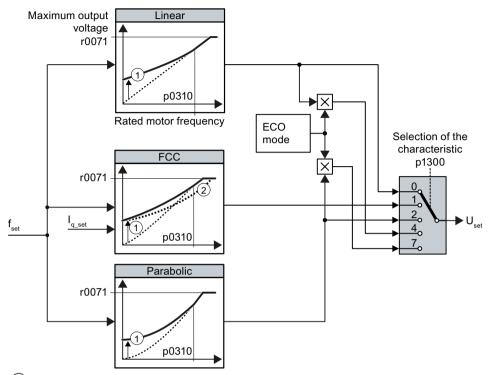
## Overview



In the "Flux Current Control (FCC)" U/f version, the converter controls the motor current (starting current) at low speeds.

Figure 8-44 Simplified function diagram of the U/f control

The U/f control is a speed feedforward control with the following properties:


- The converter sets the output voltage on the basis of the U/f characteristic.
- The output frequency is essentially calculated from the speed setpoint and the number of pole pairs of the motor.
- The slip compensation corrects the output frequency depending on the load and thus increases the speed accuracy.
- The omission of a control loop means that the U/f control is stable in all cases.
- In applications with higher speed accuracy requirements, a load-dependent voltage boost can be selected (flux current control, FCC)

For operation of the motor with U/f control, you must set at least the following subfunctions appropriate for your application:

- U/f characteristic
- · Voltage boost

## **Function description**

The converter has different U/f characteristics.



- 1 The voltage boost of the characteristic optimizes motor start-up
- ② With flux current control (FCC), the converter compensates the voltage drop across the stator resistance of the motor

Figure 8-45 U/f characteristics of the converter

With increasing speed or output frequency, the converter increases its output voltage U. The maximum possible output voltage of the converter depends on the line voltage.

The converter can increase the output frequency even at the maximum output voltage. The motor is then operated with field weakening.

The value of the output voltage at the rated motor frequency also depends on the following variables:

The value of the output voltage at the rated motor frequency p0310 also depends on the following variables:

- Ratio between the converter size and the motor size
- Line voltage
- Line impedance
- · Actual motor torque

The maximum possible output voltage as a function of the input voltage is provided in the technical data.



Table 8-58 Linear and parabolic characteristics

| Requirement                                  | Application examples                                    | Remark                                                                                                                                   | Characteristic                               | Parameter |
|----------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------|
| The required tor-                            | Eccentric-worm pump,                                    | -                                                                                                                                        | Linear                                       | p1300 = 0 |
| que is independ-<br>ent of the speed         | compressor                                              | drops across the stator resistance. Recom-                                                                                               | Linear with Flux<br>Current Control<br>(FCC) | p1300 = 1 |
|                                              |                                                         | Precondition: The motor data has been set according to the rating plate and the motor has been identified after the basic commissioning. |                                              |           |
| The required torque increases with the speed | Centrifugal pumps, radial fans, axial fans, compressors | Lower losses in the motor and converter than for a linear characteristic.                                                                | Parabolic                                    | p1300 = 2 |

Table 8-59 Characteristics for special applications

| Requirement                                                 | Application examples                       | Remark                                                                                                                                                                                   | Characteristic | Parameter                                                                                           |
|-------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------|
| Applications with a low dynamic response and constant speed | Centrifugal pumps, radial fans, axial fans | The ECO mode saves more energy than the parabolic characteristic.  If the speed setpoint is reached and remains unchanged for 5 seconds, the converter reduces its output voltage again. | ECO mode       | p1300 = 4<br>(linear characteristic<br>ECO)<br>or<br>p1300 = 7<br>(parabolic<br>characteristic ECO) |

## **Parameters**

| Number   | Name                                             | Factory setting    |
|----------|--------------------------------------------------|--------------------|
| r0025    | CO: Output voltage, smoothed                     | - Vrms             |
| r0066    | CO: Output frequency                             | - Hz               |
| r0071    | Output voltage, maximum                          | - Vrms             |
| p0304[M] | Rated motor voltage                              | 0 Vrms             |
| p0310[M] | Rated motor frequency                            | 0 Hz               |
| p1300[D] | Open-loop/closed-loop control operating mode     | See parameter list |
| p1333[D] | U/f control FCC starting frequency               | 0 Hz               |
| p1334[D] | U/f control slip compensation starting frequency | 0 Hz               |
| p1335[D] | Slip compensation scaling                        | 0%                 |
| p1338[D] | U/f mode resonance damping gain                  | 0                  |

## 8.25.2.2 Optimizing motor starting

#### Overview

After selection of the U/f characteristic, no further settings are required in most applications.

In the following circumstances, the motor cannot accelerate to its speed setpoint after it has been switched on:

- Load moment of inertia too high
- Load torque too large
- Ramp-up time p1120 too short

To improve the starting behavior of the motor, a voltage boost can be set for the U/f characteristic at low speeds.

## Requirement

The ramp-up time of the ramp-function generator is, depending on the motor rated power, 1 s  $(< 1 \text{ kW}) \dots 10 \text{ s} (> 10 \text{ kW})$ .

## **Function description**

## Setting the voltage boost for U/f control

The converter boosts the voltage corresponding to the starting currents p1310 ... p1312.

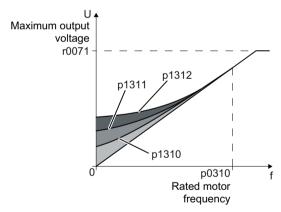



Figure 8-46 The resulting voltage boost using a linear characteristic as example

Increase parameter values p1310 ... p1312 in steps of  $\leq$  5 %. Excessively high values in p1310 ... p1312 can cause the motor to overheat and switch off (trip) the converter due to overcurrent.

If message A07409 appears, it is not permissible that you further increase the value of any of the parameters.

## **Procedure**

- 1. Switch on the motor with a setpoint of a few revolutions per minute.
- 2. Check whether the motor rotates smoothly.

- 3. If the motor does not rotate smoothly, or even remains stationary, increase the voltage boost p1310 until the motor runs smoothly.
- 4. Accelerate the motor to the maximum speed with maximum load.
- 5. Check that the motor follows the setpoint.
- 6. If necessary, increase the voltage boost p1311 until the motor accelerates without problem.

In applications with a high break loose torque, you must also increase parameter p1312 in order to achieve a satisfactory motor response.

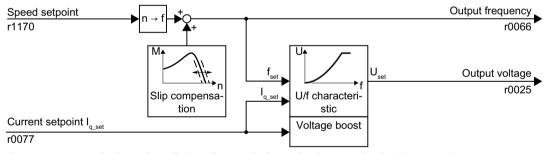
You have set the voltage boost.

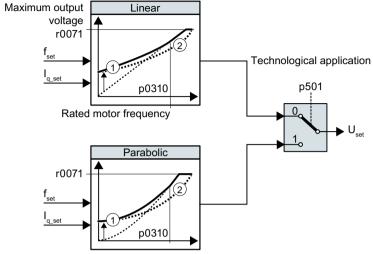
#### **Parameter**

| Number   | Name                                               | Factory setting |
|----------|----------------------------------------------------|-----------------|
| r0071    | Output voltage, maximum                            | Vrms            |
| p0310[M] | Rated motor frequency                              | 0 Hz            |
| p1310[D] | Starting current (voltage boost) permanent         | 50%             |
| p1311[D] | Starting current (voltage boost) when accelerating | 0%              |
| p1312[D] | Starting current (voltage boost) when starting     | 0%              |

# 8.25.2.3 U/f control with Standard Drive Control application class

#### Overview





Figure 8-47 Default setting of the U/f control after selecting Standard Drive Control

Selecting application class Standard Drive Control in the quick commissioning adapts the structure and the setting options of the U/f control as follows:

- Starting current closed-loop control: At low speeds, a controlled motor current reduces the tendency of the motor to oscillate.
- With increasing speed, the converter changes from closed-loop starting current control to U/f control with load-dependent voltage boost.
- The slip compensation is activated.
- Soft starting is not possible.
- Reduced setting options

# **Function description**

## Characteristics after selecting the application class Standard Drive Control



- 1 The closed-loop starting current control optimizes the speed control at low speeds
- 2 The converter compensates the voltage drop across the motor stator resistance

Figure 8-48 Characteristics after selecting Standard Drive Control

The application class Standard Drive Control reduces the number of characteristics and setting options:

- A linear and a parabolic characteristic are available.
- Selecting a technological application defines the characteristics.

Table 8-60 Linear and parabolic characteristics

| Requirement                                     | Application examples                             | Remark                                                                    | Charac-<br>teristic | Parameter |
|-------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------|---------------------|-----------|
| The required torque is independent of the speed | Eccentric-worm pump, compressor                  | -                                                                         | Linear              | p0501 = 0 |
| The required torque increases with the speed    | Centrifugal<br>pumps, radial fans,<br>axial fans | Lower losses in the motor and converter than for a linear characteristic. |                     | p0501 = 1 |

## **Parameter**

| Number | Name                         | Factory setting |
|--------|------------------------------|-----------------|
| r0025  | CO: Output voltage, smoothed | - Vrms          |
| r0066  | CO: Output frequency         | - Hz            |
| r0071  | Output voltage, maximum      | - Vrms          |

# 8.25 Motor control

| Number   | Name                   | Factory setting |
|----------|------------------------|-----------------|
| p0310[M] | Rated motor frequency  | 0 Hz            |
| p501     | Technology application | 0               |

## 8.25.2.4 Optimizing motor starting using Standard Drive Control

#### Overview

After selecting application class Standard Drive Control, in most applications no additional settings need to be made.

At standstill, the converter ensures that at least the rated motor magnetizing current flows. Magnetizing current p0320 approximately corresponds to the no-load current at  $50 \% \dots 80 \%$  of the rated motor speed.

In the following circumstances, the motor cannot accelerate to its speed setpoint after it has been switched on:

- Load moment of inertia too high
- Load torque too large
- Ramp-up time p1120 too short

The current can be increased at low speeds to improve the starting behavior of the motor.

## Requirement

The ramp-up time of the ramp-function generator is, depending on the motor rated power, 1 s  $(< 1 \text{ kW}) \dots 10 \text{ s} (> 10 \text{ kW})$ .

## **Function description**

#### Starting current (boost) after selecting the application class Standard Drive Control

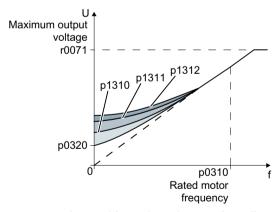



Figure 8-49 The resulting voltage boost using a linear characteristic as example

The converter boosts the voltage corresponding to the starting currents p1310 ... p1312.

Increase parameter values p1310 ... p1312 in steps of  $\leq$  5 %. Excessively high values in p1310 ... p1312 can cause the motor to overheat and switch off (trip) the converter due to overcurrent.

If message A07409 appears, it is not permissible that you further increase the value of any of the parameters.

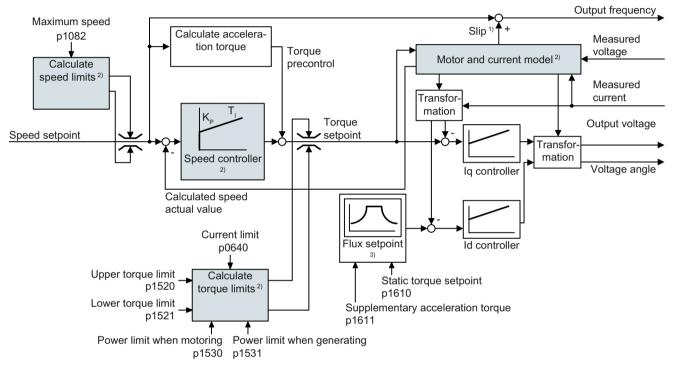
#### **Procedure**

- 1. Switch on the motor with a setpoint of a few revolutions per minute.
- 2. Check whether the motor rotates smoothly.
- 3. If the motor does not rotate smoothly, or even remains stationary, increase the voltage boost p1310 until the motor runs smoothly.
- 4. Accelerate the motor with the maximum load.
- 5. Check that the motor follows the setpoint.
- 6. If necessary, increase the voltage boost p1311 until the motor accelerates without problem.

In applications with a high break loose torque, you must also increase parameter p1312 in order to achieve a satisfactory motor response.

You have set the voltage boost.

#### **Parameter**


| Number   | Name                                                    | Factory setting |
|----------|---------------------------------------------------------|-----------------|
| r0071    | Output voltage, maximum                                 | Vrms            |
| p0310[M] | Rated motor frequency                                   | 0 Hz            |
| p0320[M] | Rated motor magnetizing current / short-circuit current | 0 Arms          |
| p1310[D] | Starting current (voltage boost) permanent              | 50%             |
| p1311[D] | Starting current (voltage boost) when accelerating      | 0%              |
| p1312[D] | Starting current (voltage boost) when starting          | 0%              |

## 8.25.3 Sensorless vector control

#### 8.25.3.1 Structure of vector control without encoder (sensorless)

#### Overview

The vector control comprises closed-loop current control and a higher-level closed-loop speed control.



- 1) for induction motors
- 2) Settings that are required

Figure 8-50 Simplified function diagram for sensorless vector control with speed controller

Using the motor model, the converter calculates the following closed-loop control signals from the measured phase currents and the output voltage:

- Current component I
- Current component I<sub>a</sub>
- Speed actual value

The setpoint of the current component  $I_d$  (flux setpoint) is obtained from the motor data. For speeds above the rated speed, the converter reduces the flux setpoint along the field weakening characteristic.

When the speed setpoint is increased, the speed controller responds with a higher setpoint for current component  $I_q$  (torque setpoint). The closed-loop control responds to a higher torque setpoint by adding a higher slip frequency to the output frequency. The higher output frequency also results in a higher motor slip, which is proportional to the accelerating torque.

 $I_q$  and  $I_d$  controllers keep the motor flux constant using the output voltage, and adjust the matching current component  $I_q$  in the motor.

## Settings that are required

Restart quick commissioning and select the vector control in quick commissioning.

Commissioning (Page 165)

In order to achieve a satisfactory control response, as a minimum you must set the partial functions – shown with gray background in the diagram above – to match your particular application:

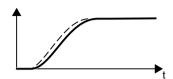
- Motor and current model: In the quick commissioning, correctly set the motor data on the rating plate corresponding to the connection type  $(Y/\Delta)$ , and carry out the motor data identification routine at standstill.
- Speed limits and torque limits: In the quick commissioning, set the maximum speed (p1082) and current limit (p0640) to match your particular application. When exiting quick commissioning, the converter calculates the torque and power limits corresponding to the current limit. The actual torque limits are obtained from the converted current and power limits and the set torque limits.
- **Speed controller**: Start the rotating measurement of the motor data identification. You must manually optimize the controller if the rotating measurement is not possible.

# Default settings after selecting the application class Dynamic Drive Control

Selecting application class Dynamic Drive Control adapts the structure of the vector control and reduces the setting options:

|                                                                      | Vector control after<br>selecting the applica-<br>tion class Dynamic<br>Drive Control | Vector control without se-<br>lecting an application class |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------|
| Hold or set the integral component of the speed controller           | Not possible                                                                          | Possible                                                   |
| Acceleration model for precontrol                                    | Default setting                                                                       | Can be activated                                           |
| Motor data identification at standstill or with rotating measurement | Shortened, with op-<br>tional transition into<br>operation                            | Complete                                                   |

## 8.25.3.2 Optimizing the speed controller

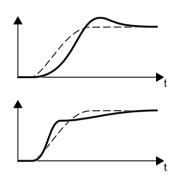

## Optimum control response - post optimization not required

Preconditions for assessing the controller response:

- The moment of inertia of the load is constant and does not depend on the speed
- The converter does not reach the set torque limits during acceleration
- You operate the motor in the range 40 % ... 60 % of its rated speed

#### 8 25 Motor control

If the motor exhibits the following response, the speed control is well set and you do not have to adapt the speed controller manually:




The speed setpoint (broken line) increases with the set ramp-up time and rounding.

The speed actual value follows the setpoint without any overshoot.

# Control optimization required

In some cases, the self optimization result is not satisfactory, or self optimization is not possible as the motor cannot freely rotate.

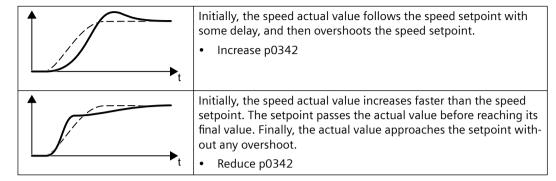


Initially, the speed actual value follows the speed setpoint with some delay, and then overshoots the speed setpoint.

First, the actual speed value increases faster than the speed setpoint. Before the setpoint reaches its final value, it passes the actual value. Finally, the actual value approaches the setpoint without any significant overshoot.

In the two cases describe above, we recommend that you manually optimize the speed control.

## Optimizing the speed controller


#### Requirements

- Torque precontrol is active: p1496 = 100 %.
- The load moment of inertia is constant and independent of the speed.
- The converter requires 10 % ... 50 % of the rated torque to accelerate. When necessary, adapt the ramp-up and ramp-down times of the ramp-function generator (p1120 and p1121).

#### **Procedure**

- 1. Switch on the motor.
- 2. Enter a speed setpoint of approximately 40 % of the rated speed.
- 3. Wait until the actual speed has stabilized.
- 4. Increase the setpoint up to a maximum of 60% of the rated speed.
- 5. Monitor the associated characteristic of the setpoint and actual speed.

6. Optimize the controller by adapting the ratio of the moments of inertia of the load and motor (p0342):



- 7. Switch off the motor.
- 8. Set p0340 = 4. The converter again calculates the speed controller parameters.
- 9. Switch on the motor.
- 10. Over the complete speed range check as to whether the speed control operates satisfactorily with the optimized settings.

You have optimized the speed controller.

When necessary, set the ramp-up and ramp-down times of the ramp-function generator (p1120 and p1121) back to the value before optimization.

## Mastering critical applications

The drive control can become unstable for drives with a high load moment of inertia and gearbox backlash or a coupling between the motor and load that can possibly oscillate. In this case, we recommend the following settings:

- Increase p1452 (smoothing the speed actual value).
- Increase p1472 (integral time  $T_i$ ):  $T_i \ge 4 \cdot p1452$
- If, after these measures, the speed controller does not operate with an adequate dynamic performance, then increase p1470 (gain K<sub>P</sub>) step-by-step.

## **Parameters**

Table 8-61 Encoderless speed control

| Number   | Name                                                             | Factory setting |
|----------|------------------------------------------------------------------|-----------------|
| p0342[M] | Ratio between the total and motor moments of inertia             | 1               |
| p1452    | Speed controller actual speed value smoothing time (encoderless) | 10 ms           |
| p1470[D] | Speed controller encoderless operation P gain                    | 0.3             |
| p1472[D] | Speed controller encoderless operation integral time             | 20 ms           |
| p1496[D] | Acceleration precontrol scaling                                  | 0%              |

# 8.26 Electrically braking the motor

# 8.26.1 Electrical braking

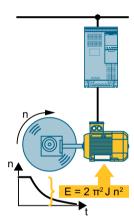
#### Overview



#### Braking with the motor in generator operation

If the motor brakes the connected load electrically, it converts the kinetic energy of the motor into electrical energy. The electrical energy E released when braking the load is proportional to the moment of inertia J of the motor and load and to the square of the speed n. The motor attempts to transfer the energy on to the converter.

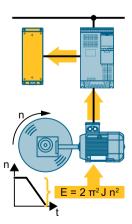
#### Main features of the braking functions


## DC braking

DC braking prevents the motor from transferring the braking energy to the converter. The converter impresses a DC current into the motor, which brakes the motor. The motor converts the braking energy E of the load into heat.

- Advantage: The motor brakes the load without the converter having to process regenerative power.
- Disadvantages: significant increase in the motor temperature; no defined braking characteristics; no constant braking torque; no braking torque at standstill; braking energy E is lost as heat; does not function when the power fails

#### Compound braking


One version of DC braking. The converter brakes the motor with a defined ramp-down time and superimposes a DC current on the output current.



## Dynamic braking

Using a braking resistor, the converter converts the electrical energy into heat.

- Advantages: defined braking response; motor temperature does not increase any further; constant braking torque
- Disadvantages: Braking resistor required; braking energy E is lost in the form of heat



# Which Power Module permits which braking method?

| Electrical braking method                         | Power Modules that can be used  |
|---------------------------------------------------|---------------------------------|
| DC braking                                        | PM230, PM240P-2, PM240-2, PM330 |
| Compound braking                                  | PM240P-2, PM240-2               |
| Dynamic braking                                   | PM240-2, PM330                  |
| Braking with energy recovery into the line supply | PM250                           |

8.26 Electrically braking the motor

# 8.26.2 DC braking

#### Overview

DC braking is used for applications where the motor must be actively braked, but where the converter is neither capable of energy recovery nor does it have a braking resistor.

Typical applications for DC braking include:

- · Centrifuges
- Saws
- · Grinding machines
- Conveyor belts

DC braking is not permissible in applications involving suspended loads, e.g. lifting equipment/cranes and vertical conveyors.

# Requirement

The DC braking function is possible only for induction motors.

#### NOTICE

# Motor overheating as a result of DC braking

The motor will overheat if you use DC braking too frequently or use it for too long. This may damage the motor.

- Monitor the motor temperature.
- Allow the motor to adequately cool down between braking operations.
- If necessary, select another motor braking method.

## **Function description**

With DC braking, a constant braking current flows through the motor. As long as the motor is rotating, the DC current generates a braking torque.

The following configurations are available for DC braking:

- DC braking initiated by a control command
- DC braking when falling below a starting speed
- DC braking when the motor is switched off

Regardless of the configuration, you also can define the DC braking as a reaction to certain converter faults.



## WARNING

## Unexpected motor acceleration

In the following configurations, the converter can accelerate the motor to the set speed without requiring a further ON command:

- DC braking initiated by a control command
- DC braking when falling below a starting speed

An unexpected acceleration of the motor can cause serious injury or material damage.

Consider the behavior of the drive in the higher-level controller.

#### DC braking initiated by a control command

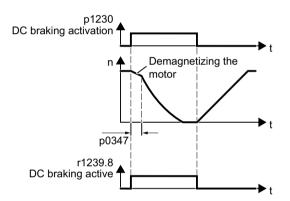



Figure 8-51 Activating DC braking via a control command

Set p1231 = 4 and p1230 = control command.

The control command "DC braking activation" activates and deactivates the DC braking:

- 1 signal:
  - The converter de-energizes the motor for the motor de-excitation time p0347 in order to demagnetize the motor.
  - The converter activates the DC braking.
- 0 signal: The drive switches back to normal operation.

## DC braking when falling below a starting speed

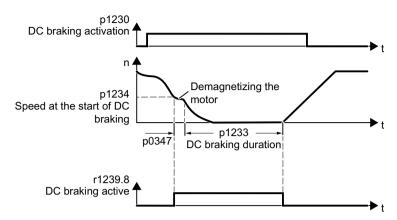



Figure 8-52 DC braking when falling below a starting speed

Set p1231 = 14 and p1230 = control command.

With an active DC braking command (p1230 = 1 signal), the following occurs:

- If motor speed < starting speed p1234:</li>
   The converter de-energizes the motor for the motor de-excitation time p0347 in order to demagnetize the motor.
- 2. The converter activates the DC braking.
- 3. The drive switches back to normal operation if at least one of the following conditions has been fulfilled:
  - "DC braking duration" p1233 has expired.
  - The DC braking command is inactive (p1230 = 0 signal).

## DC braking when the motor is switched off

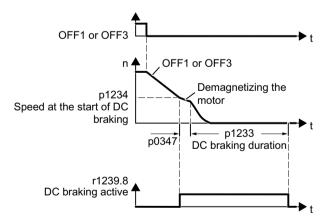



Figure 8-53 DC braking when the motor is switched off Set p1231 = 5.

The following occurs after an OFF1 or OFF3 command:

- 1. The motor brakes along the OFF1 or OFF3 deceleration ramp to starting speed p1234.
- 2. The converter de-energizes the motor for the motor de-excitation time p0347 in order to demagnetize the motor.
- 3. The converter activates the DC braking.
- 4. After "DC braking duration" p1233 expires, the converter de-energizes the motor.

If the OFF1 command is deactivated before "DC braking duration" p1233 expires, the converter terminates the DC braking and switches to normal operation.

## DC braking as reaction to a fault

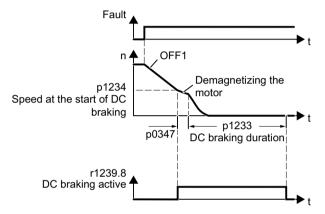



Figure 8-54 DC braking as a fault reaction

Set p2101[x] = 6 and p2100[x] to the corresponding fault code.

If you have defined the DC braking as a reaction to a fault, then the following will occur:

- 1. The converter brakes the motor with OFF1.
- 2. The converter de-energizes the motor for the motor de-excitation time p0347 in order to demagnetize the motor.
- 3. The converter activates the DC braking.
- 4. After "DC braking duration" p1233 expires, the converter de-energizes the motor.

#### **Parameter**

## Settings for DC braking

| Parameter  | Description                      | Factory setting |
|------------|----------------------------------|-----------------|
| p0347[M]   | Motor de-excitation time         | 0 s             |
| p1230[C]   | BI: DC braking activation        | 0               |
| p1231[M]   | Configuring DC braking           | 0               |
| p1232[M]   | DC braking, braking current      | 0 Arms          |
| p1233[M]   | DC braking duration              | 1 s             |
| p1234[M]   | Speed at the start of DC braking | 210000 rpm      |
| r1239[813] | CO/BO: DC braking status word    | -               |

# 8.26 Electrically braking the motor

Table 8-62 Configuring DC braking as a response to faults

| Parameter  | Description                             | Factory setting |
|------------|-----------------------------------------|-----------------|
| p2100[019] | Changing the fault reaction, fault code | 0               |
| p2101[019] | Changing the fault reaction, reaction   | 0               |

# 8.26.3 Compound braking

#### Overview

Compound braking is suitable for applications in which the motor is normally operated at a constant speed and is only braked down to standstill in longer time intervals.

Typically, the following applications are suitable for compound braking:

- Centrifuges
- Saws
- · Grinding machines
- Horizontal conveyors

Compound braking is not permissible for applications with suspended loads, e.g. lifting equipment/cranes all vertical conveyors.

## **Function description**

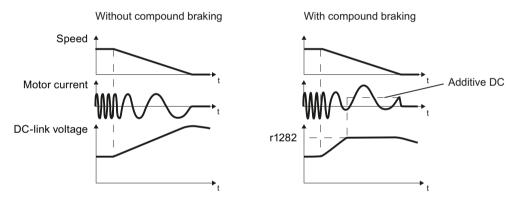



Figure 8-55 Motor brakes with and without active compound braking

Compound braking prevents the DC-link voltage increasing above a critical value. The converter activates compound braking depending on the DC-link voltage. Above a DC-link voltage threshold (r1282), the converter adds a DC current to the motor current. The DC current brakes the motor and prevents an excessive increase in the DC-link voltage.

#### Note

Compound braking is possible only with the U/f control.

Compound braking does not operate in the following cases:

- The "flying restart" function is active
- · DC braking is active
- Vector control is selected

# 8.26 Electrically braking the motor

## **NOTICE**

# Overheating of the motor due to compound braking

The motor will overheat if you use compound braking too frequently or for too long. This may damage the motor.

- Monitor the motor temperature.
- Allow the motor to adequately cool down between braking operations.
- If necessary, select another motor braking method.

## **Parameter**

Table 8-63 Setting and enabling compound braking

| Parameter | Description                                                | Factory setting |
|-----------|------------------------------------------------------------|-----------------|
| r1282     | Vdc_max controller switch-on level (U/f)                   | - V             |
| p3856[D]  | Compound braking current (%)                               | 0%              |
| r3859.0   | CO/BO: Compound braking/equal quantity control status word | -               |

# 8.26.4 Dynamic braking

## Overview

Dynamic braking processes the regenerative power that occurs during braking of the motor. In this way, the converter can accelerate and brake the motor with the same dynamic response.

The following are typical applications for dynamic braking:

- Centrifuge
- Horizontal conveyors
- Vertical and inclined conveyors
- · Hoisting gear

# Requirement

You are using a PM240-2 power module and a braking resistor.

## **Function description**




Figure 8-56 Simplified representation of dynamic braking when a motor is reversed

## 8.26 Electrically braking the motor

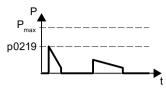
The motor supplies regenerative power to the converter when braking. The regenerative power means that the DC-link voltage in the converter increases. Above the activation threshold for the braking module, the converter forwards the regenerative power to the braking resistor. The braking resistor converts the regenerative power into heat, thereby preventing converter faults due to excessive DC-link voltage.

Factory setting for the activation threshold for the braking module:

690 V converter: 1120 V
400 V converters: 760 V
200 V converter: 385 V

## NOTICE

## Overload of motor insulation during braking


When the motor brakes, the DC-link voltage, and thus also the voltage load of the motor, increases. Particularly when you operate a 500 V motor on a 690 V converter, the converter can overload the motor insulation and damage the motor.

• Reduce the activation threshold for the braking module

#### **Procedure**

#### 1. Setting the braking power

Using p0219, you define the maximum braking power that the braking resistor must absorb.



P<sub>max</sub> Maximum braking power of the braking resistor

p021 Maximum braking power of the application

Figure 8-57 Example of maximum braking power in an application

p0219 > 0 activates dynamic braking. Boundary conditions for p0219:

p0219 is too low:

The converter cannot fully convert the generated braking power into heat. The converter extends the ramp-down time of the motor in order to reduce the braking power.

p0219 > maximum braking power of the braking resistor:

The temperature monitoring of the braking resistor can trigger a converter fault.

Connecting the temperature contact of the braking resistor (Page 156)

You can find the maximum braking power of the braking resistor in the Hardware Installation Manual of the power module.

Overview of the manuals (Page 581)

The SIZER PC tool supports you when calculating the maximum braking power.

Configuring support (Page 584)

## 2. If necessary: Reduce the activation threshold for the braking module

You can reduce the activation threshold for the braking module for the following converters:

- 690 V converter
- 400 V converter

We recommend the following settings, particularly when using a 500 V motor:

- Set p0212.8 = 1
- Enter the rated value of the converter supply voltage in p0210.
   Enter the voltage value at the intended place of use of the converter, if known, in p0210.

You have now set the dynamic braking.

#### Example

You can find an example for configuring and commissioning a drive with braking resistor on the Internet:

Engineering and commissioning series lifting equipment/cranes (<a href="https://support.industry.siemens.com/cs/de/en/view/103156155">https://support.industry.siemens.com/cs/de/en/view/103156155</a>)

## **Parameters**

| Parameter | Description                           | Factory setting |
|-----------|---------------------------------------|-----------------|
| r0063     | CO: Actual speed value                | - rpm           |
| r0070     | CO: Actual DC link voltage value      | - V             |
| p0210     | Device supply voltage                 | 400 V           |
| p0212     | Power unit configuration              | 0000 0000 bin   |
| p0219     | Braking resistor braking power        | 0 kW            |
| r0297     | DC-link voltage overvoltage threshold | - V             |

## **Further information**

## Interaction with other functions

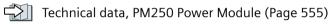
When you set the braking power of the braking resistor (p0219 > 0), the converter disables the Vdc max control.

Motor and converter protection by limiting the voltage (Page 401)

At the same time, p0219 defines the regenerative power limit p1531 for vector control.

Sensorless vector control (Page 374)

# 8.26.5 Braking with regenerative feedback to the line


## Overview

The typical applications for braking with energy recovery (regenerative feedback into the line supply) are as follows:

- Hoist drives
- Centrifuges
- Unwinders

For these applications, the motor must brake for longer periods of time.

The converter can feed back up to 100% of its rated power into the line supply (referred to "High Overload" base load).



## **Parameter**

## Setting the braking with regenerative feedback to the line

| Parameter                                                       | Description             | Factory setting |
|-----------------------------------------------------------------|-------------------------|-----------------|
| Limiting the regenerative feedback for U/f control (p1300 < 20) |                         |                 |
| p0640[D]                                                        | Current limit           | 0 Arms          |
| Limiting feedback with vector control (p1300 ≥ 20)              |                         |                 |
| p1531[D]                                                        | Power limit, generating | -0.01 kW        |

# 8.27 Overcurrent protection

#### Overview



The U/f control prevents too high a motor current by influencing the output frequency and the motor voltage (I-max controller).

# Requirement

You have selected U/f control.

The application must allow the motor torque to decrease at a lower speed.

# **Function description**

The I-max controller influences the output frequency and the motor voltage.

If the motor current reaches the current limit during acceleration, the I-max controller extends the acceleration operation.

If the motor load is so high during steady-state operation that the motor current reaches the current limit, then the I-max controller reduces the speed and the motor voltage until the motor current returns to the permissible range again.

If the motor current reaches the current limit during deceleration, the I-max controller extends the deceleration operation.

# Changing the settings

The factory setting for proportional gain and the integral time of the I-max controller ensures faultless operation in the vast majority of cases.

The factory setting of the I-max controller must only be changed in the following exceptional cases:

- Speed or torque of the motor tend to cause vibrations upon reaching the current limit.
- The converter goes into the fault state with an overcurrent message.

## **Parameter**

| Number     | Name                                         | Factory setting |
|------------|----------------------------------------------|-----------------|
| r0056.0 13 | CO/BO: Status word, closed-loop control      | -               |
| p0305[M]   | Rated motor current                          | 0 Arms          |
| p0640[D]   | Current limit                                | 0 Arms          |
| p1340[D]   | I_max frequency controller proportional gain | 0               |
| p1341[D]   | I_max frequency controller integral time     | 0.300 s         |
| r1343      | CO: I_max controller frequency output        | - rpm           |

# 8.28 Converter protection using temperature monitoring

#### Overview



The converter temperature is essentially defined by the following effects:

- The ambient temperature
- The ohmic losses increasing with the output current
- Switching losses increasing with the pulse frequency

## Monitoring types

The converter monitors its temperature using the following monitoring types:

- I<sup>2</sup>t monitoring (alarm A07805, fault F30005)
- Measuring the chip temperature of the Power Module (alarm A05006, fault F30024)
- Measuring the heat sink temperature of the Power Module (alarm A05000, fault F30004)

# **Function description**

## Overload response for p0290 = 0

The converter responds depending on the control mode that has been set:

- In vector control, the converter reduces the output current.
- In U/f control, the converter reduces the speed.

Once the overload condition has been removed, the converter re-enables the output current or speed.

If the measure cannot prevent a converter thermal overload, then the converter switches off the motor with fault F30024.

# Overload response for p0290 = 1

The converter immediately switches off the motor with fault F30024.

#### Overload response for p0290 = 2

We recommend this setting for drives with square-law torque characteristic, e.g. fans.

# 8.28 Converter protection using temperature monitoring

The converter responds in 2 stages:

1. If you operate the converter with increased pulse frequency setpoint p1800, then the converter reduces its pulse frequency starting at p1800.

In spite of the temporarily reduced pulse frequency, the base-load output current remains unchanged at the value that is assigned to parameter p1800.

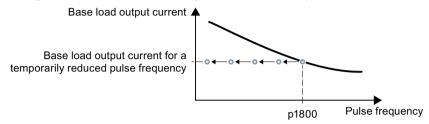



Figure 8-58 Derating characteristic and base load output current for overload

Once the overload condition has been removed, the converter increases the pulse frequency back to the pulse frequency setpoint p1800.

- 2. If it is not possible to temporarily reduce the pulse frequency, or the risk of thermal overload cannot be prevented, then stage 2 follows:
  - In vector control, the converter reduces its output current.
  - In U/f control, the converter reduces the speed.

Once the overload condition has been removed, the converter re-enables the output current or speed.

If both measures cannot prevent a power unit thermal overload, then the converter switches off the motor with fault F30024.

## Overload response for p0290 = 3

If you operate the converter with increased pulse frequency, then the converter reduces its pulse frequency starting at the pulse frequency setpoint p1800.

In spite of the temporarily reduced pulse frequency, the maximum output current remains unchanged at the value that is assigned to the pulse frequency setpoint. Also see p0290 = 2.

Once the overload condition has been removed, the converter increases the pulse frequency back to the pulse frequency setpoint p1800.

If it is not possible to temporarily reduce the pulse frequency, or the measure cannot prevent a power unit thermal overload, then the converter switches off the motor with fault F30024.

### Overload response for p0290 = 12

The converter responds in 2 stages:

- If you operate the converter with increased pulse frequency setpoint p1800, then the
  converter reduces its pulse frequency starting at p1800.
   There is no current derating as a result of the higher pulse frequency setpoint.
   Once the overload condition has been removed, the converter increases the pulse frequency
  back to the pulse frequency setpoint p1800.
- 2. If it is not possible to temporarily reduce the pulse frequency, or the risk of converter thermal overload cannot be prevented, then stage 2 follows:
  - In vector control, the converter reduces the output current.
  - In U/f control, the converter reduces the speed.

Once the overload condition has been removed, the converter re-enables the output current or speed.

If both measures cannot prevent a power unit thermal overload, then the converter switches off the motor with fault F30024.

#### Overload response for p0290 = 13

We recommend this setting for drives with a high starting torque.

If you operate the converter with increased pulse frequency, then the converter reduces its pulse frequency starting at the pulse frequency setpoint p1800.

There is no current derating as a result of the higher pulse frequency setpoint.

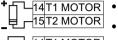
Once the overload condition has been removed, the converter increases the pulse frequency back to the pulse frequency setpoint p1800.

If it is not possible to temporarily reduce the pulse frequency, or the measure cannot prevent a power unit thermal overload, then the converter switches off the motor with fault F30024.

#### **Parameters**

| Number     | Name                                   | Factory setting     |
|------------|----------------------------------------|---------------------|
| r0036      | CO: Power unit overload I2t            | %                   |
| r0037[019] | Power unit temperatures                | ℃                   |
| p0290      | Power unit overload response           | 2                   |
| p0292[01]  | Power unit temperature alarm threshold | [0] 5 °C, [1] 15 °C |
| p0294      | Power Module alarm for I2t overload    | 95%                 |

### Special feature for PM330


For PM330, the overload response is permanently set to p0290 = 2. It cannot be changed.

### 8.29 Motor protection with temperature sensor

#### Overview



The converter can evaluate one of the following sensors to protect the motor against overtemperature:



- KTY84 sensor
- Temperature switch (e.g. bimetallic switch)



- PTC sensor
- Pt1000 sensor

### **Function description**

#### KTY84 sensor

#### NOTICE

### Overheating of the motor due to KTY sensor connected with the incorrect polarity

If a KTY sensor is connected with incorrect polarity, the motor can be damaged by overheating, as the converter cannot detect a motor overtemperature condition.

Connect the KTY sensor with the correct polarity.



Using a KTY sensor, the converter monitors the motor temperature and the sensor itself for wire-break or short-circuit:

• Temperature monitoring:

The converter uses a KTY sensor to evaluate the motor temperature in the range from  $-48 \,^{\circ}\text{C}$  ...  $+248 \,^{\circ}\text{C}$ .

Set the temperature for the alarm and fault thresholds with parameter p0604 or p0605.

- Overtemperature alarm (A07910):
  - motor temperature > p0604 and p0610 = 0
- Overtemperature fault (F07011):

The converter responds with a fault in the following cases:

- motor temperature > p0605
- motor temperature > p0604 and p0610 > 0
- Sensor monitoring (A07015 or F07016):
  - Wire-break:

The converter interprets a resistance  $> 2120~\Omega$  as a wire-break and outputs the alarm A07015. After 100 milliseconds, the converter changes to the fault state with F07016.

– Short-circuit:

The converter interprets a resistance  $< 50 \Omega$  as a short-circuit and outputs the alarm A07015. After 100 milliseconds, the converter changes to the fault state with F07016.

### Temperature switch



The converter interprets a resistance  $\geq 100 \,\Omega$  as an opened bimetallic switch and responds according to the setting for p0610.

#### PTC sensor



The converter interprets a resistance  $> 1650 \Omega$  as being an overtemperature condition and responds according to the setting of p0610.

The converter interprets a resistance < 20  $\Omega$  as being a short-circuit and responds with alarm A07015. If the alarm is present for longer than 100 milliseconds, the converter shuts down with fault F07016.

#### Pt1000 sensor



Using a Pt1000 sensor, the converter monitors the motor temperature and the sensor itself for wire breakage and/or short-circuit:

• Temperature monitoring:

Using a Pt1000 sensor, the converter evaluates the motor temperature in the range from -48  $^{\circ}$ C ... +248  $^{\circ}$ C.

Set the temperature for the alarm and fault thresholds with parameter p0604 or p0605.

- Overtemperature alarm (A07910):
  - motor temperature > p0604 and p0610 = 0
- Overtemperature fault (F07011):

The converter responds with a fault in the following cases:

- motor temperature > p0605
- motor temperature > p0604 and p0610 > 0
- Sensor monitoring (A07015 or F07016):
  - Wire-break:

The converter interprets a resistance  $> 2120~\Omega$  as a wire-break and outputs the alarm A07015. After 100 milliseconds, the converter changes to the fault state with F07016.

– Short-circuit:

The converter interprets a resistance  $< 603 \Omega$  as a short-circuit and outputs the alarm A07015. After 100 milliseconds, the converter changes to the fault state with F07016.

### **Parameters**

| Number   | Name                                                    | Factory setting |
|----------|---------------------------------------------------------|-----------------|
| p0335[M] | Type of motor cooling                                   | 0               |
| p0601[M] | Motor temperature sensor type                           | 0               |
| p0604[M] | Mot_temp_mod 2/sensor alarm threshold                   | 130 °C          |
| p0605[M] | Mot_temp_mod 1/2/sensor threshold and temperature value | 145 °C          |
| p0610[M] | Motor overtemperature response                          | 12              |
| p0640[D] | Current limit                                           | 0 Arms          |

8.30 Motor protection by calculating the temperature

### 8.30 Motor protection by calculating the temperature

#### Overview



The converter calculates the motor temperature based on a thermal motor model. After commissioning, the converter sets the thermal motor type to match the motor.

The thermal motor model responds far faster to temperature increases than a temperature sensor.

If the thermal motor model is used together with a temperature sensor, e.g. a Pt1000, then the converter corrects the model according to the measured temperature.

### **Function description**

#### Thermal motor model 2 for induction motors

The thermal motor model 2 for induction motors is a thermal 3-mass model, consisting of stator core, stator winding and rotor. Thermal motor model 2 calculates the temperatures - both in the rotor as well as in the stator winding.

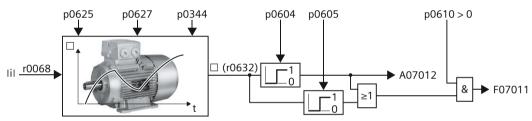



Figure 8-59 Thermal motor model 2 for induction motors

#### **Parameter**

Table 8-64 Thermal motor model 2 for induction motors

| Number     | Name                                                    | Factory setting            |
|------------|---------------------------------------------------------|----------------------------|
| r0068[0 1] | CO: Absolute actual current value                       | - Arms                     |
| p0344[M]   | Motor weight (for thermal motor model)                  | 0 kg                       |
| p0604[M]   | Mot_temp_mod 2/KTY alarm threshold                      | 130 °C                     |
| p0605[M]   | Mot_temp_mod 1/2/sensor threshold and temperature value | 145 °C                     |
| p0610[M]   | Motor overtemperature response                          | 12                         |
| p0612[M]   | Mot_temp_mod activation                                 | 0000 0010 0000<br>0010 bin |
| p0625[M]   | Motor ambient temperature during commissioning          | 20 °C                      |
| p0627[M]   | Motor overtemperature, stator winding                   | 80 K                       |
| r0632[M]   | Mot_temp_mod stator winding temperature                 | - °C                       |
| p0640[D]   | Current limit                                           | 0 Arms                     |

### Thermal motor model 1 for synchronous reluctance motors

Thermal motor model 1 calculates the temperature of the stator winding from the motor current and the thermal time constant of the motor model.

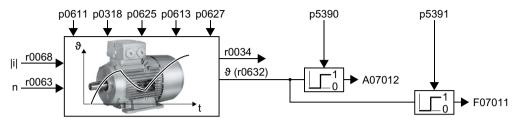



Figure 8-60 Thermal motor model 1 for reluctance motors

#### **Parameters**

Table 8-65 Thermal motor model 1 for reluctance motors

| Number     | Name                                           | Factory setting            |
|------------|------------------------------------------------|----------------------------|
| r0034      | CO: Thermal motor load                         | - %                        |
| r0068[0 1] | CO: Absolute actual current value              | - Arms                     |
| p0318[M]   | Motor stall current                            | 0 Arms                     |
| p0610[M]   | Motor overtemperature response                 | 12                         |
| p0611[M]   | 12t thermal motor model time constant          | 0 s                        |
| p0612[M]   | Mot_temp_mod activation                        | 0000 0010 0000<br>0010 bin |
| p0613[M]   | Mot_temp_mod 1/3 ambient temperature           | 20 °C                      |
| p0625[M]   | Motor ambient temperature during commissioning | 20 °C                      |
| p0627[M]   | Motor overtemperature, stator winding          | 80 K                       |
| r0632[M]   | Mot_temp_mod stator winding temperature        | - °C                       |
| p5390[M]   | Mot_temp_mod 1/3 alarm threshold               | 110 °C                     |
| p5391[M]   | Mot_temp_mod 1/3 fault threshold               | 120 °C                     |

8.31 How do I achieve a motor overload protection in accordance with IEC/UL 61800-5-1?

# 8.31 How do I achieve a motor overload protection in accordance with IEC/UL 61800-5-1?

#### Overview

The thermal motor model of the converter fulfills motor overload protection according to IEC/ UL 61800-5-1.

For motor overload protection according to IEC/UL 61800-5-1, some parameters of the thermal motor model may also need to be adjusted.

### Requirement

You have correctly entered the motor data during guick commissioning.

#### NOTICE

### Thermal overload of third-party motors due to a trip threshold that is too high

With a Siemens motor, the converter sets the trip threshold of the thermal motor model to match the motor. With a third-party motor, the converter cannot ensure in every case that the trip threshold is exactly right for the motor. A trip threshold that is set too high can lead to a thermal overload, thus causing damage to the motor.

• If required for a third-party motor, reduce the corresponding trip threshold p0605, p0615, or p5391.

#### **Procedure**

- 1. Set p0610 = 12.
- 2. Set the following parameters depending on the motor:
  - Induction motor:

```
p0612.1 = 1
```

p0612.9 = 1

For a motor without temperature sensor:  $p0625 = 40 \,^{\circ}\text{C}$ 

Synchronous motor

p0612.0 = 1

p0612.8 = 1

For a motor without temperature sensor: p0613 = 40 °C

The trip threshold p0605, p0615 or p5391 parameterized in the motor data set may not be increased.

Changing additional parameters of the thermal motor model can lead to the converter no longer satisfying the motor overload protection in accordance with IEC/UL 61800-5-1.

### 8.32 Motor and converter protection by limiting the voltage

#### Overview



An electric motor converts electrical energy into mechanical energy to drive the load. If the motor is driven by its load, e.g. by the inertia of the load during braking, the energy flow reverses: The motor operates temporarily as a generator, and converts mechanical energy into electrical energy. The electrical energy flows from the motor to the converter. The converter stores the energy in its DC-link capacitors. As a consequence, the DC link voltage Vdc in the converter is higher.

An excessively high DC link voltage damages both the converter and the motor. The converter therefore monitors its DC-link voltage and, when necessary, switches off the connected motor and outputs the fault "DC-link overvoltage".

### Requirement

The Vdc\_max control can be used only with the PM230, PM240-2, PM240P-2 and PM330 Power Modules.

You must deactivate the Vdc\_max control if you are using a braking resistor.

PM250 Power Modules feed back regenerative energy into the line supply. Deactivate Vdc\_max control for PM250 Power Modules.

### **Function description**

### Protecting the motor and converter against overvoltage

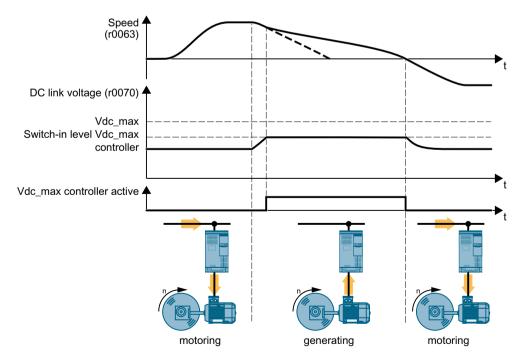



Figure 8-61 Simplified representation of the Vdc\_max control

### 8.32 Motor and converter protection by limiting the voltage

The Vdc max control lengthens the motor ramp-down time when braking. Consequently, the motor feeds only so much energy back into the converter to cover the losses in the converter. The DC link voltage remains within the permissible range.



Electrical braking (Page 378)

### **Parameter**

The parameters differ depending on the motor control mode.

Table 8-66 Parameters for U/f control

| Parameter | Description                                           | Factory setting |
|-----------|-------------------------------------------------------|-----------------|
| p0210     | Device supply voltage                                 | 400 V           |
| p1280[D]  | Vdc controller configuration (U/f)                    | 1               |
| r1282     | Vdc_max controller switch-on level (U/f)              | - V             |
| p1283[D]  | Vdc_max controller, dynamic factor (U/f)              | 100%            |
| p1284[D]  | Vdc_max controller time threshold (U/f)               | 4 s             |
| p1290[D]  | Vdc controller proportional gain (U/f)                | 1               |
| p1291[D]  | Vdc controller integral time (U/f)                    | 40 ms           |
| p1292[D]  | Vdc controller derivative-action time (U/f)           | 10 ms           |
| p1294     | Vdc_max controller automatic ON level detection (U/f) | 0               |

Table 8-67 Parameters for vector control

| Parameter | Description                                     | Factory setting |
|-----------|-------------------------------------------------|-----------------|
| p0210     | Device supply voltage                           | 400 V           |
| p1240[D]  | Vdc controller configuration (vector control)   | 1               |
| r1242     | Vdc_max controller switch-in level              | - V             |
| p1243[D]  | Vdc_max controller, dynamic factor              | 100%            |
| p1250[D]  | Vdc controller proportional gain                | 1               |
| p1251[D]  | Vdc controller integral time                    | 0 ms            |
| p1252[D]  | Vdc controller derivative-action time           | 0 ms            |
| p1254     | Vdc_max controller automatic ON level detection | 0               |

Further information is provided in the parameter list.

### 8.33 Monitoring the driven load



In many applications, the speed and the torque of the motor can be used to determine whether the driven load is in an impermissible operating state. The use of an appropriate monitoring function in the converter prevents failures and damage to the machine or plant.

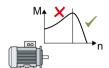
### Examples:

- For fans, an excessively low torque indicates a torn drive belt.
- For pumps, insufficient torque can indicate a leakage or dry-running.
- The motor can be blocked by an excessively high torque at a low speed.

### Functions for monitoring the driven load

The converter provides the following options to monitor the driven load based on the output current:

| M X | The stall protection recognizes a stalled asynchronous motor.                                                                                                                                          |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | The no-load monitoring evaluates the motor current. An insufficient current can mean that the motor cable is disconnected.                                                                             |
|     | The blocking protection triggers for a motor current that corresponds to the set current limit coupled with motor standstill.                                                                          |
|     | The torque monitoring assumes that a specific torque is associated with each speed for pumps and fans. Insufficient torque indicates that the motor and the load are no longer mechanically connected. |
|     | An excessive torque can indicate problems in the mechanical system of the driven load, e.g. a mechanically blocked load.                                                                               |
|     | Blocking protection, leakage protection and dry-running protection are a monitoring method for pumps or fans. The monitoring combines a torque monitoring with a blocking protection.                  |


Monitoring the driven load using a binary signal:



The speed monitoring evaluates a periodic binary signal. A signal failure indicates that the motor and the load are no longer mechanically connected with each other.

### 8.33.1 Stall protection

### **Function description**



If the load of a standard induction motor exceeds the stall torque of the motor, the motor can also stall during operation on the converter. A stalled motor is stationary and does not develop sufficient torque to accelerate the load.

If the "Motor model fault signal stall detection" r1746 for the time p2178 is present via the "Motor model error threshold stall detection" p1745, the converter signals "Motor stalled" and fault F07902.

#### **Parameter**

| Number      | Name                                        | Factory setting |
|-------------|---------------------------------------------|-----------------|
| r1408[0 14] | CO/BO: Status word, current controller      | -               |
| p1745[D]    | Motor model error threshold stall detection | 5%              |
| r1746       | Motor model fault signal stall detection    | - %             |
| p2178[D]    | Motor stalled delay time                    | 0.01 s          |
| r2198       | CO/BO: Status word monitoring functions 2   | -               |

#### See also

Blocking protection (Page 405)

### 8.33.2 No-load monitoring

### **Function description**



An insufficient motor current indicates that the motor cable is disconnected.

If the motor current for the time p2180 lies below the current level p2179, the converter signals the alarm A07929.

### **Parameters**

| Number      | Name                                      | Factory setting |
|-------------|-------------------------------------------|-----------------|
| r0068[0 1]  | CO: Absolute actual current value         | - Arms          |
| p2179[D]    | Output load detection current limit       | 0 Arms          |
| p2180[D]    | Output load detection delay time          | 2000 ms         |
| r2197[0 13] | CO/BO: Status word monitoring functions 1 | -               |

### 8.33.3 Blocking protection

### **Function description**

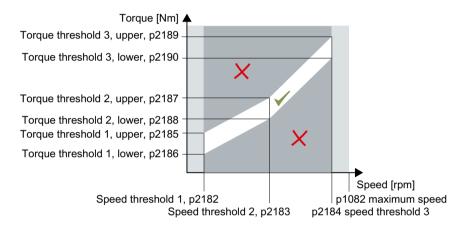


If the mechanical load is too high, the motor may block. For a blocked motor, the motor current corresponds to the set current limit without the speed reaching the specified setpoint.

If the speed lies below the speed threshold p2175 for the time p2177 while the motor current reaches the current limit, the converter signals "Motor blocked" and fault F07900.

### **Parameter**

| Number   | Name                                      | Factory settings |
|----------|-------------------------------------------|------------------|
| p0045    | Display values of smoothing time constant | 4 ms             |
| r0063    | CO: Speed actual value                    | - rpm            |
| p2175[D] | Motor blocked speed threshold             | 120 rpm          |
| p2177[D] | Motor blocked delay time                  | 3 s              |
| r2198    | Status word monitoring functions 2        | -                |


### 8.33.4 Torque monitoring

### **Function description**



In applications with fans, pumps or compressors with the flow characteristic, the torque follows the speed according to a specific characteristic. An insufficient torque for fans indicates that the power transmission from the motor to the load is interrupted. For pumps, insufficient torque can indicate a leakage or dry-running.

The converter monitors the torque based on the envelope curve depending on the speed against a lower and upper torque.



If the torque lies in the impermissible range longer than time p2192, the converter reacts as specified in p2181.

The monitoring is not active below speed threshold 1 and above speed threshold 3.

#### Setting monitoring

- 1. Operate the drive at three different speeds in succession.
- 2. Set the speed thresholds p2182 ... p2184 to the respective values.
- 3. Set the torque thresholds for each speed. The converter displays the current torque in r0031.
- 4. Set p2193 = 1.

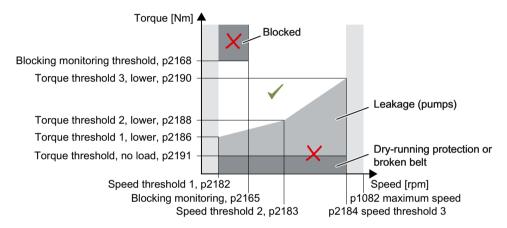
You have now set monitoring.

#### **Parameter**

| Number   | Name                               | Factory setting |
|----------|------------------------------------|-----------------|
| r0031    | Torque actual value, smoothed      | -               |
| p2181[D] | Load monitoring, response          | 0               |
| p2182[D] | Load monitoring, speed threshold 1 | 150 rpm         |
| p2183[D] | Load monitoring, speed threshold 2 | 900 rpm         |
| p2184[D] | Load monitoring, speed threshold 3 | 1500 rpm        |

## 8.33 Monitoring the driven load

| Number   | Name                                       | Factory setting |
|----------|--------------------------------------------|-----------------|
| p2185[D] | Load monitoring, torque threshold 1, upper | 10000000 Nm     |
| p2186[D] | Load monitoring torque threshold 1, lower  | 0 Nm            |
| p2187[D] | Load monitoring torque threshold 2, upper  | 10000000 Nm     |
| p2188[D] | Load monitoring torque threshold 2, lower  | 0 Nm            |
| p2189[D] | Load monitoring torque threshold 3, upper  | 10000000 Nm     |
| p2190[D] | Load monitoring torque threshold 3, lower  | 0 Nm            |
| p2191[D] | Load monitoring torque threshold, no load  | 0 Nm            |
| p2192[D] | Load monitoring, delay time                | 10 s            |
| p2193[D] | Load monitoring configuration              | 1               |


### 8.33.5 Blocking protection, leakage protection and dry-running protection

### Overview



In applications with fans, pumps or compressors with the flow characteristic, the torque follows the speed according to a specific characteristic. An insufficient torque for fans indicates that the power transmission from the motor to the load is interrupted. For pumps, insufficient torque can indicate a leakage or dry-running.

### **Function description**



If the torque and speed lie in the impermissible range longer than time p2192, the converter reacts as specified in p2181.

For applications with pumps, the converter detects the following states of the driven load:

- Blocked
- Leakage
- Dry running

For applications with fans or compressors, the converter detects the following states of the driven load:

- Blocked
- Torn belt

The monitoring is not active below speed threshold 1 and above speed threshold 3.

When using the control mode "U/f control" (p1300 < 10), the "Blocking protection" function becomes active when the current limit is reached.

Blocking protection (Page 405)

### **Setting pump monitoring**

- 1. Set p2193 = 4.
- 2. The converter sets the monitoring as shown.

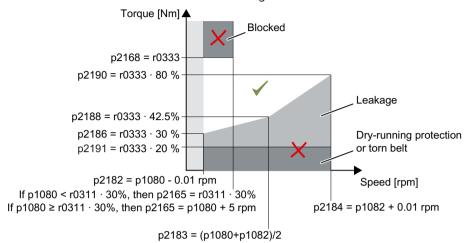



Figure 8-62 Default settings for pumps

- 3. The converter sets monitoring response p2181 = 7
- 4. If necessary, adjust the speed thresholds p2182 ... p2184.
- 5. If necessary, adjust the torque threshold for each speed. The converter displays the current torque in r0031.

You have now set monitoring.

### Setting fan and compressor monitoring

- 1. Set p2193 = 5.
- 2. The converter sets the monitoring as shown.

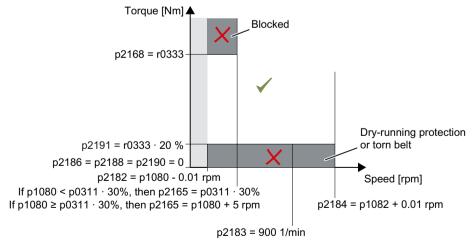



Figure 8-63 Default settings for fans and compressors

3. The converter sets monitoring response p2181 = 7

### 8.33 Monitoring the driven load

- 4. If necessary, adjust the speed thresholds p2182 ... p2184.
- 5. Set the torque threshold for each speed. The converter displays the current torque in r0031.

You have now set monitoring.

#### **Parameter**

| Number   | Name                                                 | Factory setting    |
|----------|------------------------------------------------------|--------------------|
| r0031    | Torque actual value, smoothed                        | -                  |
| p0311[M] | Rated motor speed                                    | 0 rpm              |
| r0333[M] | Rated motor torque                                   | -                  |
| p1080[D] | Minimum speed                                        | 0 rpm              |
| p1082[D] | Maximum speed                                        | 1500 rpm           |
| p1300[D] | Open-loop/closed-loop control operating mode         | See parameter list |
| p2165[D] | Load monitoring blocking monitoring threshold, upper | 0 rpm              |
| p2168[D] | Load monitoring blocking monitoring torque threshold | 10000000 Nm        |
| p2181[D] | Load monitoring, response                            | 0                  |
| p2182[D] | Load monitoring, speed threshold 1                   | 150 rpm            |
| p2183[D] | Load monitoring, speed threshold 2                   | 900 rpm            |
| p2184[D] | Load monitoring, speed threshold 3                   | 1500 rpm           |
| p2186[D] | Load monitoring torque threshold 1, lower            | 0 Nm               |
| p2188[D] | Load monitoring torque threshold 2, lower            | 0 Nm               |
| p2190[D] | Load monitoring torque threshold 3, lower            | 0 Nm               |
| p2191[D] | Load monitoring torque threshold, no load            | 0 Nm               |
| p2192[D] | Load monitoring, delay time                          | 10 s               |
| p2193[D] | Load monitoring configuration                        | 1                  |

### **Further information**

If you deselect monitoring with p2193 < 4, the converter then resets the load monitoring parameters to factory settings.

### See also

Torque monitoring (Page 406)

### 8.33.6 Rotation monitoring

### **Function description**



The converter monitors the speed or velocity of a machine component via an electromechanic or electronic encoder, e.g. a proximity switch. Examples of how the function can be used:

- Drive belt monitoring for fans
- Blocking protection for pumps

The converter checks whether the encoder consistently supplies a 24 V signal during motor operation. If the encoder signal fails for time p2192, the converter signals fault F07936.



Figure 8-64 Function plan and time response of the speed monitoring

### Setting monitoring

- 1. Set p2193 = 1.
- 2. Interconnect p3232 with a digital input of your choice.
- 3. If necessary, adjust the delay time.

You have now set monitoring.

#### **Parameter**

| Number   | Name                                   | Factory setting |
|----------|----------------------------------------|-----------------|
| r0722    | CO/BO: CU digital inputs, status       | -               |
| p2192[D] | Load monitoring, delay time            | 10 s            |
| p2193[D] | Load monitoring configuration          | 1               |
| p3232[C] | BI: Load monitoring, failure detection | 1               |

#### See also

Torque monitoring (Page 406)

## 8.34 Flying restart – switching on while the motor is running

#### Overview



If you switch on the motor while it is still rotating, without the "Flying restart" function, there is a high probability that a fault will occur as a result of overcurrent (F30001 or F07801). Examples of applications involving an unintentionally rotating motor directly before switching on:

- The motor rotates after a brief line interruption.
- A flow of air turns the fan impeller.
- A load with a high moment of inertia drives the motor.

### Requirement

The converter may operate precisely one motor only.

It is not permissible that you enable the "Flying restart" function if the converter is simultaneously driving several motors. Exception: a mechanical coupling ensures that all of the motors always operate with the same speed.

### **Function description**

The "Flying restart" function comprises the following steps:

- 1. After the on command, the converter impresses the search current in the motor and increases the output frequency.
- 2. When the output frequency reaches the actual motor speed, the converter waits for the motor excitation build up time.
- 3. The converter accelerates the motor to the actual speed setpoint.

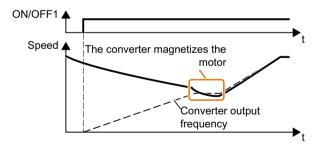



Figure 8-65 Principle of operation of the "flying restart" function

### **Parameter**

| Number   | Name                                                     | Factory setting |
|----------|----------------------------------------------------------|-----------------|
| p1200[D] | Flying restart operating mode                            | 0               |
| r0331[M] | Actual motor magnetizing current / short-circuit current | - Arms          |
| p0346[M] | Motor excitation build-up time                           | 0 s             |

## 8.34 Flying restart – switching on while the motor is running

| Number   | Name                                    | Factory setting |
|----------|-----------------------------------------|-----------------|
| p0347[M] | Motor de-excitation time                | 0 s             |
| p1201[C] | BI: Flying restart enable signal source | 1               |
| p1202[D] | Flying restart detection current        | 90% 100%        |
| p1203[D] | Flying restart search rate factor       | 150% 100%       |

### 8.35 Automatic restart

#### Overview



The automatic restart includes two different functions:

- The converter automatically acknowledges faults.
- After a fault occurs or after a power failure, the converter automatically switches-on the motor again.

The converter interprets the following events as power failure:

- The converter signals fault F30003 (undervoltage in the DC link), after the converter line voltage has been briefly interrupted.
- All the converter power supplies have been interrupted and all the energy storage devices in the converter have discharged to such a level that the converter electronics fail.

### **Function description**

### Setting the automatic restart function



#### WARNING

### Unexpected machine motion caused by the active automatic restart function

When the "automatic restart" function is active (p1210 > 1), the motor automatically starts after a line supply phase. Unexpected movement of machine parts can result in serious injury and material damage.

• Block off hazardous areas within the machine to prevent inadvertent access.

If it is possible that the motor is still rotating for a longer period of time after a power failure or after a fault, then you must also activate the "flying restart" function.

Flying restart – switching on while the motor is running (Page 412)

Using p1210, select the automatic restart mode that best suits your application.

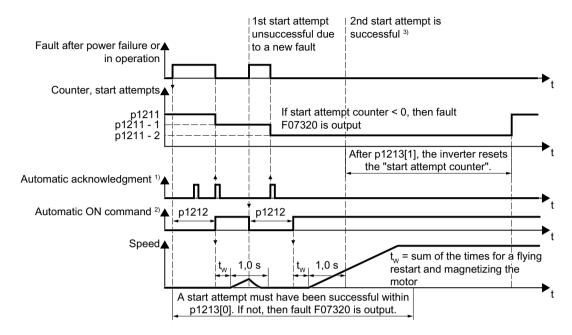




Figure 8-66 Automatic restart modes

The principle of operation of the other parameters is explained in the following diagram and in the table below



1) The converter automatically acknowledges faults under the following conditions:

- p1210 = 1 or 26: Always.
- p1210 = 4 or 6: If the command to switch-on the motor is available at a digital input or via the fieldbus (ON/OFF1 = 1).
- p1210 = 14 or 16: Never.

2) The converter attempts to automatically switch the motor on under the following conditions:

- p1210 = 1: Never.
- p1210 = 4, 6, 14, 16, or 26: If the command to switch-on the motor is available at a digital input or via the fieldbus (ON/OFF1 = 1).

Figure 8-67 Time response of the automatic restart

Further information is provided in the parameter list.

### Advanced settings

If you with to suppress the automatic restart function for certain faults, then you must enter the appropriate fault numbers in p1206[0 ... 9].

Example:  $p1206[0] = 07331 \Rightarrow No restart for fault F07331$ .

 $<sup>^{3)}</sup>$  If, after a flying restart and magnetization (r0056.4 = 1) no fault occurs within one second, then the start attempt was successful.

#### 8.35 Automatic restart

Suppressing the automatic restart only functions for the setting p1210 = 6, 16 or 26.

### Note

### Motor starts in spite of an OFF command via the fieldbus

The converter responds with a fault if fieldbus communication is interrupted. For one of the settings p1210 = 6, 16 or 26, the converter automatically acknowledges the fault and the motor restarts, even if the higher-level control attempts to send an OFF command to the converter.

• In order to prevent the motor automatically starting when the fieldbus communication fails, you must enter the fault number of the communication error in parameter p1206.

### **Parameter**

| Number   | Name                                                        | Factory setting |
|----------|-------------------------------------------------------------|-----------------|
| p1206    | Automatic restart faults not active                         | 0               |
| p1210    | Automatic restart mode                                      | 0               |
| p1211    | Automatic restart, start attempts                           | 3               |
| p1212    | Automatic restart, wait time start attempts                 | 1 s             |
| p1213[0] | Automatic restart monitoring time for restart               | 60 s            |
| p1213[1] | Reset automatic restart monitoring time for startup counter | 0 s             |

### 8.36 Kinetic buffering (Vdc min control)

#### Overview



Kinetic buffering increases the drive availability. The kinetic buffering utilizes the kinetic energy of the load to buffer line dips and failures. During a line dip, the converter keeps the motor in the switched-on state for as long as possible. One second is a typical maximum buffer time.

### Requirement

The following requirements must be fulfilled to practically use the "kinetic buffering" function:

- The driven machine has a sufficiently high inertia.
- The application allows a motor to be braked when the line supply fails.

The Vdc\_min control is possible only with the PM240-2, PM240P-2 and PM330 Power Modules.

### **Function description**

When the line supply dips, the DC-link voltage in the converter decreases. The kinetic buffering ( $V_{DCmin}$  control) intervenes at an adjustable threshold. The  $V_{DCmin}$  control forces the load to go into slightly regenerative operation. As a consequence, the converter covers its power loss and the losses in the motor with the kinetic energy of the load. The load speed decreases, but the DC-link voltage remains constant during the kinetic buffering. After the line supply returns, the converter immediately resumes normal operation.

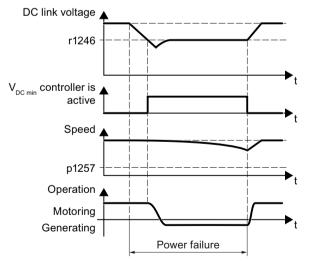



Figure 8-68 Principle mode of operation of kinetic buffering

8.36 Kinetic buffering (Vdc min control)

### Parameter

| Parameter  | Description                                            | Factory setting |
|------------|--------------------------------------------------------|-----------------|
| r0056[015] | CO/BO: Status word, closed-loop control                | -               |
| p0210      | Device supply voltage                                  | 400 V           |
| p1240[D]   | Vdc controller configuration (vector control)          | 1               |
| p1245[D]   | Vdc_min controller switch-in level (kinetic buffering) | 73% 76%         |
| r1246      | Vdc_min controller switch-in level (kinetic buffering) | - V             |
| p1247[D]   | Vdc_min controller dynamic factor (kinetic buffering)  | 300%            |
| p1255[D]   | Vdc_min controller, time threshold                     | 0 s             |
| p1257[D]   | Vdc_min controller, speed threshold                    | 50 rpm          |

#### 8.37 Essential service mode

#### Overview



In essential service mode (ESM), the converter attempts to operate the motor for as long as possible despite irregular ambient conditions.

The converter logs the essential service mode and any faults that occur during essential service mode. The log is accessible only for the service and repair organization.

#### Note

### Warranty is lost in the essential service mode

When the essential service mode is active, and faults occur in the converter, all warranty claims associated with the converter become null and void. The faults can have the following causes:

- Exceptionally high temperatures inside and outside the converter
- Open fire inside and outside the converter
- Emissions of light, noise, particles or gases

### **Function description**

#### Activating and terminating essential service mode

Signal p3880 = 1 activates the essential service mode.

Signal p3880 = 0 deactivates the essential service mode.

### Switching the motor on and off during active essential service mode

The OFF1, OFF2 and OFF3 commands for switching off the motor have no effect.

The converter blocks all functions that switch off the motor to save energy, e.g. PROFlenergy or hibernation mode.

The "Safe Torque Off" safety function terminates the essential service mode.



### **▲** WARNING

### Unexpected exiting of the essential service mode by selecting "Safe Torque Off"

An active Safe Torque Off (STO) safety function switches the motor off, thus terminating the essential service mode. The termination of essential service mode can cause severe injury or death, e.g. for the failure of a flue gas extraction.

- Prevent the STO safety function from being selected in essential service mode by controlling the converter appropriately.
- Take the unintentional selection of the STO safety function into account in the risk analysis of the system.

### Setpoint during active essential service mode

The converter changes the speed setpoint to the ESM setpoint source.

#### 8 37 Essential service mode

P3881 determines the ESM setpoint source. If you have defined an analog input as setpoint source using p3881, the converter can switch over to setpoint p3882 in case of wire breakage.

### Reaction to faults during active essential service mode

In "essential service mode", the converter does not switch off the motor when faults develop, but rather reacts differently depending on the fault type:

- The converter ignores faults, which do not directly result in the destruction of the converter or the motor.
- Faults with the reaction "OFF2" switch the motor off immediately. In this case, the converter attempts to automatically acknowledge the faults using the automatic restart function.
- For faults that cannot be acknowledged, it is possible to switch over the motor to line operation using the bypass function.

### Automatic restart during active essential service mode

The converter ignores the settings in p1206 (faults without automatic restart) and works with the setting "restart after a fault with further start attempts" (p1210 = 6).

The converter carries out the maximum number of restart attempts set in p1211 corresponding to the settings in p1212 and p1213. The converter outputs fault F07320 if the restart attempts are not successful.

### Interaction for bypass and essential service mode

- If the bypass mode is active when the essential service mode is activated, the converter changes to converter mode. This ensures that the converter uses the ESM setpoint source.
- If faults are still present after the number of start attempts parameterized in p1211, then the converter goes into a fault condition with F07320. In this case, there is an option of switching over to bypass operation and then directly connecting the motor to the line supply.

#### Procedure: Commissioning the essential service mode

- Interconnect a free digital input as signal source for the ESM activation.
   You must use a negated digital input if the essential service mode should also be active for a ground fault or if the control cable is interrupted.
   Example for negated digital input DI 3: Set p3880 = 723.3.
   It is not permissible to interconnect the digital input for ESM activation with other functions.
- 2. Set the ESM setpoint source via p3881.
- 3. Set the alternative ESM setpoint source via p3882.

- 4. Set the source to select the direction of rotation.
  - p3881 = 0, 1, 2, 3:

When you interconnect p3883 with a free digital input of your choice, p3883 inverts the direction of rotation during essential service mode.

For example, to interconnect p3883 with DI 4, set p3883 = 722.4.

- p3881 = 4:

The technology setpoint direction of rotation is valid.

5. Optional switching to bypass mode

If the converter is not able to acknowledge pending faults with automatic restart, it signals fault F07320 and does not make any other attempts to restart.

If the motor still continues to operate in this case, you must set the following:

- Set p1266 = 3889.10. The converter switches the motor to bypass mode with r3889.10 = 1.
- Ensure that the direction of rotation does not change when switching over to bypass operation.
- Set p1267.0 = 1. The converter switches the motor to bypass mode independent of the speed with control signal p1266.
- Commission the "Bypass" function.
   Bypass (Page 426)

You have commissioned the essential service mode.

### Example

To improve the air circulation in the stairwells, the ventilation control creates an underpressure in the building. With this control, a fire would mean that flue gases enter into the stairwell. This would then mean that the stairs would be blocked as escape or evacuation route.

Using the essential service mode function, the ventilation switches over to the control of an overpressure. The essential service mode prevents the propagation of flue gas in the stairwell, thereby keeping the stairs free as an evacuation route as long as possible.

An application example for the essential service mode can be found on the Internet:

http://support.automation.siemens.com/WW/view/en/63969509 (http://support.automation.siemens.com/WW/view/en/63969509)

#### **Parameters**

| Number    | Name                                                      | Factory setting |
|-----------|-----------------------------------------------------------|-----------------|
| p1206[09] | Automatic restart faults not active                       | 0               |
| p1210     | Automatic restart mode                                    | 0               |
| p1211     | Automatic restart, start attempts                         | 3               |
| p1212     | Automatic restart, wait time start attempts               | 1 s             |
| p1213     | Automatic restart monitoring time for restart             | 60 s            |
| p1213     | Automatic restart reset monitoring time for start counter | 0 s             |
| p1266     | BI: Bypass control command                                | 0               |

### 8.37 Essential service mode

| Number     | Name                                        | Factory setting |
|------------|---------------------------------------------|-----------------|
| p1267      | Bypass changeover source configuration      | 0000 bin        |
| p3880      | BI: ESM activation signal source            | 0               |
| p3881      | ESM setpoint source                         | 0               |
| p3882      | ESM alternative setpoint source             | 0               |
| p3883      | BI: ESM direction of rotation signal source | 0               |
| p3884      | CI: ESM technology controller setpoint      | 0               |
| r3889[010] | CO/BO: ESM status word                      | -               |

# 8.38 Efficiency optimization

#### Overview



The efficiency optimization reduces the motor losses as far as possible.

Active efficiency optimization has the following advantages:

- Lower energy costs
- Lower motor temperature rise
- Lower motor noise levels

Active efficiency optimization has the following disadvantage:

• Longer acceleration times and more significant speed dips during torque surges.

The disadvantage is only relevant when the motor must satisfy high requirements relating to the dynamic performance. Even when efficiency optimization is active, the converter closed-loop motor control prevents the motor from stalling.

### Requirement

Efficiency optimization functions under the following preconditions:

- Operation with an induction motor
- Vector control is set in the converter.

### **Function description**

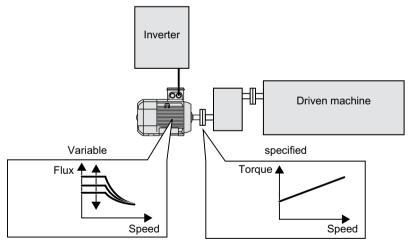



Figure 8-69 Efficiency optimization by changing the motor flux

The three variables that the converter can directly set, which define efficiency of an induction motor, are speed, torque and flux.

However, in all applications, speed and torque are specified by the driven machine. As a consequence, the remaining variable for the efficiency optimization is the flux.

The converter has two different methods of optimizing the efficiency.

### Efficiency optimization, method 2

Generally, energy efficiency optimization method 2 achieves a better efficiency than method 1.

We recommend that you set method 2.

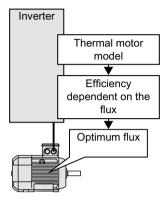
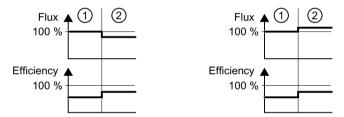




Figure 8-70 Determining the optimum flux from the motor thermal model

Based on its thermal motor model, the converter continually determines - for the actual operating point of the motor - the interdependency between efficiency and flux. The converter then sets the flux to achieve the optimum efficiency.



- 1 Efficiency optimization is not active
- 2 Efficiency optimization is active

Figure 8-71 Qualitative result of efficiency optimization, method 2

Depending on the motor operating point, the converter either decreases or increases the flux in partial load operation of the motor.

### Efficiency optimization, method 1

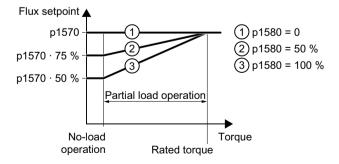



Figure 8-72 Reduce the flux setpoint in the partial load range of the motor

The motor operates in partial load mode between no-load operation and the rated motor torque. Depending on p1580, in the partial load range, the converter reduces the flux setpoint linearly with the torque.

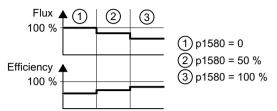



Figure 8-73 Qualitative result of efficiency optimization, method 1

The reduced flux in the motor partial load range results in higher efficiency.

### **Parameters**

Table 8-68 Efficiency optimization, method 2

| Number   | Name                                               | Factory setting            |
|----------|----------------------------------------------------|----------------------------|
| p1401[D] | Flux control configuration                         | 0000 0000 0000<br>0110 bin |
| p1570[D] | CO: Flux setpoint                                  | 100%                       |
| p3315[D] | Efficiency optimization 2 minimum flux limit value | 50%                        |
| p3316[D] | Efficiency optimization 2 maximum flux limit value | 110 %                      |

Table 8-69 Efficiency optimization, method 1

| Number   | Name                    | Factory setting |
|----------|-------------------------|-----------------|
| p1570[D] | CO: Flux setpoint       | 100%            |
| p1580[D] | Efficiency optimization | 80%             |

8.39 Bypass

### 8.39 Bypass

#### Overview



The "Bypass" function switches the motor between converter and line operation.

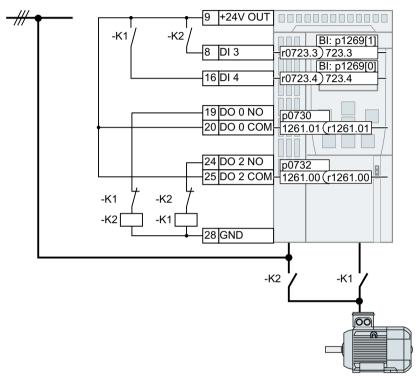



Figure 8-74 Bypass with control via the converter

Requirements placed on the K1 converter contactor and K2 line contactor:

- K1 and K2 are designed for switching under load.
- K2 is designed for switching an inductive load.
- K1 and K2 are interlocked against closing at the same time.

### Requirements

- The "Bypass" function is supported only for induction motors.
- The "Flying restart" function must be activated for the "Bypass" function (p1200 = 1 or 4).

  Flying restart switching on while the motor is running (Page 412)

### **Function description**

### Switching from converter operation to line operation

- 1. The converter switches the motor OFF.
- 2. The converter opens the K1 converter contactor via a digital output.

- 3. The converter waits for the unlocking time of the motor.
- 4. The converter waits for the feedback that the K1 converter contactor is open.
- 5. The converter closes the K2 line contactor via a digital output.

The motor is now operated directly on the line supply. A multiple of the motor rated current can flow before the motor speed has reached the line frequency.

### Switching from line operation to converter operation

- 1. The converter opens the K2 line contactor via a digital output.
- 2. The converter waits for the unlocking time of the motor.
- 3. The converter waits for the feedback that the K2 line contactor is open.
- 4. The converter closes the K1 converter contactor via a digital output.
- 5. The converter switches the motor on.
- 6. The converter adjusts with the "Flying restart" function its output frequency to the speed of the motor.

The motor is now operated on the converter.

### How is the changeover triggered?

The following options are provided to switch between converter operation and line operation:

• Changeover for activation via a control command

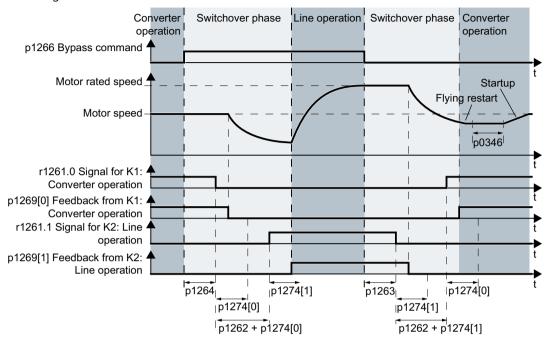



Figure 8-75 Changeover when activating via a control signal (p1267.0 = 1)

The converter switches the motor between converter operation and line operation depending on the bypass control command p1266.

· Changeover depending on the speed

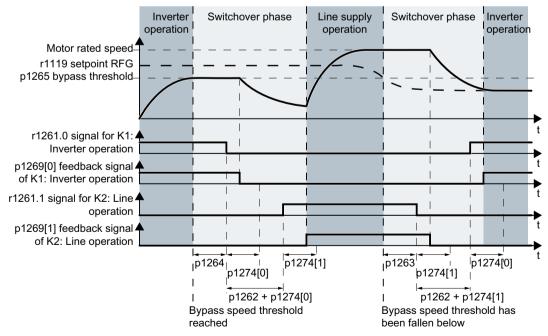



Figure 8-76 Changeover depending on the speed (p1267.1 = 1)

If the speed setpoint r1119 lies above the bypass speed threshold p1265, the converter switches the motor to line operation.

If the speed setpoint falls below the bypass speed threshold, the converter switches the motor to converter operation.

### **Parameter**

| Number    | Name                                      | Factory setting |
|-----------|-------------------------------------------|-----------------|
| p0347[M]  | Motor de-excitation time                  | 0 s             |
| p1260     | Bypass configuration (factory setting: 0) | 0               |
|           | 0: Bypass is deactivated                  |                 |
|           | 3: Bypass without synchronization         |                 |
| r1261     | Bypass control/status word                | -               |
| p1262[D]  | Bypass dead time                          | 1 s             |
| p1263     | Debypass (revert to drive) delay time     | 1 s             |
| p1264     | Bypass delay time                         | 1 s             |
| p1265     | Bypass speed threshold                    | 1480 rpm        |
| p1266     | BI: Bypass control command                | 0               |
| p1267     | Bypass changeover source configuration    | 0000 bin        |
| p1269     | BI: Bypass switch feedback signal         | [0] 1261.0      |
|           |                                           | [1] 1261.1      |
| p1274[01] | Bypass switch monitoring time             | 1000 ms         |

Further information is provided in the parameter list.



Overview of the manuals (Page 581)

### **Further information**

Interaction with other functions:

- Essential service mode
  - The activated "Essential service mode" function influences the "Bypass" function. Essential service mode (Page 419)
- Converter control

For operation of the motor on the line supply, the converter no longer responds to the OFF1 command, but rather only to OFF2 and OFF3.

- Temperature monitoring for the motor
  - The converter evaluates the temperature sensor in the motor, also for line operation of the
  - Motor protection with temperature sensor (Page 396)
- Disconnecting the converter from the line supply If for line operation of the motor, you disconnect the converter from the line supply, the converter opens the K2 contactor and the motor coasts down.

To operate the motor on the line supply also for deactivated converter, the higher-level control must supply the signal for the K2 line contactor.

#### 8.40 Hibernation mode

#### Overview



When the hibernation mode is active, the converter switches off the motor once the system conditions allow it.

The hibernation mode saves energy, reduces wear and noise.

Pressure and temperature controls involving pumps and fans are typical applications for the hibernation mode.

### Requirement

As long as the cascade control operates a motor directly on the supply system, the converter does not activate the hibernation mode.



Cascade control (Page 357)

### **Function description**

#### Activating hibernation mode

The converter activates the hibernation mode in the following cases:

- After switching the converter on, a wait time starts in the converter. The longest wait time is at the following times:
  - p1120
  - p2391
  - 20 s

If the motor does not reach the hibernation mode start speed within the wait time, the converter activates the hibernation mode and switches off the motor.

The motor speed drops below the hibernation mode starting speed.

### Deactivating hibernation mode

The converter deactivates the hibernation mode in the following cases:

- With external setpoint value specification:
  - The converter deactivates the hibernation mode once the positive setpoint value is greater than the restart speed.
  - To monitor the setpoint, set p1110 = 0.
  - Activate the motorized potentiometer as ramp-function generator to use the motorized potentiometer of the converter as setpoint for the hibernation mode:
  - Motorized potentiometer: p1030.4 = 1
  - Technology motorized potentiometer: p2230.4 = 1
- If the setpoint value specification is set via the technology controller:
   The converter deactivates the hibernation mode once the positive control deviation of the technology controller is greater than the hibernation mode restart speed (p2392).
   To monitor the value of the control deviation of the technology controller, set p2298 = 2292 and set the minimum threshold in p2292.
- Time-controlled To avoid tank deposits, e.g. where liquids are involved, it is possible to deactivate the hibernation mode at the latest after the time p2396 has expired.

#### **Boost speed**

The boost speed prevents the motor from being switched on and off too frequently.

### **Parameter**

Table 8-70 Setpoint value specification via the technology controller

| Number   | Name                                                        | Factory setting |
|----------|-------------------------------------------------------------|-----------------|
| p1080    | Minimum speed                                               | 0 [rpm]         |
| p2200    | BI: Technology controller enable                            | 0               |
|          | 1 signal: Technology controller is enabled                  |                 |
| r2237    | Technology controller motorized potentiometer maximum value | - [%]           |
| p2298    | CI: Technology controller minimum limiting signal source    | 2292[0]         |
| p2390[D] | Hibernation mode start speed                                | 0 [rpm]         |
| p2391[D] | Hibernation mode delay time                                 | 120 [s]         |
| p2392    | Hibernation mode restart value with technology controller   | 0 [%]           |
| p2394[D] | Hibernation mode boost period                               | 0 [s]           |
| p2395[D] | Hibernation mode boost speed                                | 0 [rpm]         |
| p2396[D] | Hibernation mode switch-off time maximum                    | 0 [s]           |
| r2397    | CO: Hibernation mode output speed current                   | - [rpm]         |
| p2398    | Hibernation mode duty type                                  | 0               |

## 8.40 Hibernation mode

| Number | Name                                                                                                     |                                                                               | Factory setting |
|--------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------|
| r2399  | CO/BO: H                                                                                                 | libernation mode status word                                                  | -               |
|        | 01 Hiber<br>02 Hiber<br>03 Hiber<br>04 Hiber<br>05 Hiber<br>06 Energ<br>07 Hiber<br>generato<br>08 Hiber | nation mode bypasses ramp-function generator in                               |                 |
|        | setpoint                                                                                                 | Hibernation mode enabled (P2398 <> 0)                                         |                 |
|        | .01                                                                                                      | Hibernation mode active                                                       |                 |
|        | .02                                                                                                      | Hibernation mode delay time active                                            |                 |
|        | .03                                                                                                      | Hibernation mode boost active                                                 |                 |
|        | .04                                                                                                      | Hibernation mode motor switched off                                           |                 |
|        | .05                                                                                                      | Hibernation mode motor switched off, cyclic restart active                    |                 |
|        | .06                                                                                                      | Hibernation mode motor is restarting                                          |                 |
|        | .07                                                                                                      | Hibernation mode supplies total setpoint of ramp-<br>function generator       |                 |
|        | .08                                                                                                      | Hibernation mode bypasses the ramp-function generator in the setpoint channel |                 |

Table 8-71 Setpoint value specification by means of external setpoint

| Number   | Name                                                              | Factory setting |
|----------|-------------------------------------------------------------------|-----------------|
| p1080    | Minimum speed                                                     | 0 [rpm]         |
| p1110    | BI: Inhibit negative direction                                    | 1               |
| p2390[D] | Hibernation mode start speed                                      | 0 [rpm]         |
| p2391[D] | Hibernation mode delay time                                       | 120 [s]         |
| p2393[D] | Hibernation mode restart speed relative w/o technology controller | 0 [rpm]         |
| p2394[D] | Hibernation mode boost period                                     | 0 [s]           |
| p2395[D] | Hibernation mode boost speed                                      | 0 [rpm]         |
| p2396[D] | Hibernation mode switch-off time maximum                          | 0 [s]           |
| r2397    | CO: Hibernation mode output speed current                         | - [rpm]         |
| p2398    | Hibernation mode duty type                                        | 0               |

| Number | Name                                                |                                                                                                                                                                                                                                            | Factory setting |
|--------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| r2399  | CO/BO:                                              | Hibernation mode status word                                                                                                                                                                                                               | -               |
|        | 01 Hibe<br>02 Hibe<br>03 Hibe<br>04 Hibe<br>05 Hibe | ernation mode enabled (p2398 <> 0) ernation mode active ernation mode delay time active ernation mode boost active ernation mode motor switched off ernation mode motor switched off, cyclic restart active rgy-saving mode motor restarts |                 |
|        | generat<br>08 Hibe                                  | ernation mode supplies total setpoint of ramp-function<br>tor<br>ernation mode bypasses ramp-function generator in<br>t channel                                                                                                            |                 |
|        | .00                                                 | Hibernation mode enabled (P2398 <> 0)                                                                                                                                                                                                      |                 |
|        | .01                                                 | Hibernation mode active                                                                                                                                                                                                                    |                 |
|        | .02                                                 | Hibernation mode delay time active                                                                                                                                                                                                         |                 |
|        | .03                                                 | Hibernation mode boost active                                                                                                                                                                                                              |                 |
|        | .04                                                 | Hibernation mode motor switched off                                                                                                                                                                                                        |                 |
|        | .05                                                 | Hibernation mode motor switched off, cyclic restart active                                                                                                                                                                                 |                 |
|        | .06                                                 | Hibernation mode motor is restarting                                                                                                                                                                                                       |                 |
|        | .07                                                 | Hibernation mode supplies total setpoint of ramp-<br>function generator                                                                                                                                                                    |                 |
|        | .08                                                 | Hibernation mode bypasses the ramp-function generator in the setpoint channel                                                                                                                                                              |                 |

## 8.41 Line contactor control

#### Overview



A line contactor disconnects the converter from the line supply, and therefore reduces the converter losses when the motor is not operational.

## Requirement

The line contactor control requires a 24 V power supply from the converter. The 24 V power supply must be maintained, even when the line contactor is open.

## **Function description**

The converter controls its own line contactor using a digital output.

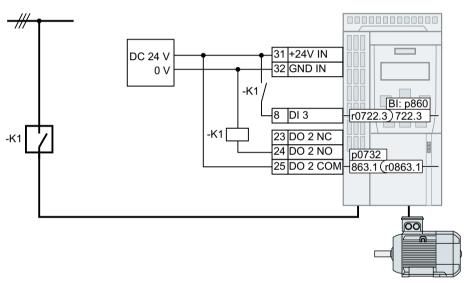



Figure 8-77 Line contactor control via DO 2 with feedback signal via DI 3

## Activating the line contactor control

Connect the digital output that controls the line contactor with signal r0863.1.

Example for DO 2: p0732 = 863.1.

#### Line contactor control with feedback signal

Interconnect p0860 with the signal of the corresponding digital input:

- p0860 = 722.x: Feedback signal of an NO contact via DIx
- p0860 = 723.x: Feedback signal of an NC contact via DIx

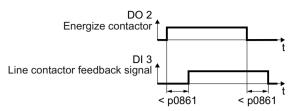



Figure 8-78 Line contactor control via DO 2 with feedback signal via DI 3

If the line contactor feedback signal is not available for longer than the time set in p0861, then the converter issues fault F07300.

#### **Parameter**

| Number   | Name                                              | Factory setting |
|----------|---------------------------------------------------|-----------------|
| r0046.0n | CO/BO: Missing enable signals                     | -               |
| p0860    | BI: Line contactor feedback signal                | 863.1           |
| p0861    | Line contactor monitoring time                    | 100 ms          |
| r0863.01 | CO/BO: Drive coupling status word / control word  | -               |
| p0867    | Power unit main contactor holding time after OFF1 | 50 ms           |
| p0869    | Configuration sequence control                    | 0000 bin        |
| p0870    | BI: close main contactor                          | 0               |

Further information is provided in the parameter list.

## Line contactor control for PM330 Power Modules

For a PM330, you can connect a line contactor via terminals X9.11 and X9.12.

In this case, parameter p0860 must be set to the factory setting: p0860 = 863.1: No feedback signal

Additional digital inputs and outputs on PM330 Power Modules (Page 142)

## 8.42 Calculating the energy saving for fluid flow machines

#### Overview



Fluid flow machines, which mechanically control the flow rate using valves or throttle flaps, operate with a constant speed corresponding to the line frequency.



Figure 8-79 Flow control with pump and throttle connected to a 50 Hz line supply

The lower the flow rate, the poorer the efficiency of the fluid flow machine (pump). The fluid flow machine (pump) has the poorest efficiency when the throttle or valve is completely closed. Further, undesirable effects can occur, for example the formation of vapor bubbles in liquids (cavitation) or the temperature of the medium being pumped can increase.

The converter controls the flow rate by appropriately varying the speed of the fluid flow machine. By controlling the flow rate, the fluid flow machine operates at the optimum efficiency for each flow rate. This situation means that in the partial load range less electric power is required than when controlling the flow rate using valves and throttles.

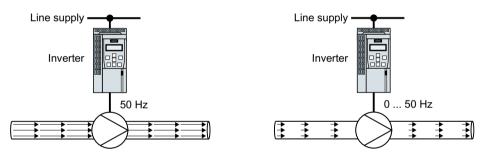
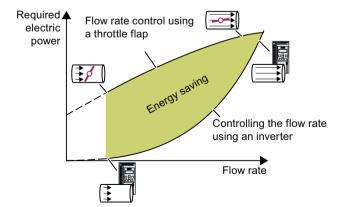




Figure 8-80 Flow control with pump and converter

### **Function description**



The converter calculates the energy saving from the flow characteristic associated with a mechanical flow control and the measured electric power that is drawn. The calculation is suitable for centrifugal pumps, fans, radial and axial compressors, for instance.

#### Flow characteristic

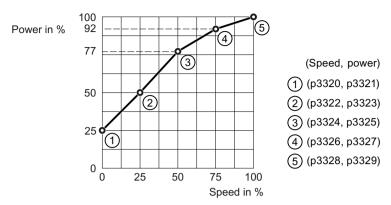



Figure 8-81 Factory setting of the flow characteristic

To set the characteristic, you require the following data from the machine manufacturer for each speed interpolation point:

- The flow rate of the fluid-flow machine associated with the 5 selected converter speeds
- At constant speed, the power drawn which is associated with the 5 flow rates corresponds to the line frequency and mechanical throttling of the flow rate.

#### **Parameters**

| Number    | Name                                    | Factory setting |
|-----------|-----------------------------------------|-----------------|
| r0039[0n] | CO: Energy display                      | -               |
| p0040     | Reset energy consumption display        | 0               |
| r0041     | Energy saved                            | -               |
| r0042[0n] | CO: Process energy display              | -               |
| p0043     | BI: Energy consumption display enabled. | 0               |
| p3320[0n] | Fluid flow machine power, point 1       | 25              |
| p3321[0n] | Fluid flow machine speed, point 1       | 0               |
| p3322[0n] | Fluid flow machine power, point 2       | 50              |
| p3323[0n] | Fluid flow machine speed, point 2       | 25              |
| p3324[0n] | Fluid flow machine power, point 3       | 77              |
| p3325[0n] | Fluid flow machine speed, point 3       | 50              |
| p3326[0n] | Fluid flow machine power, point 4       | 92              |
| p3327[0n] | Fluid flow machine speed, point 4       | 75              |
| p3328[0n] | Fluid flow machine power, point 5       | 100             |
| p3329[0n] | Fluid flow machine speed, point 5       | 100             |

## 8.43 Switchover between different settings

#### Overview

There are applications that require different converter settings.

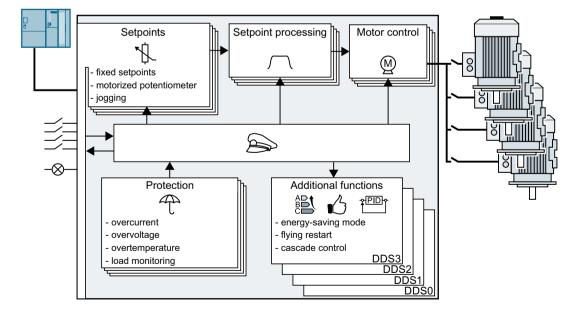
#### **Example:**

Different motors are operated on one converter. The converter must operate with the motor data of the particular motor and the appropriate ramp-function generator.

## **Function description**

## **Drive Data Sets (DDS)**

Some converter functions can be set differently, and there can be a switch between the different settings.


#### Note

You can only switch over the motor data of the drive data sets in the "ready for operation" state with the motor switched off. The switchover time is approx. 50 ms.

If you do not switch over the motor data together with the drive data sets (i.e. same motor number in p0826), then the drive data sets can also be switched over in operation.

The associated parameters are indexed (index 0, 1, 2, or 3). One of the four indexes is selected with control commands, and thereby one of the four saved settings.

The settings in the converter with the same index are called a drive data set.



## Selecting the number of drive data sets

Parameter p0180 defines the number of drive data sets (1 ... 4).

| Parameter  | Description                    |
|------------|--------------------------------|
| p0010 = 0  | Drive commissioning: Ready     |
| p0010 = 15 | Drive commissioning: Data sets |
| p0180      | Drive data set (DDS) number    |

## Copying the drive data sets

| Parameter    | Description               |
|--------------|---------------------------|
| p0819[0]     | Source drive data set     |
| p0819[1]     | Target drive data set     |
| p0819[2] = 1 | Starts the copy operation |

## **Parameters**

| Number     | Name                                    | Factory setting |
|------------|-----------------------------------------|-----------------|
| p0010      | Drive commissioning parameter filter    | 1               |
| r0051      | CO/BO: Drive data set DDS effective     | -               |
| p0180      | Drive data set (DDS) number             | 1               |
| p0819[0 2] | Copy drive data set DDS                 | 0               |
| p0820[C]   | BI: Drive data set DDS selection, bit 0 | 0               |
| p0821[C]   | BI: Drive data set DDS selection, bit 1 | 0               |
| p0826[M]   | Motor changeover, motor number          | 0               |

8.43 Switchover between different settings

Alarms, faults and system messages

9

The converter has the following diagnostic types:

• LED

The LEDs at the front of the converter immediately inform you about the most important converter states.

• System runtime

The system run time is the total time that the converter has been supplied with power since the initial commissioning.

· Alarms and faults

The converter signals alarms and faults via the following interfaces:

- Fieldbus
- Terminal strip with the appropriate setting
- Interface for an operator panel
- Interface for a PC
- Identification & maintenance data (I&M)
  If requested, the converter sends data to the higher-level control via PROFIBUS or PROFINET:
  - Converter-specific data
  - Plant-specific data

# 9.1 Operating states indicated via LEDs

Table 9-1 Explanation of symbols for the following tables

| -   | LED is ON                           |
|-----|-------------------------------------|
|     | LED is OFF                          |
| 2 s | LED flashes slowly                  |
| 2 s | LED flashes quickly                 |
|     | LED flashes with variable frequency |

Please contact Technical Support for LED states that are not described in the following.

Table 9-2 Basic states

| RDY | Explanation                                                                                          |
|-----|------------------------------------------------------------------------------------------------------|
|     | Temporary state after the supply voltage is switched on.                                             |
| -   | The converter is free of faults                                                                      |
|     | Commissioning or reset to factory settings                                                           |
| 洪   | A fault is active                                                                                    |
|     | Firmware update is active                                                                            |
| 洪   | Converter waits until the power supply is switched off and switched on again after a firmware update |

Table 9-3 PROFINET fieldbus

| LNK | Explanation                              |
|-----|------------------------------------------|
|     | Communication via PROFINET is error-free |
|     | Device naming is active                  |
|     | No communication via PROFINET            |

Table 9-4 Fieldbuses via RS 485 interface

| BF   | Explanat                         | Explanation                                                                                          |  |  |  |  |  |  |
|------|----------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|      | Data excl                        | Data exchange between the converter and control system is active                                     |  |  |  |  |  |  |
| -14- | The fieldb                       | ous is active, however, the converter is not receiving any process data                              |  |  |  |  |  |  |
|      | RDY                              | When LED RDY flashes simultaneously:                                                                 |  |  |  |  |  |  |
|      |                                  | Converter waits until the power supply is switched off and switched on again after a firmware update |  |  |  |  |  |  |
| 144  | No fieldbus connection available |                                                                                                      |  |  |  |  |  |  |
|      | RDY                              | When LED RDY flashes simultaneously:                                                                 |  |  |  |  |  |  |
|      | ***                              | Incorrect memory card                                                                                |  |  |  |  |  |  |
|      |                                  |                                                                                                      |  |  |  |  |  |  |
| 崇    | Firmware update failed           |                                                                                                      |  |  |  |  |  |  |
|      | Firmware                         | update is active                                                                                     |  |  |  |  |  |  |

## **Communication via Modbus or USS:**

If the fieldbus monitoring is deactivated with p2040 = 0, the BF-LED remains dark, independent of the communication state.

Table 9-5 PROFINET fieldbus

| BF    | Explanat                                      | Explanation                                                                                          |  |  |  |  |  |  |
|-------|-----------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|       | Data excl                                     | Data exchange between the converter and control system is active                                     |  |  |  |  |  |  |
| -\\\- | The fieldbus is improperly configured.        |                                                                                                      |  |  |  |  |  |  |
|       | RDY                                           | In conjunction with a synchronously flashing LED RDY:                                                |  |  |  |  |  |  |
|       |                                               | Converter waits until the power supply is switched off and switched on again after a firmware update |  |  |  |  |  |  |
| -14-  | No communication with higher-level controller |                                                                                                      |  |  |  |  |  |  |
|       | RDY                                           | In conjunction with an asynchronously flashing LED RDY:                                              |  |  |  |  |  |  |
|       |                                               | Incorrect memory card                                                                                |  |  |  |  |  |  |
| ***   | Firmware update failed                        |                                                                                                      |  |  |  |  |  |  |
| -11-  | Firmware update is active                     |                                                                                                      |  |  |  |  |  |  |

## 9.1 Operating states indicated via LEDs

Table 9-6 PROFIBUS fieldbus

| BF                                     | Explanation                                                                                        |                                                                  |  |  |  |  |  |  |
|----------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--|--|--|--|--|--|
|                                        | Data exch                                                                                          | Data exchange between the converter and control system is active |  |  |  |  |  |  |
|                                        | Fieldbus i                                                                                         | interface is not being used                                      |  |  |  |  |  |  |
| -14-                                   | The fieldb                                                                                         | ous is improperly configured.                                    |  |  |  |  |  |  |
|                                        | RDY                                                                                                | In conjunction with a synchronously flashing LED RDY:            |  |  |  |  |  |  |
|                                        | Converter waits until the power supply is switched off and switched on again after firmware update |                                                                  |  |  |  |  |  |  |
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | No communication with higher-level controller                                                      |                                                                  |  |  |  |  |  |  |
|                                        | RDY                                                                                                | In conjunction with an asynchronously flashing LED RDY:          |  |  |  |  |  |  |
|                                        |                                                                                                    | Incorrect memory card                                            |  |  |  |  |  |  |
|                                        | Firmware update failed                                                                             |                                                                  |  |  |  |  |  |  |
| -11-                                   | Firmware                                                                                           | update is active                                                 |  |  |  |  |  |  |

## 9.2 System runtime

#### Overview

By evaluating the system runtime of the converter, you can decide when you should replace components subject to wear in time before they fail - such as fans, motors and gear units.

## **Function description**

The system runtime is started once the power supply of the converter is switched on. The system runtime stops when the power supply is switched off.

The system runtime comprises r2114[0] (milliseconds) and r2114[1] (days):

System runtime =  $r2114[1] \times days + r2114[0] \times milliseconds$ 

If r2114[0] has reached a value of 86,400,000 ms (24 hours), r2114[0] is set to the value 0 and the value of r2114[1] is increased by 1.

## Example

| Parameter | Description           |  |  |
|-----------|-----------------------|--|--|
| r2114[0]  | System runtime (ms)   |  |  |
| r2114[1]  | System runtime (days) |  |  |

You cannot reset the system runtime.

#### **Parameters**

| Parameter Description |                      | Factory setting |  |
|-----------------------|----------------------|-----------------|--|
| r2114[0 1]            | Total system runtime | -               |  |

## 9.3 Identification & maintenance data (I&M)

## **I&M** data

The converter supports the following identification and maintenance (I&M) data.

| I&M data | Format                             | Explanation                                                                                     | Associated parameters | Example for the content            |
|----------|------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------|------------------------------------|
| I&M0     | u8[64] PROFIBUS<br>u8[54] PROFINET | Converter-specific data, read only                                                              | -                     | See below                          |
| I&M1     | Visible String [32]                | Plant/system identifier                                                                         | p8806[0 31]           | "ak12-ne.bo2=fu1"                  |
|          | Visible String [22]                | Location code                                                                                   | p8806[32 53]          | "sc2+or45"                         |
| I&M2     | Visible String [16]                | Date                                                                                            | p8807[0 15]           | "2013-01-21 16:15"                 |
| I&M3     | Visible String [54]                | Any comment                                                                                     | p8808[0 53]           | -                                  |
| I&M4     | Octet String[54]                   | Check signature to track changes for Safety Integrated.  This value can be changed by the user. | p8809[0 53]           | Values of r9781[0]<br>and r9782[0] |
|          |                                    | The test signature is reset to the value generated by the machine if p8805 = 0 is used.         |                       |                                    |

When requested, the converter transfers its I&M data to a higher-level control or to a PC/PG with installed STEP 7 or TIA Portal.

## 1&M0

| Designation           | Format              | Example for the content | Valid for PROFI-<br>NET | Valid for PROFI-<br>BUS |
|-----------------------|---------------------|-------------------------|-------------------------|-------------------------|
| Manufacturer-specific | u8[10]              | 00 00 hex               |                         | ✓                       |
| MANUFACTURER_ID       | u16                 | 42d hex (=Siemens)      | ✓                       | ✓                       |
| ORDER_ID              | Visible String [20] | "6SL3246-0BA22-1FA0"    | ✓                       | ✓                       |
| SERIAL_NUMBER         | Visible String [16] | "T-R32015957"           | ✓                       | ✓                       |
| HARDWARE_REVISION     | u16                 | 0001 hex                | ✓                       | ✓                       |
| SOFTWARE_REVISION     | char, u8[3]         | "V" 04.70.19            | ✓                       | ✓                       |
| REVISION_COUNTER      | u16                 | 0000 hex                | ✓                       | ✓                       |
| PROFILE_ID            | u16                 | 3A00 hex                | ✓                       | ✓                       |
| PROFILE_SPECIFIC_TYPE | u16                 | 0000 hex                | ✓                       | ✓                       |
| IM_VERSION            | u8[2]               | 01.02                   | ✓                       | ✓                       |
| IM_SUPPORTED          | bit[16]             | 001E hex                | ✓                       | ✓                       |

## 9.4 Alarms, alarm buffer, and alarm history

#### Overview

An alarm generally indicates that the converter may no longer be able to maintain the operation of the motor in future.

The extended diagnostics have an alarm buffer and an alarm history, in which the converter stores the most recent alarms.

## **Function description**

Alarms have the following properties:

- Incoming alarms have no direct influence on the converter.
- A warning disappears as soon as its cause is eliminated.
- Alarms do not have to be acknowledged.

Alarm code or alarm value describe the cause of the alarm.

#### Alarm buffer

| Alarm code | ode Alarm value |          | ode Alarm value Alarm time received |          | Alarm time | e removed |          |
|------------|-----------------|----------|-------------------------------------|----------|------------|-----------|----------|
|            | 132             | float    | Days                                | ms       |            | Days      | ms       |
| r2122[0]   | r2124[0]        | r2134[0] | r2145[0]                            | r2123[0] | old        | r2146[0]  | r2125[0] |
| [1]        | [1]             | [1]      | [1]                                 | [1]      |            | [1]       | [1]      |
| [2]        | [2]             | [2]      | [2]                                 | [2]      |            | [2]       | [2]      |
| [3]        | [3]             | [3]      | [3]                                 | [3]      |            | [3]       | [3]      |
| [4]        | [4]             | [4]      | [4]                                 | [4]      |            | [4]       | [4]      |
| [5]        | [5]             | [5]      | [5]                                 | [5]      |            | [5]       | [5]      |
| [6]        | [6]             | [6]      | [6]                                 | [6]      | \          | [6]       | [6]      |
| [7]        | [7]             | [7]      | [7]                                 | [7]      | new        | [7]       | [7]      |

Figure 9-1 Alarm buffer

The converter saves incoming alarms in the alarm buffer. An alarm includes an alarm code, an alarm value, and two alarm times:

- Alarm code: r2122
- Alarm value: r2124 in fixed-point format "I32", r2134 in floating-point format "Float"
- Alarm time received = r2145 + r2123
- Alarm time removed = r2146 + r2125

The converter takes its internal time calculation to save the alarm times.

Real time clock (RTC) (Page 361)

Up to 8 alarms can be saved in the alarm buffer.

In the alarm buffer, the alarms are sorted according to "Alarm time received". If the alarm buffer is completely filled and an additional alarm occurs, then the converter overwrites the values with Index [7].

### **Alarm history**

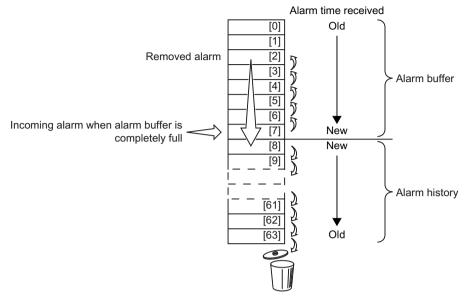



Figure 9-2 Shifting removed alarms into the alarm history

If the alarm buffer is completely filled and an additional alarm occurs, the converter shifts all removed alarms into the alarm history. The following occurs in detail:

- 1. To create space after position [8] in the alarm history, the converter shifts the alarms already stored in the alarm history "down" by one or more positions.

  If the alarm history is completely full, the converter will delete the oldest alarms.
- 2. The converter moves the removed alarms from the alarm buffer to the now freed up positions of the alarm history.
  - Alarms that have not been removed remain in the alarm buffer.
- 3. The converter closes gaps in the alarm buffer that occurred when the removed alarms were shifted in the alarm history by shifting the alarms that have not been removed "up".
- 4. The converter saves the received alarm as the latest alarm in the alarm buffer.

The alarm history saves up to 56 alarms.

In the alarm history, alarms are sorted according to the "alarm time removed". The latest alarm to be removed has Index [8].

### **Parameter**

Table 9-7 Parameters of the alarm buffer and the alarm history

| Parameter   | Description                         | Factory setting |
|-------------|-------------------------------------|-----------------|
| p2111       | Alarm counter                       | 0               |
| r2122[0 63] | Alarm code                          | -               |
| r2123[0 63] | Alarm time received in milliseconds | - ms            |
| r2124[0 63] | Alarm value                         | -               |
| r2125[0 63] | Alarm time removed in milliseconds  | - ms            |

| Parameter   | rameter Description          |   |
|-------------|------------------------------|---|
| r2132       | CO: Actual alarm code        | - |
| r2134[0 63] | Alarm value for float values | - |
| r2145[0 63] | Alarm time received in days  | - |
| r2146[0 63] | Alarm time removed in days   | - |

Table 9-8 Extended settings for alarms

| Parameter                                                                 | Factory setting                                |   |  |  |
|---------------------------------------------------------------------------|------------------------------------------------|---|--|--|
| You can change up to 20 different alarms into a fault or suppress alarms: |                                                |   |  |  |
| p2118[019]                                                                | p2118[019] Change message type, message number |   |  |  |
| p2119[0 19] Change message type, type                                     |                                                | 1 |  |  |

Further information is provided in the parameter list.

## 9.5 Faults, alarm buffer and alarm history

#### Overview

A fault generally indicates that the converter can no longer maintain the operation of the motor.

The extended diagnostics have a fault buffer and a fault history, in which the converter stores the most recent faults.

## **Function description**

Faults have the following properties:

- In general, a fault leads to the motor being switched off.
- A fault must be acknowledged.

#### Fault buffer

| Fault code | Fault code Fault value |          | Fault time received |          | Fault time removed |          |          |
|------------|------------------------|----------|---------------------|----------|--------------------|----------|----------|
|            | 132                    | float    | Days                | ms       |                    | Days     | ms       |
| r0945[0]   | r0949[0]               | r2133[0] | r2130[0]            | r0948[0] | Old                | r2136[0] | r2109[0] |
| [1]        | [1]                    | [1]      | [1]                 | [1]      | _                  | [1]      | [1]      |
| [2]        | [2]                    | [2]      | [2]                 | [2]      | _                  | [2]      | [2]      |
| [3]        | [3]                    | [3]      | [3]                 | [3]      | -                  | [3]      | [3]      |
| [4]        | [4]                    | [4]      | [4]                 | [4]      | -                  | [4]      | [4]      |
| [5]        | [5]                    | [5]      | [5]                 | [5]      | -                  | [5]      | [5]      |
| [6]        | [6]                    | [6]      | [6]                 | [6]      | _                  | [6]      | [6]      |
| [7]        | [7]                    | [7]      | [7]                 | [7]      | New                | [7]      | [7]      |

Figure 9-3 Fault buffer

The converter saves incoming faults in the fault buffer. A fault includes a fault code, a fault value, and two fault times:

- Fault code: r0945
  The fault code and fault value describe the cause of the fault.
- Fault value: r0949 in fixed-point format "I32", r2133 in floating-point format "Float"
- Fault time received = r2130 + r0948
- Fault time removed = r2136 + r2109

The converter takes its internal time calculation to save the fault times.

Real time clock (RTC) (Page 361)

Up to 8 faults can be saved in the fault buffer.

In the fault buffer, the faults are sorted according to "Fault time received". If the fault buffer is completely full, and an additional fault is received in the fault buffer, then the converter overwrites the values with Index [7].

#### Acknowledge fault

To acknowledge a fault, you have the following options:

- PROFIdrive control word 1, bit 7 (r2090.7)
- · Acknowledge via a digital input
- Acknowledge via the Operator Panel
- Switch off the converter power supply and switch on again

Faults detected during the converter-internal monitoring of hardware and firmware can be acknowledged only by switching the supply voltage off and on again. In the list of faults in the List Manual, at the corresponding fault codes you may find the information on limitations when acknowledging.

### Fault history

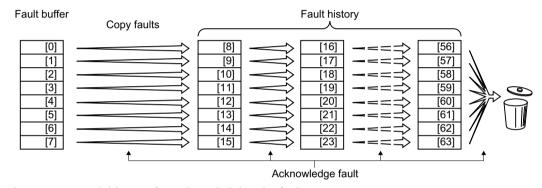



Figure 9-4 Fault history after acknowledging the faults

If at least one of the fault causes in the fault buffer has been removed and you acknowledge the faults, the following takes place:

- 1. The converter shifts the values previously saved in the fault history each by eight indices. The converter deletes the faults that were saved in the indexes [56 ... 63] before the acknowledgement.
- 2. The converter copies the contents of the fault buffer to the memory locations [8 ... 15] in the fault history.
- 3. The converter deletes the faults that have been removed from the fault buffer.

  The faults that have not been removed are now saved both in the fault buffer and in the fault history.
- 4. The converter writes the time of acknowledgement of the removed faults to "Fault time removed".

The "Fault time removed" of the faults that have not been removed retains the value = 0.

The fault history can contain up to 56 faults.

## Deleting the fault history

To delete all faults from the fault history, set parameter p0952 = 0.

## **Parameter**

Table 9-9 Parameters of the fault buffer and the fault history

| Parameter   | Description                         | Factory setting |
|-------------|-------------------------------------|-----------------|
| r0945[0 63] | Fault code                          | -               |
| r0948[0 63] | Fault time received in milliseconds | - ms            |
| r0949[063]  | Fault value                         | -               |
| p0952       | Fault cases counter                 | 0               |
| r2109[0 63] | Fault time removed in milliseconds  | - ms            |
| r2130[0 63] | Fault time received in days         | -               |
| r2131       | CO: Actual fault code               | -               |
| r2133[0 63] | Fault value for float values        | -               |
| r2136[0 63] | Fault time removed in days          | -               |

## **Extended settings for faults**

| Parameter   | Description                                 | Factory setting |
|-------------|---------------------------------------------|-----------------|
| p2100[019]  | Changing the fault reaction, fault number   | 0               |
| p2101[019]  | Changing the fault reaction, reaction       | 0               |
| p2118[019]  | Change message type, message number         | 0               |
| p2119[0 19] | Change message type, type                   | 1               |
| p2126[0 19] | Changing the acknowledge mode, fault number | 0               |
| p2127[0 19] | Changing the acknowledge mode               | 1               |

Further information is provided in the parameter list.

Axxxxx Alarm Fyyyyy: Fault

Table 9-10 The most important alarms and faults

| Number           | Cause                                                                                                       | Remedy                                                                                                                                                                                  |  |  |
|------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| F01000           | Software error in the CU                                                                                    | Replacing the Control Unit.                                                                                                                                                             |  |  |
| F01001           | Floating point exception                                                                                    | Switch the Control Unit off and on again.                                                                                                                                               |  |  |
| F01015           | Software error in the CU                                                                                    | Upgrade firmware or contact technical support.                                                                                                                                          |  |  |
| F01018           | Power-up aborted more than once                                                                             | 1. Switch the module off and on again.                                                                                                                                                  |  |  |
|                  |                                                                                                             | 2. After this fault has been output, the module is powered up with the factory settings.                                                                                                |  |  |
|                  |                                                                                                             | 3. Recommission the converter.                                                                                                                                                          |  |  |
| A01028           | Configuration error                                                                                         | Explanation: Parameterization on the memory card has been created with a different type of module (Article number, MLFB).                                                               |  |  |
|                  |                                                                                                             | Check the module parameters and recommission if necessary.                                                                                                                              |  |  |
| F01033           | Switching over units: Reference parameter value invalid                                                     | Set the value of the reference parameter not equal to 0.0 (p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004).                                                              |  |  |
| F01034           | Switching over units: Calculation of<br>the parameter values after refer-<br>ence value change unsuccessful | Select the value of the reference parameter so that the parameters involved can be calculated in the per unit notation (p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004). |  |  |
| F01040           | Parameters must be saved                                                                                    | Save parameters (p0971).<br>Switch the Control Unit off and on again.                                                                                                                   |  |  |
| F01044           | Error loading data from memory card                                                                         | Replace the memory card or the Control Unit.                                                                                                                                            |  |  |
| A01053<br>F01054 | System overload measured System limit exceeded                                                              | The maximum computing power of the Control Unit was exceeded. The following measures reduce the load on the Control Unit:                                                               |  |  |
| 101054           | System mint exceeded                                                                                        | Use only one data record (CDS and DDS)                                                                                                                                                  |  |  |
|                  |                                                                                                             | Only use the safety features of the basic functions                                                                                                                                     |  |  |
|                  |                                                                                                             | Deactivate the technology controller                                                                                                                                                    |  |  |
|                  |                                                                                                             | Use the simple ramp-function generator rather than the extended ramp-function generator                                                                                                 |  |  |
|                  |                                                                                                             | Do not use any free function components                                                                                                                                                 |  |  |
|                  |                                                                                                             | Reduce the sampling time of the free function blocks                                                                                                                                    |  |  |
| A01101           | Memory card not available                                                                                   | Insert a memory card or deactivate alarm A01101.  Message for a memory card that is not inserted (Page 222)                                                                             |  |  |
| F01105           | CU: Insufficient memory                                                                                     | Reduce number of data sets.                                                                                                                                                             |  |  |
| F01122           | Frequency at the probe input too high                                                                       | Reduce the frequency of the pulses at the probe input.                                                                                                                                  |  |  |
| F01205           | CU: Time slice overflow                                                                                     | Contact technical support.                                                                                                                                                              |  |  |
| F01250           | CU hardware fault                                                                                           | Replacing the Control Unit.                                                                                                                                                             |  |  |
| F01512           | An attempt has been made to estab-<br>lish a conversion factor for scaling<br>which does not exist          | Create scaling or check transfer value.                                                                                                                                                 |  |  |
| A01590           | Motor maintenance interval expired                                                                          | Carry out maintenance and reset the maintenance interval (p0651).                                                                                                                       |  |  |

| Number                                         | Cause                                   | Remedy                                                                                                                                                                        |
|------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F01662                                         | Error, internal communications          | Check the electrical cabinet design and cable routing for EMC compliance.                                                                                                     |
|                                                |                                         | • Check whether an impermissible voltage is connected at one of the digital outputs.                                                                                          |
|                                                |                                         | • Check whether a digital output is loaded with an impermissible current.                                                                                                     |
|                                                |                                         | If the checks are unsuccessful:                                                                                                                                               |
|                                                |                                         | Switch off the converter power supply and switch it on again                                                                                                                  |
|                                                |                                         | Upgrade the firmware                                                                                                                                                          |
|                                                |                                         | Contact technical support                                                                                                                                                     |
| A01900                                         | PROFIBUS: Configuration telegram faulty | Explanation: A PROFIBUS master is attempting to establish a connection with a faulty configuration telegram.                                                                  |
|                                                |                                         | Check the bus configuration on the master and device side.                                                                                                                    |
| A01910<br>F01910                               | Setpoint timeout                        | The alarm is generated when p2040 $\neq$ 0 ms and one of the following causes is present:                                                                                     |
|                                                |                                         | The bus connection is interrupted                                                                                                                                             |
|                                                |                                         | The Modbus master is switched off                                                                                                                                             |
|                                                |                                         | Communications error (CRC, parity bit, logical error)                                                                                                                         |
|                                                |                                         | An excessively low value for the fieldbus monitoring time (p2040)                                                                                                             |
| A01920                                         | PROFIBUS: Cyclic connection inter-      | Explanation: The cyclic connection to PROFIBUS master is interrupted.                                                                                                         |
|                                                | rupt                                    | Establish the PROFIBUS connection and activate the PROFIBUS master with cyclic operation.                                                                                     |
| F03505                                         | Analog input, wire break                | Check the wiring for interruptions. Check the level of the injected signal. The input current measured by the analog input can be read out in r0752.                          |
| A03520                                         | Temperature sensor fault                | Check that the sensor is connected correctly.                                                                                                                                 |
| A05000<br>A05001<br>A05002<br>A05004<br>A05006 | Power Module overtemperature            | Check the following: - Is the ambient temperature within the defined limit values? - Are the load conditions and duty cycle configured accordingly? - Has the cooling failed? |
| F06310                                         | Supply voltage (p0210) incorrectly      | Check the set supply voltage and if required change (p0210).                                                                                                                  |
|                                                | set                                     | Check the line voltage.                                                                                                                                                       |
| F07011                                         | Motor overtemperature                   | Reduce the motor load.                                                                                                                                                        |
|                                                |                                         | Check ambient temperature.                                                                                                                                                    |
|                                                |                                         | Check the wiring and connection of the sensor.                                                                                                                                |
| A07012                                         | I2t motor model overtemperature         | Check and if necessary reduce the motor load.                                                                                                                                 |
|                                                |                                         | Check the motor's ambient temperature.                                                                                                                                        |
|                                                |                                         | Check the thermal time constant p0611.                                                                                                                                        |
|                                                |                                         | Check overtemperature fault threshold p0605.                                                                                                                                  |
| A07015                                         | Motor temperature sensor alarm          | Check that the sensor is connected correctly.                                                                                                                                 |
|                                                |                                         | Check the parameter assignment (p0601).                                                                                                                                       |
| F07016                                         | Motor temperature sensor fault          | Make sure that the sensor is connected correctly.                                                                                                                             |
|                                                |                                         | Check the parameterization (p0601).                                                                                                                                           |
|                                                |                                         | Deactivate the motor temperature sensor fault evaluation (p0607 = $0$ ).                                                                                                      |

| Number           | Cause                                           | Remedy                                                                                                                                                                      |  |  |
|------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| F07086<br>F07088 | Switching over units: Parameter limit violation | Check the adapted parameter values and if required correct.                                                                                                                 |  |  |
| F07320           | Automatic restart aborted                       | Increase the number of restart attempts (p1211). The current number of start attempts is shown in r1214.                                                                    |  |  |
|                  |                                                 | Increase the wait time in p1212 and/or monitoring time in p1213.                                                                                                            |  |  |
|                  |                                                 | Connect an ON command (p0840).                                                                                                                                              |  |  |
|                  |                                                 | Increase the monitoring time of the power unit or switch off (p0857).                                                                                                       |  |  |
|                  |                                                 | Reduce the wait time for resetting the fault counter p1213[1] so that fewer faults are registered in the time interval.                                                     |  |  |
| A07321           | Automatic restart active                        | Explanation: The automatic restart (AR) is active. During voltage recovery and/or when remedying the causes of pending faults, the drive is automatically switched back on. |  |  |
| F07330           | Search current measured too low                 | Increase the search current (p1202), check the motor connection.                                                                                                            |  |  |
| A07353           | DC quantity control deactivated                 | The controller to suppress DC components in the motor current was at its limit and deactivated itself.                                                                      |  |  |
|                  |                                                 | Increase the integral time p3858 of the DC quantity controller                                                                                                              |  |  |
|                  |                                                 | Decrease the gain p3857 of the DC quantity controller                                                                                                                       |  |  |
| F07390           | Forming the DC link capacitors was faulty       | The converter has canceled the "Forming the DC link capacitors" function $(r3382.3 = 1)$ . The expected DC link voltage is outside the tolerance.                           |  |  |
|                  |                                                 | Check the converter, e.g. supply voltage and connecting terminals                                                                                                           |  |  |
|                  |                                                 | • Set the forming duration again (p3380 > 0), and restart forming.                                                                                                          |  |  |
| A07391           | Forming the DC link capacitors active           | The "DC link forming" function is active. After forming has been completed, the converter withdraws the alarm ( $r3382.2 = 1$ ).                                            |  |  |
| A07400           | DC-link voltage maximum controller              | If the controller is not to intervene:                                                                                                                                      |  |  |
|                  | active                                          | Increase the ramp-down times.                                                                                                                                               |  |  |
|                  |                                                 | • Deactivate the Vdc_max control (p1240 = 0 for vector control, p1280 = 0 for U/f control).                                                                                 |  |  |
| A07409           | U/f control, current limiting control-          | The alarm automatically disappears after one of the following measures:                                                                                                     |  |  |
|                  | ler active                                      | Increase the current limit (p0640).                                                                                                                                         |  |  |
|                  |                                                 | Reduce the load.                                                                                                                                                            |  |  |
|                  |                                                 | Slow down the ramp up to the setpoint speed.                                                                                                                                |  |  |
| F07426           | Technology controller actual value              | Adapt the limits to the signal level (p2267, p2268).                                                                                                                        |  |  |
|                  | limited                                         | Check the actual value scaling (p2264).                                                                                                                                     |  |  |
| A07444           | PID autotuning is activated                     | Automatic setting of the PID controller (autotuning) is active (p2350 > 0). The alarm disappears automatically after completion of the autotuning.                          |  |  |
| F07445           | PID autotuning canceled                         | The converter has canceled the automatic setting of the PID controller (autotuning) because of a fault.                                                                     |  |  |
|                  |                                                 | Remedy: Increase p2355 and restart autotuning.                                                                                                                              |  |  |

| Number                     | Cause                             | Remedy                                                                                                           |  |  |
|----------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|
| F07801                     | Motor overcurrent                 | Check current limits (p0640).                                                                                    |  |  |
|                            |                                   | Vector control: Check current controller (p1715, p1717).                                                         |  |  |
|                            |                                   | U/f control: Check the current limiting controller (p1340 p1346).                                                |  |  |
|                            |                                   | Increase the acceleration ramp (p1120) or reduce the load.                                                       |  |  |
|                            |                                   | Check the motor and motor cables for short-circuit and ground fault.                                             |  |  |
|                            |                                   | Check the motor regarding the star/delta connection and rating plate parameterization.                           |  |  |
|                            |                                   | Check power unit / motor combination.                                                                            |  |  |
|                            |                                   | Select the flying restart function (p1200) if switched to rotating motor.                                        |  |  |
| A07805                     | Drive: Power unit overload I2t    | Reduce the continuous load.                                                                                      |  |  |
|                            |                                   | Adapt the load cycle.                                                                                            |  |  |
|                            |                                   | Check the assignment of rated currents of the motor and power unit.                                              |  |  |
| F07806                     | Regenerative power limit exceeded | Increase the deceleration ramp.                                                                                  |  |  |
|                            |                                   | Reduce the driving load.                                                                                         |  |  |
|                            |                                   | Use a power unit with higher energy recovery capability.                                                         |  |  |
|                            |                                   | For vector control, the regenerative power limit in p1531 can be reduced until the fault is no longer activated. |  |  |
| F07807                     | Short circuit detected            | Check the converter connection on the motor side for any phase-phase short-circuit.                              |  |  |
|                            |                                   | Rule out that line and motor cables have been interchanged.                                                      |  |  |
| A07850                     | External alarm 1 3                | The signal for "external alarm 1" has been triggered.                                                            |  |  |
| A07851<br>A07852           |                                   | Parameters p2112, p2116 and p2117 determine the signal sources for the external alarm 1 3.                       |  |  |
|                            |                                   | Remedy: Remove the causes of these alarms.                                                                       |  |  |
| F07860<br>F07861<br>F07862 | External fault 1 3                | Remove the external causes for this fault.                                                                       |  |  |
| A07891                     | Load monitoring, pump/fan blocked | Check the pump/fan for blockage and rectify if necessary.                                                        |  |  |
|                            |                                   | Check the fan for sluggishness and rectify if necessary.                                                         |  |  |
|                            |                                   | Adapt the parameterization depending on the load (p2165, p2168).                                                 |  |  |
| A07892                     | Load monitoring, pump/fan without | For a pump, check the conveyor medium and provide if necessary.                                                  |  |  |
|                            | load                              | For a fan, check the belt and replace if necessary                                                               |  |  |
|                            |                                   | If necessary, increase the torque threshold for detection (p2191).                                               |  |  |
| A07893                     | Load monitoring, pump leakage     | Rectify the leakage in the pump circuit.                                                                         |  |  |
| 7107033                    | Loud Montomig, pump reakage       | For a false tripping, reduce the torque thresholds of the leakage charac-                                        |  |  |
|                            |                                   | teristic (p2186, p2188, p2190).                                                                                  |  |  |
| F07894                     | Load monitoring, pump/fan blocked | Check the pump/fan for blockage and rectify if necessary.                                                        |  |  |
|                            |                                   | Check the fan for sluggishness and rectify if necessary.                                                         |  |  |
|                            |                                   | Adapt the parameterization depending on the load (p2165, p2168).                                                 |  |  |
| F07895                     | Load monitoring, pump/fan without | For a pump, check the conveyor medium and provide if necessary.                                                  |  |  |
|                            | load                              | For a fan, check the belt and replace if necessary                                                               |  |  |
|                            |                                   |                                                                                                                  |  |  |

| Number | Cause                                 | Remedy                                                                                                             |  |  |
|--------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|--|
| F07896 | Load monitoring, pump leakage         | Rectify the leakage in the pump circuit.                                                                           |  |  |
|        |                                       | • For a false tripping, reduce the torque thresholds of the leakage characteristic (p2186, p2188, p2190).          |  |  |
| F07900 | Motor blocked                         | Check that the motor can run freely.                                                                               |  |  |
|        |                                       | Check the torque limits (r1538 and r1539).                                                                         |  |  |
|        |                                       | Check the parameters of the "Motor blocked" message (p2175, p2177).                                                |  |  |
| F07901 | Motor overspeed                       | Activate the precontrol for the speed limiting controller (p1401 bit $7 = 1$ ).                                    |  |  |
|        |                                       | Increase the hysteresis for overspeed signal p2162.                                                                |  |  |
| F07902 | Motor stalled                         | Check whether the motor data has been set correctly and perform a motor identification.                            |  |  |
|        |                                       | Check the current limits (p0640, r0067, r0289). If the current limits are too low, the drive cannot be magnetized. |  |  |
|        |                                       | Check whether motor cables are disconnected during operation.                                                      |  |  |
| A07903 | Motor speed deviation                 | Increase p2163 and/or p2166.                                                                                       |  |  |
|        |                                       | Increase the torque, current and power limits.                                                                     |  |  |
| A07910 | Motor overtemperature                 | Check the motor load.                                                                                              |  |  |
|        |                                       | Check the motor's ambient temperature.                                                                             |  |  |
|        |                                       | Check the KTY84 or PT1000 sensor.                                                                                  |  |  |
|        |                                       | Check the overtemperatures of the thermal model (p0626 p0628).                                                     |  |  |
| A07920 | Torque/speed too low                  | The torque deviates from the torque/speed envelope curve.                                                          |  |  |
| A07921 | Torque/speed too high                 | Check the connection between the motor and the load.                                                               |  |  |
| A07922 | Torque/speed out of tolerance         | Adapt the parameterization corresponding to the load.                                                              |  |  |
| F07923 | Torque/speed too low                  | Check the connection between the motor and the load.                                                               |  |  |
| F07924 | Torque/speed too high                 | Adapt the parameterization corresponding to the load.                                                              |  |  |
| A07927 | DC braking active                     | Not required                                                                                                       |  |  |
| A07980 | Rotary measurement activated          | Not required                                                                                                       |  |  |
| A07981 | No enabling for rotary measurement    | Acknowledge pending faults.                                                                                        |  |  |
|        |                                       | Establish missing enables (see r00002, r0046).                                                                     |  |  |
| A07991 | Motor identification activated        | Switch on the motor and identify the motor data.                                                                   |  |  |
| F08501 | Setpoint timeout                      | Check the PROFINET connection.                                                                                     |  |  |
|        |                                       | Set the controller to RUN mode.                                                                                    |  |  |
|        |                                       | If the fault occurs repeatedly, check the monitoring time set p2044.                                               |  |  |
| F08502 | Monitoring time, sign-of-life expired | Check the PROFINET connection.                                                                                     |  |  |
| F08510 | Send configuration data not valid     | Check the PROFINET configuration                                                                                   |  |  |
| A08511 | Receive configuration data not valid  |                                                                                                                    |  |  |
| A08526 | No cyclic connection                  | Activate the control with cyclic operation.                                                                        |  |  |
|        |                                       | Check the parameters "Name of Station" and "IP of Station" (r61000, r61001).                                       |  |  |
| A08565 | Consistency error affecting adjusta-  | Check the following:                                                                                               |  |  |
|        | ble parameters                        | IP address, subnet mask or default gateway is not correct.                                                         |  |  |
|        |                                       | IP address or station name used twice in the network.                                                              |  |  |
|        |                                       | Station name contains invalid characters.                                                                          |  |  |

| Number  | Cause                                                    | Remedy                                                                                                                           |  |  |
|---------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|
| F13100  | Know-how protection: Copy protection error               | The know-how protection and the copy protection for the memory card are active. An error occurred when checking the memory card. |  |  |
|         |                                                          | • Insert a suitable memory card and switch the converter supply voltage temporarily off and then on again (POWER ON).            |  |  |
|         |                                                          | Deactivate the copy protection (p7765).                                                                                          |  |  |
| F13101  | Know-how protection: Copy protection cannot be activated | Insert a valid memory card.                                                                                                      |  |  |
| F30001  | Overcurrent                                              | Check the following:                                                                                                             |  |  |
|         |                                                          | Motor data, if required, carry out commissioning                                                                                 |  |  |
|         |                                                          | Motor connection method (Y / Δ)                                                                                                  |  |  |
|         |                                                          | Ulf operation: Assignment of rated currents of motor and Power Module                                                            |  |  |
|         |                                                          | Line quality                                                                                                                     |  |  |
|         |                                                          | Make sure that the line commutating reactor is connected properly                                                                |  |  |
|         |                                                          | Power cable connections                                                                                                          |  |  |
|         |                                                          | Power cables for short-circuit or ground fault                                                                                   |  |  |
|         |                                                          | Power cable length                                                                                                               |  |  |
|         |                                                          | Line phases                                                                                                                      |  |  |
|         |                                                          | If this doesn't help:                                                                                                            |  |  |
|         |                                                          | Ulf operation: Increase the acceleration ramp                                                                                    |  |  |
|         |                                                          | Reduce the load                                                                                                                  |  |  |
|         |                                                          | Replace the power unit                                                                                                           |  |  |
| F30002  | DC-link voltage overvoltage                              | Increase the ramp-down time (p1121).                                                                                             |  |  |
| . 50002 | De link voltage over voltage                             | Set the rounding times (p1130, p1136).                                                                                           |  |  |
|         |                                                          | Activate the DC-link voltage controller (p1240, p1280).                                                                          |  |  |
|         |                                                          | Check the line voltage (p0210).                                                                                                  |  |  |
|         |                                                          | Check the line phases.                                                                                                           |  |  |
| F30003  | DC-link voltage undervoltage                             | Check the line voltage (p0210).                                                                                                  |  |  |
| F30004  | Converter overtemperature                                | Check whether the converter fan is running.                                                                                      |  |  |
|         |                                                          | Check whether the ambient temperature is in the permissible range.                                                               |  |  |
|         |                                                          | Check whether the motor is overloaded.                                                                                           |  |  |
|         |                                                          | Reduce the pulse frequency.                                                                                                      |  |  |
| F30005  | I2t converter overload                                   | Check the rated currents of the motor and Power Module.                                                                          |  |  |
|         |                                                          | Reduce the current limit p0640.                                                                                                  |  |  |
|         |                                                          | When operating with U/f characteristic: Reduce p1341.                                                                            |  |  |
| F30011  | Line phase failure                                       | Check the converter's input fuses.                                                                                               |  |  |
|         |                                                          | Check the motor feeder cables.                                                                                                   |  |  |
| F30015  | Motor cable phase failure                                | Check the motor cables.                                                                                                          |  |  |
|         |                                                          | Increase the ramp-up or ramp-down time (p1120).                                                                                  |  |  |
| F30021  | Ground fault                                             | Check the power cable connections.                                                                                               |  |  |
|         |                                                          | Check the motor.                                                                                                                 |  |  |
|         |                                                          | Check the current transformer.                                                                                                   |  |  |
|         |                                                          | Check the cables and contacts of the brake connection (a wire might be broken).                                                  |  |  |

| Number | Cause                                                      | Remedy                                                                                                                                                       |
|--------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F30022 | Power Module: Monitoring U <sub>CE</sub>                   | Check or replace Power Module.                                                                                                                               |
| F30027 | Time monitoring for DC link pre-                           | Check the line voltage at the input terminals.                                                                                                               |
|        | charging                                                   | Check the line voltage setting (p0210).                                                                                                                      |
| F30035 | Overtemperature, intake air                                | Check whether the fan is running.                                                                                                                            |
| F30036 | Overtemperature, inside area                               | Check the fan filter elements.                                                                                                                               |
|        |                                                            | Check whether the ambient temperature is in the permissible range.                                                                                           |
| F30037 | Rectifier overtemperature                                  | See F30035 and, in addition:                                                                                                                                 |
|        |                                                            | Check the motor load.                                                                                                                                        |
|        |                                                            | Check the line phases                                                                                                                                        |
| A30049 | Internal fan defective                                     | Check the internal fan and if required replace.                                                                                                              |
| F30052 | Incorrect Power Module data                                | Replace the Power Module or upgrade the Control Unit firmware.                                                                                               |
| F30053 | Error in FPGA data                                         | Replace the Power Module.                                                                                                                                    |
| F30059 | Internal fan defective                                     | Check the internal fan and if required replace.                                                                                                              |
| F30074 | Communications error between Control Unit and Power Module | There is a communications fault between the Control Unit and the Power Module. Possible causes:                                                              |
|        |                                                            | The Control Unit may have been removed or inserted incorrectly.                                                                                              |
|        |                                                            | • The external 24 V Control Unit power supply has dipped to ≤95% of the rated voltage for ≤3 ms                                                              |
| A30502 | DC link overvoltage                                        | Check the device supply voltage (p0210).                                                                                                                     |
|        |                                                            | Check the line reactor dimensioning                                                                                                                          |
| F30662 | CU hardware fault                                          | Switch the Control Unit off and on again, upgrade the firmware or contact technical support.                                                                 |
| F30664 | CU power up aborted                                        | Switch the Control Unit off and on again, upgrade the firmware or contact technical support.                                                                 |
| F30850 | Software fault in the Power Module                         | Replace Power Module or contact technical support.                                                                                                           |
| A30920 | Temperature sensor fault                                   | Check that the sensor is connected correctly.                                                                                                                |
| A50001 | PROFINET configuration error                               | A PROFINET control is attempting to establish a connection with an incorrect configuration telegram. Check whether "Shared Device" is activated (p8929 = 2). |
| A50010 | PROFINET name of station invalid                           | Correct the name of station (p8920) and activate (p8925 = 2).                                                                                                |
| A50020 | PROFINET: Second control missing                           | "Shared Device" is activated (p8929 = 2). However, only the connection to a PROFINET control is available.                                                   |

Further information on this topic is provided in the List Manual.



Overview of the manuals (Page 581)

Corrective maintenance



#### WARNING

#### Fire or electric shock due to defective components

If an overcurrent protection device is triggered, the converter may be defective. A defective converter can cause a fire or electric shock.

Have the converter and the overcurrent protection device checked by a specialist.

### Repair



## WARNING

### Fire or electric shock due to improper repair

Improper repair of the converter may cause malfunctions or result in consequential damage such as fire or electric shock.

- Only commission the following persons to repair the converter:
  - Siemens customer service
  - A repair center that has been authorized by Siemens
  - Specialist personnel who are thoroughly acquainted with all the warnings and operating procedures contained in this manual.
- Only use original spare parts when carrying out repairs.

#### Recycling and disposal



For environmentally-friendly recycling and disposal of your old device, please contact a company certified for the disposal of waste electrical and electronic equipment, and dispose of the old device as prescribed in the respective country of use.

### Continuous development within the scope of product maintenance

Converter components are being continuously developed within the scope of product maintenance. Product maintenance includes, for example, measures to increase the ruggedness or hardware changes which become necessary as components are discontinued.

These further developments are "spare parts-compatible" and do not change the article number.

In the scope of such spare parts-compatible ongoing development, plug connector or connection positions are sometimes slightly modified. This does not cause any problems when the components are properly used. Please take this fact into consideration in special installation situations (e.g. allow sufficient reserve regarding the cable length).

#### 10.1 **Replace Control Unit**

#### Overview

You are only permitted to replace a Control Unit with a different Control Unit under certain preconditions. After the replacement, you must transfer the settings of the Control Unit that was replaced to the new Control Unit.

## Requirement

The following preconditions apply for making a replacement:

- The new Control Unit is the same type as the Control Unit that was replaced.
- The new Control Unit has the same or more recent firmware version than that of the Control Unit that was replaced.

## Description



## **▲** WARNING

### Unexpected machine motion caused when using an inappropriate Control Unit

Replacing Control Units of different types can result in incomplete or inappropriate/incorrect converter settings. As a consequence, machines can unexpectedly move, e.g. speed oscillation, overspeed or incorrect direction of rotation. Unexpected machine motion can result in death, injury and/or material damage.

In all cases not permitted according to the above precondition, you must recommission the drive after replacing the Control Unit.



#### **▲** WARNING

#### Unexpected machine motion caused by inappropriate/incorrect converter settings

Missing or incorrect converter settings can lead to unexpected operating states or machine movements, e.g. a non-functioning EMERGENCY STOP or an incorrect direction of rotation. As a consequence, machine components or devices can become damaged or death or bodily injury may result.

- If possible, back up the settings of the Control Unit to be replaced by uploading them to an external storage medium, e.g. a memory card.
- Transfer the settings of the Control Unit that was replaced per download to the new Control
- If you do not have a backup of the converter settings, commission the converter as new converter.
- After replacing the Control Unit, you must check the function of the converter.

#### **Procedure**

- 1. Switch off the line voltage to the Power Module.
- 2. If being used, switch off the supply voltage for the digital outputs on the Control Unit.

#### 10.1 Replace Control Unit

- 3. If being used, switch off the external 24 V supply of the Control Unit.
- 4. Carefully check that the Control Unit terminals have a no voltage condition.
- 5. Remove the signal cables from the Control Unit.
- 6. Remove the defective Control Unit.
- 7. Mount the new Control Unit on the Power Module.
- 8. Reconnect the signal cables of the Control Unit.
- 9. Switch on all of the converter power supplies again.
- 10. Set the new converter to suit the application:
  - If the settings of the replaced Control Unit are backed up on an external storage medium, transfer the settings using a download.
     Downloading the converter settings (Page 465)
  - If there is no data backup of the replaced Control Unit, commission the converter as new converter.

| You have | replaced | the | Control | Unit |
|----------|----------|-----|---------|------|
|          |          |     |         |      |

## 10.2 Downloading the converter settings

## 10.2.1 Automatic download from the memory card

#### Overview

We recommend that you insert the memory card before switching on the converter. The converter automatically imports its settings from the inserted memory card.

#### Precondition

The following requirements apply:

- The converter power supply has been switched off.
- The converter settings are not protected against copying.
   Download from the PC using Startdrive (Page 473)

## **Function description**

#### **Procedure**

- 1. Insert the memory card into the converter.
- 2. Switch on the power supply for the converter.
- 3. The converter loads the settings from the memory card.
- 4. After loading, check whether the converter outputs Alarm A01028.
  - Alarm A01028:
    - The loaded settings are not compatible with the converter.
    - Delete the alarm with p0971 = 1.
    - Recommission the drive.
  - No alarm A01028:

The converter accepts the settings that have been loaded.

You have transferred the settings to the converter.

## 10.2.2 Manual downloading from the memory card with the BOP-2

#### Overview

If you have backed up the settings of several converters on the memory card, the settings download must be started manually.

10.2 Downloading the converter settings

#### Precondition

The following requirements apply:

- The converter power supply has been switched on.
- The converter settings are not protected against copying.
   Download from the PC using Startdrive (Page 473)

## **Function description**

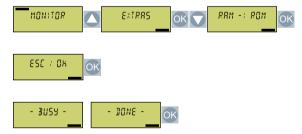
#### **Procedure**

- 1. Insert the memory card into the converter.
- 2. Select the download.



3. Set the number of your data backup. You can back up 99 different settings on the memory card.




4. Start the data transfer.



5. Wait until the converter has transferred the settings from the memory card.



6. Back up the settings so that they are protected against power failure.



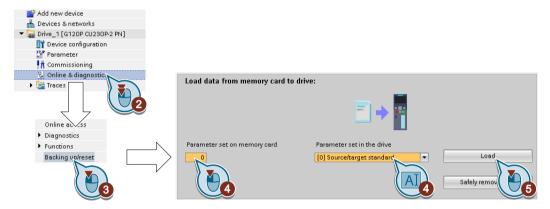
You have transferred the settings from the memory card to the converter.  $\ensuremath{\square}$ 

## 10.2.3 Manual download from the memory card using Startdrive

#### Overview

If you have backed up the settings of several converters on the memory card, the settings download must be started manually.

## Requirement


The following preconditions apply:

- The converter power supply has been switched on.
- The PC and converter are connected with one another via a USB cable or via the fieldbus.
- The converter settings are not protected against copying.

  Download from the PC using Startdrive (Page 473)

## **Function description**

#### **Procedure**



- 1. Go online.
- 2. Select "Online & diagnostics".
- 3. Select "Back up/reset".
- 4. Set the number of your data backup. You can back up 99 different settings on the memory card.
- 5. Start the data transfer.
- 6. Wait until Startdrive has signaled that the data transfer has been completed.
- 7. Go offline.

You have transferred your settings from a memory card to the converter.

## 10.2.4 Download from BOP-2 operator panel

#### Overview

You can transfer the converter settings that are backed up on the BOP-2 operator panel back into the converter.

#### 10.2 Downloading the converter settings

#### Precondition

The following requirements apply:

- The converter power supply has been switched on.
- The converter settings are not protected against copying.

  Download from the PC using Startdrive (Page 473)

## **Function description**

#### **Procedure**

- 1. Attach the Operator Panel to the converter.
- 2. Select the download from the operator panel to the converter.

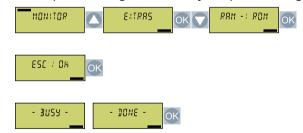


3. Start the download.



4. Wait until the download is completed.




5. After loading, check whether the converter outputs Alarm A01028.



- Alarm A01028:

The loaded settings are not compatible with the converter. Delete the alarm with p0971 = 1. Recommission the drive.

- No alarm A01028: Proceed with the next step.
- 6. Back up the settings so that they are protected against power failure.



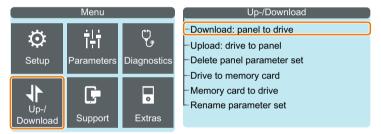
You have transferred the settings to the converter.

## 10.2.5 Download from IOP-2 operator panel

#### Overview

You can transfer the converter settings that are backed up on the IOP-2 operator panel back into the converter.

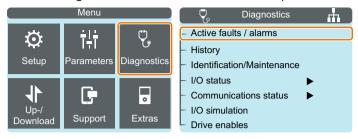
#### Precondition


The following requirements apply:

- The converter power supply has been switched on.
- The converter settings are not protected against copying.
   Download from the PC using Startdrive (Page 473)

## **Function description**

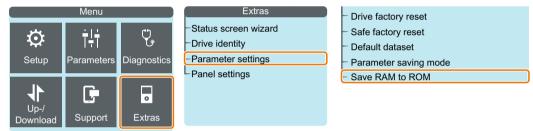
#### Procedure


- 1. Connect the operator panel to the converter.
- 2. Start the download.



3. Wait until the download is completed.

#### 10.2 Downloading the converter settings


4. After loading, check whether the converter outputs Alarm A01028.



- Alarm A01028:

The loaded settings are not compatible with the converter. Delete the alarm with p0971 = 1. Recommission the drive.

- No alarm A01028: Proceed with the next step.
- 5. Back up the settings so that they are protected against power failure.



You transferred the settings to the converter.

## 10.2.6 Download from Smart Access

#### Overview

You can transfer the converter settings that are backed up on the digital terminal device back into the converter.

#### Precondition

The following requirements apply:

- The converter power supply has been switched on.
- The converter settings are not protected against copying.

  Download from the PC using Startdrive (Page 473)

# **Function description**

#### **Procedure**

- 1. Attach the Smart Access to the converter.
- 2. Connect your terminal device with the Smart Access.
- 3. Select the file for restoring the converter settings.



## 10.2 Downloading the converter settings

4. Back up the settings so that they are protected against power failure.



5. After loading, check whether the converter outputs Alarm A01028.



Alarm A01028:
 The loaded settings are not compatible with the converter.
 Delete the alarm with p0971 = 1.
 Recommission the drive.

- No alarm A01028: Proceed with the next step.

You transferred the settings from the Smart Access to the new converter.  $\hfill\Box$ 

## 10.2.7 Download from the PC using Startdrive

#### Overview

You can transfer the converter settings that have been backed up to a PC back to the converter.

## Requirement

The following preconditions apply:

- The PC and converter are connected with one another.
- The converter settings are not protected against copying.
   Download from the PC using Startdrive (Page 473)

## **Function description**

#### **Procedure**

- 1. Open the Startdrive project that matches the drive.
- 2. Select "Load to device".
- 3. Confirm the prompt for saving your settings (copy RAM to ROM).

You transferred the settings from the PC to the new converter.

#### Overview

The know-how protection function prevents converter settings from being copied.

There are two options to avoid recommissioning after a converter has been replaced.

## Requirement

The following preconditions apply:

- The end user uses a SIEMENS memory card.
- The machine manufacturer (OEM) has an identical machine.

#### 10.2 Downloading the converter settings

#### **Function description**

# Procedure 1: The machine manufacturer only knows the serial number of the new converter

- 1. The end customer provides the machine manufacturer with the following information:
  - For which machine must the converter be replaced?
  - What is the serial number (r7758) of the new converter?
- 2. The machine manufacturer performs the following steps online on the prototype machine:
  - Deactivating know-how protection
     Activating and deactivating know-how protection (Page 238)
  - Enter the serial number of the new converter in p7759.
  - Enter the serial number of the inserted memory card as reference serial number in p7769.
  - Activate know-how protection with copy protection. "Copy RAM to ROM" must be activated.
  - Write the configuration with p0971 = 1 to the memory card.
  - Send the memory card to the end customer.
- 3. The end user inserts the memory card.
- 4. The end user switches on the converter power supply.
- 5. The converter checks the serial numbers of the card and the converter, and when there is a match the converter goes into the "Ready for switching on" state.
  If the numbers do not match, then the converter signals fault F13100 (no valid memory card).

The settings have been transferred to the converter.  $\Box$ 

# Procedure 2: The machine manufacturer knows the serial number of the new converter and the serial number of the memory card

- 1. The end customer provides the machine manufacturer with the following information:
  - For which machine must the converter be replaced?
  - What is the serial number (r7758) of the new converter?
  - What is the serial number of the memory card?
- 2. The machine manufacturer performs the following steps online on the prototype machine:
  - Deactivating know-how protection
     Activating and deactivating know-how protection (Page 238)
  - Enter the serial number of the new converter in p7759.
  - Enter the serial number of the customer's memory card as reference serial number in p7769.
  - Activate know-how protection with copy protection. "Copy RAM to ROM" must be activated.
  - Write the configuration with p0971 = 1 to the memory card.
  - Copy the encrypted project from the card to the associated PC.
  - Send the encrypted project to the end customer, e.g. via e-mail.
- 3. The end user copies the project to the Siemens memory card that belongs to the machine.
- 4. The end user inserts the Siemens memory card into the converter.
- 5. The end user switches on the converter power supply.
- 6. The converter checks the serial numbers of the card and the converter, and when there is a match the converter goes into the "Ready for switching on" state.
  If the numbers do not match, then the converter signals fault F13100 (no valid memory card).

The settings have been transferred to the converter.  $\Box$ 

## 10.3 Replacing a Power Module

#### Overview

You are only permitted to replace the Power Module by another Power Module under certain specific preconditions.

## Requirement

The following preconditions apply when making a replacement:

- The new and replaced Power Modules have the same power rating.
- The new Power Module has a different power rating than the replaced Power Module, however still the same frame size.

In this case, the rated power of the Power Module and the rated power of the motor must not differ too much.

The following values are permissible for the quotients (rated motor power)/(rated Power Module power):

- 200 V Power Modules and 400 V Power Modules: 0.25 ... 1.5
- 690 V Power Modules: 0.5 ...1.5

## Description

#### **Procedure**

- 1. Switch off the line voltage to the Power Module. You do not have to switch off an external 24 V power supply for the Control Unit if one is being used.
- 2. Remove the connecting cables of the Power Module.
- 3. Remove the Control Unit from the Power Module.
- 4. Replace the previous Power Module with the new Power Module.
- 5. Mount the Control Unit onto the new Power Module.
- 6. Connect up the new Power Module using the connecting cables.

#### NOTICE

## Motor damage due to interchanged motor connecting cables

The direction in which the motor rotates switches if you exchange the two phases of the motor line. A motor with an incorrect direction of rotation can damage the machine or installation. Driven loads with only one permissible direction of rotation include certain compressors, saws and pumps, for example.

- Connect the 3 phases of the motor lines in the correct sequence.
- After replacing the Power Module, check the direction of motor rotation.
- 7. Switch on the line supply and, if necessary, the 24 V supply of the Control Unit.

10.3 Replacing a Power Module

You have successfully replaced the Power Module.

10.4 PROFINET device name

## 10.4 PROFINET device name

#### Overview

Converters with PROFINET interface support "Device replacement without removable data storage medium".

## Requirement

The topology of the PROFINET IO system with the IO device involved is configured in the higher-level control system.

## **Function description**

The converter can be replaced without having to insert a removable data storage medium (e.g. a memory card) with the saved device names in the converter – or having to reassign the device names using a PG.

#### **Further information**

Details of the device replacement without removable storage medium can be found on the Internet:

PROFINET system description (<a href="http://support.automation.siemens.com/WW/view/en/">http://support.automation.siemens.com/WW/view/en/</a> 19292127)

# 10.5 Firmware upgrade and downgrade

## 10.5.1 Overview

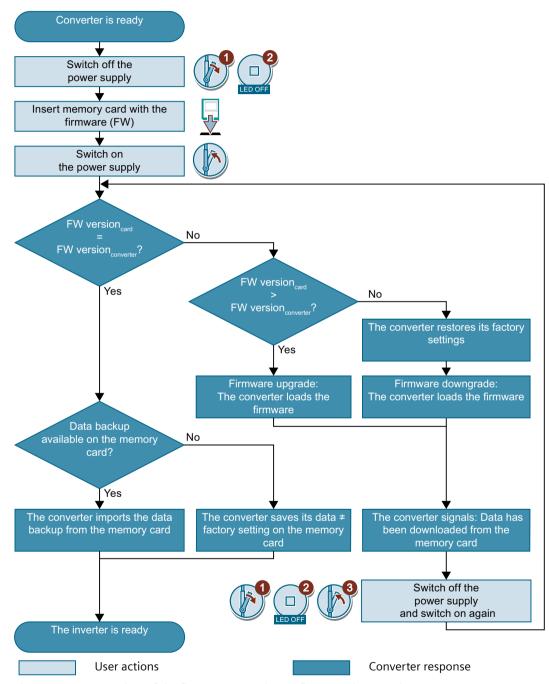



Figure 10-1 Overview of the firmware upgrade and firmware downgrade

10.5 Firmware upgrade and downgrade

## 10.5.2 Preparing the memory card

#### Overview

You can load the converter firmware from the Internet to a memory card.

#### Precondition

You have the appropriate memory card.

Recommended memory cards (Page 220)

## **Function description**

#### **Procedure**

- 1. Download the required firmware to your PC from the Internet.

  Download (https://support.industry.siemens.com/cs/ww/en/view/67364620)
- 2. Extract the files to a directory of your choice on your PC.
- 3. Transfer the unzipped files into the root directory of the memory card.

| <b></b> ■ USER | ATMG168.UFW | B2XX_BE. 10    |
|----------------|-------------|----------------|
| B2XX_BE.15     | B2XX_DSP.10 | B2XX_DSP.15    |
| B2XX_S.5       | B2XX_S. 10  | B230.10        |
| BET200.10      | BG110M.10   | cbe20_1.ufw    |
| CONTENT.TXT    | F230P.BIN   | F230P_BT.BIN   |
| F240B.BIN      | F240D.BIN   | F240E.BIN      |
| F250D.BIN      | F250S.BIN   | FET200.BIN     |
| FG110M.BIN     | FG120C.BIN  | img_G120MC.lst |
| UPDATE.CTR     | UPDATER.INF |                |

Figure 10-2 Example of memory card contents after the file transfer

Depending on the firmware, the filenames and the number of files may differ from the display above.

The "USER" directory does not exist on unused memory cards. After the memory card is plugged in for the first time, the converter creates a new "USER" directory.

You have prepared the memory card for the firmware upgrade or downgrade.  $\ensuremath{\square}$ 

## 10.5.3 Upgrading the firmware

#### Introduction

When upgrading the firmware, you replace the converter firmware by a later version.

#### Requirements

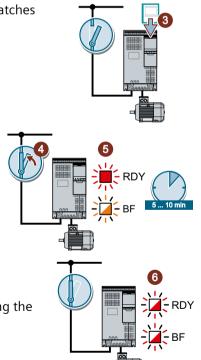
- Your converter's firmware is at least version V4.5.
- Converter and memory card have different firmware versions.

## **Function Description**

#### **Procedure**

- 1. Switch off the converter power supply.
- 2. Wait until all LEDs on the converter are dark.
- 3. Insert the card with the matching firmware into the converter slot until it latches into place.
- 4. Switch on the converter power supply again.
- 5. The converter transfers the firmware from the memory card into its memory.

The transfer takes between 5 and 10 minutes.

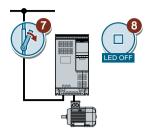

While data is being transferred, the LED RDY on the converter stays red. The BF LED flashes orange with a variable frequency.

6. At the end of the transfer, the LED RDY and BF slowly flash red (0.5 Hz).

## Power supply failure during transfer

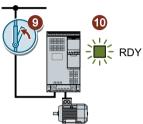
The converter firmware will be incomplete if the power supply fails during the transfer.

• Start again with step 1 of the instructions.




#### 10.5 Firmware upgrade and downgrade

- 7. Switch off the converter power supply.
- 8. Wait until all LEDs on the converter are dark.


Decide whether you want to withdraw the memory card from the converter:

- You remove the memory card:
  - ⇒ The converter keeps its settings.



- You leave the memory card in the converter:
  - $\Rightarrow$  If the memory card still does not have a data backup of the converter settings, in step 9 the converter writes its settings to the memory card.
  - $\Rightarrow$  If the memory card already includes a data backup, the converter imports the settings from the memory card in step 9.
- 9. Switch on the converter power supply again.
- 10. If the firmware upgrade was successful, the converter LED RDY turns green after several seconds.

If the memory card is still inserted, depending on the previous content of the memory card, one of the two following cases has occurred:



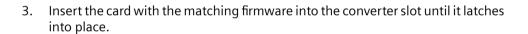
- The memory card contains a data backup:
  - ⇒ The converter has taken the settings from the memory card.
- There was no data backup on the memory card:
  - $\Rightarrow$  The converter has written its settings to the memory card.

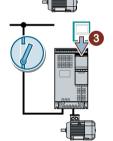
You have upgraded the converter firmware.

## 10.5.4 Firmware downgrade

#### Overview

When downgrading the firmware, you replace the converter firmware by an older version.


#### Requirement


- Your converter's firmware is at least version V4.6.
- Converter and memory card have different firmware versions.
- You have backed up your settings on the memory card, in an Operator Panel or in a PC.

## **Function Description**

#### **Procedure**

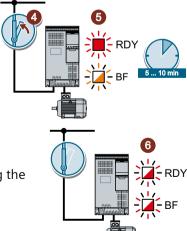
- 1. Switch off the converter power supply.
- 2. Wait until all LEDs on the converter are dark.





- 4. Switch on the converter power supply again.
- 5. The converter transfers the firmware from the memory card into its memory.

The transfer takes between 5 and 10 minutes.


While data is being transferred, the LED RDY on the converter stays red. The BF LED flashes orange with a variable frequency.

6. At the end of the transfer, the LED RDY and BF slowly flash red (0.5 Hz).

#### Power supply failure during transfer

The converter firmware will be incomplete if the power supply fails during the transfer.

• Start again with Step 1 of these instructions.



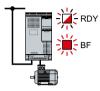
#### 10.5 Firmware upgrade and downgrade

- 7. Switch off the converter power supply.
- 8. Wait until all LEDs on the converter are dark.

Decide whether you want to withdraw the memory card from the converter:

- The memory card contains a data backup:
  - ⇒ The converter has taken the settings from the memory card.
- There was no data backup on the memory card:
  - ⇒ The converter has the factory setting.
- 9. Switch on the converter power supply again.
- 10. If the firmware downgrade was successful, after several seconds the converter LED RDY turns green.

If the memory card is still inserted, depending on the previous content of the memory card, one of the two following cases has occurred:




- The memory card contains a data backup:
  - $\Rightarrow$  The converter has taken the settings from the memory card.
- There was no data backup on the memory card:
  - ⇒ The converter has the factory setting.
- 11. If the memory card did not contain a data backup of the converter settings, then you must transfer your settings to the converter from another data backup.
  - Downloading the converter settings (Page 465)

You have replaced the converter firmware by an older version.

# 10.5.5 Correcting an unsuccessful firmware upgrade or downgrade

## Requirements



- When upgrading, the converter has firmware version V4.5 as a minimum.
- When downgrading, as a minimum the converter has firmware version V4.6.

## **Function Description**

To correct a failed firmware upgrade or downgrade you can check the following:

- Have you inserted the card properly?
- Does the card contain the correct firmware?

Repeat the firmware upgrade or downgrade

## 10.6 If the converter no longer responds

#### If the converter no longer responds

For example, when loading an incorrect file from the memory card, the converter can go into a state where it can no longer respond to commands from the operator panel or from a higher-level control system. In this case, you must reset the converter to its factory setting and recommission it. This converter state is manifested in two different ways:

#### Case 1

- The motor is switched off.
- You cannot communicate with the converter, either via the operator panel or other interfaces.
- The LEDs flicker and after 3 minutes the converter has still not powered up.

#### **Procedure**

- 1. Remove the memory card if one is inserted in the converter.
- 2. Switch off the converter power supply.
- 3. Wait until all LEDs on the converter are dark. Then switch on the converter power supply again.
- 4. Repeat steps 2 and 3 as often as required until the converter outputs fault F01018.
- 5. Set p0971 = 1.
- 6. Switch off the converter power supply.
- 7. Wait until all LEDs on the converter are dark. Then switch on the converter power supply again.

The converter now powers up with the factory settings.

8. Recommission the converter.

You have restored the converter factory settings.  $\Box$ 

# Case 2

- The motor is switched off.
- You cannot communicate with the converter, either via the operator panel or other interfaces.
- The LEDs flash and are dark this process is continually repeated.

#### **Procedure**

- 1. Remove the memory card if one is inserted in the converter.
- 2. Switch off the converter power supply.
- 3. Wait until all LEDs on the converter are dark. Then switch on the converter power supply again.
- 4. Wait until the LEDs flash orange.

- 5. Repeat steps 2 and 3 as often as required until the converter outputs fault F01018.
- 6. Now set p0971 = 1.
- 7. Switch off the converter power supply.
- 8. Wait until all LEDs on the converter are dark. Then switch on the converter power supply again.
  - The converter now powers up with the factory settings.
- 9. Recommission the converter.

You have restored the converter factory settings.

#### The motor cannot be switched-on

If the motor cannot be switched-on, then check the following:

- Is a fault present?
  If there is, then remove the fault cause and acknowledge the fault.
- Has the converter been completely commissioned p0010 = 0? If not, the converter is e.g. still in a commissioning state.
- Is the converter reporting the "ready to start" status (r0052.0 = 1)?
- Is the converter missing some enable signals (r0046)?
- How does the converter receive its setpoint and commands? Digital inputs, analog inputs or fieldbus?

10.6 If the converter no longer responds

Technical data

# 11.1 Technical data, CU230P-2 Control Unit

| Property            | Data / explanatio                               | n                                                                                    |                                          |  |
|---------------------|-------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------|--|
| Fieldbus interfaces | CU230P-2 HVAC<br>CU230P-2 BT                    | With RS485 interface for the following protocols:  USS  Modbus RTU  BACnet MS/TP  P1 | Article numbers: Control Units (Page 35) |  |
|                     | CU230P-2 DP                                     | With PROFIBUS interface                                                              | _                                        |  |
|                     | CU230P-2 PN                                     | With PROFINET interface                                                              |                                          |  |
| Operating voltage   | •                                               | ons for the Control Unit power supply:                                               |                                          |  |
|                     | <ul> <li>Supply from th</li> </ul>              | e Power Module                                                                       |                                          |  |
|                     | External 20.4 \                                 | / 28.8 V DC supply via terminals 31 and                                              | 32.                                      |  |
| Current consumption | ≤ 1.5 A                                         |                                                                                      |                                          |  |
| Power loss          | 5.0 W                                           |                                                                                      |                                          |  |
| Output voltages     | +24 V out (terminal 9),18 V 28.8 V, max. 100 mA |                                                                                      |                                          |  |
|                     | +10 V out (termina                              | als 1 and 35), 9.5 V 10.5 V, max. 10 mA                                              |                                          |  |
| Setpoint resolution | 0.01 Hz                                         |                                                                                      |                                          |  |
| Digital inputs      | 6 (DI 0 DI 5)                                   | Electrically isolated                                                                |                                          |  |
|                     |                                                 | • Voltage: ≤ 30 V                                                                    |                                          |  |
|                     |                                                 | <ul><li>Voltage for "low" state: &lt; 5 V</li></ul>                                  |                                          |  |
|                     |                                                 | <ul> <li>Voltage for "high" state: &gt; 11 V</li> </ul>                              |                                          |  |
|                     |                                                 | <ul> <li>Current for 24 V input voltage: 2.7 mA 4.7 mA</li> </ul>                    |                                          |  |
|                     |                                                 | Minimum current for the "high" state                                                 | e: 1.8 mA 3.9 mA                         |  |
|                     |                                                 | Compatible to SIMATIC outputs                                                        |                                          |  |
|                     |                                                 | Response time for debounce time por                                                  | 0724 = 0: 10 ms                          |  |

# 11.1 Technical data, CU230P-2 Control Unit

| Property                             | Data / explanation                                                    |                                                                                                                                                                                 |
|--------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analog inputs                        | 4 (Al 0 Al 3)                                                         | Differential inputs                                                                                                                                                             |
|                                      |                                                                       | • 12-bit resolution                                                                                                                                                             |
|                                      |                                                                       | • 13 ms response time                                                                                                                                                           |
|                                      |                                                                       | Al 0 and Al 1 can be switched over:                                                                                                                                             |
|                                      |                                                                       | -~ 0 V 10 V or -10 V +10 V (typical power consumption: 0.1 mA, voltage $<$ 35 V)                                                                                                |
|                                      |                                                                       | $-~0$ mA 20 mA (120 $\Omega$ input resistance, voltage $<$ 10 V, current $<$ 80 mA)                                                                                             |
|                                      |                                                                       | • If AI 0 and AI 1 are configured as supplementary digital inputs: Voltage $<$ 35 V, low $<$ 1.6 V, high $>$ 4.0 V, 13 ms $\pm$ 1 ms response time for debounce time p0724 = 0. |
|                                      |                                                                       | Al 2 switchable:                                                                                                                                                                |
|                                      |                                                                       | <ul><li>0 mA 20 mA (voltage &lt; 10 V, current &lt; 80 mA)</li></ul>                                                                                                            |
|                                      |                                                                       | <ul> <li>Temperature sensor Pt1000/LG-Ni1000/DIN-Ni1000 (characteristics:<br/>See below)</li> </ul>                                                                             |
|                                      |                                                                       | <ul> <li>Al 3:<br/>Temperature sensor Pt1000/LG-Ni1000/DIN-Ni1000 (characteristics: See<br/>below)</li> </ul>                                                                   |
| Digital outputs /relay out-          | 3 (DO 0 DO 2)                                                         | • DO 0, DO 2: 30 VDC 5 A / 250 VAC, 2 A <sup>1)</sup>                                                                                                                           |
| puts                                 |                                                                       | • DO 1: 30 VDC 0.5 A                                                                                                                                                            |
|                                      |                                                                       | 2 ms update time                                                                                                                                                                |
| Analog outputs                       | 2 (AO 0 AO 1)                                                         | • 0 V 10 V or 0 mA 20 mA                                                                                                                                                        |
|                                      |                                                                       | 16-bit resolution                                                                                                                                                               |
|                                      |                                                                       | 4 ms update time                                                                                                                                                                |
|                                      |                                                                       | • <400 mV offset at 0 %                                                                                                                                                         |
| Temperature sensor                   | PTC                                                                   | • Short-circuit monitoring $< 20 \Omega$                                                                                                                                        |
|                                      |                                                                       | • Overtemperature 1650 $\Omega$                                                                                                                                                 |
|                                      | KTY84                                                                 | • Short-circuit monitoring $< 50 \Omega$                                                                                                                                        |
|                                      |                                                                       | • Wire-break: > 2120 Ω                                                                                                                                                          |
|                                      | Pt1000                                                                | • Short-circuit monitoring $< 603 \Omega$                                                                                                                                       |
|                                      |                                                                       | • Wire-break > 2120 Ω                                                                                                                                                           |
|                                      | Temperature switch                                                    | with NC contact                                                                                                                                                                 |
| USB interface                        | Mini-B                                                                |                                                                                                                                                                                 |
| Dimensions (W $\times$ H $\times$ D) | 73 mm × 199 mm<br>× 50 mm                                             | Depth when mounting on the Power Module                                                                                                                                         |
| Memory card (optional)               | Slot for SD or MMC memory cards.  Recommended memory cards (Page 220) |                                                                                                                                                                                 |
| Weight                               | 0.61 kg                                                               |                                                                                                                                                                                 |

| Property              | Data / explanatio                                                                 | n                                                                             |
|-----------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Operating temperature | -10 °C 60 °C CU230P-2 HVAC, CU230P-2 DP and CU230P-2 BT without inserted Operanel |                                                                               |
|                       | -10 °C 55 °C                                                                      | CU230P-2 PN without inserted Operator Panel                                   |
|                       | 0 °C 50 °C                                                                        | With inserted BOP-2 or IOP-2 operator panel                                   |
|                       | Observe any possi<br>Module.                                                      | ble restrictions regarding the operating temperature as a result of the Power |
| Storage temperature   | - 40 °C 70 °C                                                                     |                                                                               |
| Relative humidity     | < 95 %                                                                            | Condensation is not permissible.                                              |

<sup>1)</sup> The following applies to systems compliant with UL: A maximum of 3 A 30 VDC or 2 A 250 VAC may be connected via terminals 18 / 20 (DO 0 NC) and 23 / 25 (DO 2 NC).

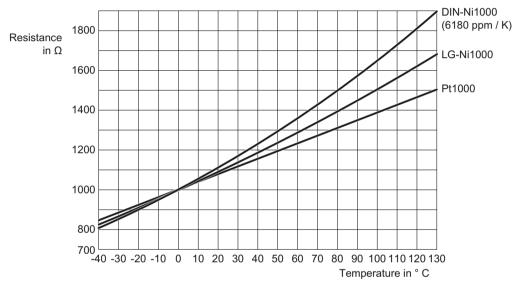



Figure 11-1 Temperature sensor characteristic of analog inputs AI 2 and AI 3

11.2 Overload capability of the converter

## 11.2 Overload capability of the converter

Overload capability is the property of the converter to temporarily supply a current that is higher than the rated current to accelerate a load. Two typical load cycles are defined to clearly demonstrate the overload capability: "Low Overload" and "High Overload"

#### **Definitions**

#### **Base load**

Constant load between the accelerating phases of the drive

#### Low Overload

# LO base load input current Permissible input current for a "Low Overload" load cycle

- LO base load output current Permissible output current for a "Low Overload" load cycle
- LO base load power
   Rated power based on the LO base load output current

## **High Overload**

- HO base load input current
   Permissible input current for a "High Overload" load cycle
- HO base load output current
   Permissible output current for a "High Overload" load cycle
- HO base load power Rated power based on the HO base load output current

If not specified otherwise, the power and current data in the technical data always refer to a load cycle according to Low Overload.

We recommend using the "SIZER" engineering software to select the converter.

You can find additional information about SIZER on the Internet:

Download SIZER (http://support.automation.siemens.com/WW/view/en/10804987/130000)

#### Load cycles and typical applications:

#### "Low Overload" load cycle

The "Low Overload" load cycle assumes a uniform base load with low requirements placed on brief accelerating phases. Typical applications when designing according to "Low Overload" include:

- Pumps, fans and compressors
- Wet or dry blasting technology
- Mills, mixers, kneaders, crushers, agitators
- Basic spindles
- Rotary furnaces
- Extruders

## "High Overload" load cycle

The "High Overload" load cycle permits dynamic accelerating phases at a reduced base load. Typical applications when designing according to "High Overload" include:

- Horizontal and vertical conveyor technology (conveyor belts, roller conveyors, chain conveyors)
- Centrifuges
- Escalators/moving stairways
- Lifters/Lowerers
- Elevators
- · Gantry cranes
- Cable railways
- Storage and retrieval machines

# 11.3 Technical data, PM230 Power Module

## Typical converter load cycles

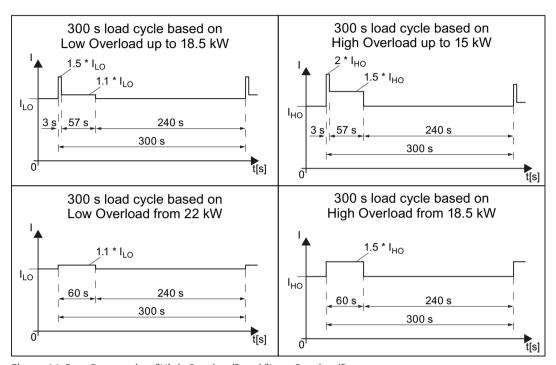



Figure 11-2 Duty cycles, "High Overload" and "Low Overload"

## 11.3.1 Ambient conditions

| Property                               | Version                                                                                |
|----------------------------------------|----------------------------------------------------------------------------------------|
| Ambient conditions for tran            | sport in the transport packaging                                                       |
| Climatic ambient conditions            | - 40 °C + 70 °C, according to Class 2K4 to EN 60721-3-2 maximum humidity 95 % at 40 °C |
| Mechanical ambient condi-              | FSA FSC: Shock and vibration permissible according to 1M2 to EN 60721-3-2              |
| tions                                  | FSD FSF: Shock and vibration permissible according to 2M3 to EN 60721-3-2              |
| Protection against chemical substances | Protected according to Class 2C2 to EN 60721-3-2                                       |
| Biological ambient conditions          | Suitable according to Class 2B1 to EN 60721-3-2                                        |
| Ambient conditions for long            | g-term storage in the product packaging                                                |
| Climatic ambient conditions            | - 25 °C + 55 °C, according to Class 1K3 to EN 60721-3-1                                |
| Protection against chemical substances | Protected according to Class 1C2 to EN 60721-3-1                                       |
| Biological ambient conditions          | Suitable according to Class 1B1 according to EN 60721-3-1                              |

# 11.3 Technical data, PM230 Power Module

| Property                               | Version                                                                                                                              |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
| Ambient conditions in oper             | ation                                                                                                                                |  |
| Installation altitude                  | Up to 1000 m above sea level without derating, > 1000 m Restrictions for special ambient conditions (Page 562)                       |  |
| Climatic ambient                       | Temperature range without derating <sup>2)</sup>                                                                                     |  |
| conditions 1)                          | <ul> <li>LO base load power: 0 °C40 °C</li> </ul>                                                                                    |  |
|                                        | – HO base load power: 0 °C50 °C                                                                                                      |  |
|                                        | For higher temperatures. Restrictions for special ambient conditions (Page 562)                                                      |  |
|                                        | Relative humidity: 5 95%, condensation not permitted                                                                                 |  |
|                                        | • Oil mist, salt mist, ice formation, condensation, dripping water, spraying water, splashing water and water jets are not permitted |  |
| Mechanical ambient condi-              | FSA FSF: Vibration levels permissible according to Class 3M1 to EN 60721-3-3                                                         |  |
| tions                                  | FSA FSC: Shock, permissible according to Class 3M2 to EN 60721-3-3                                                                   |  |
|                                        | FSD FSF: Shock permissible according to Class 3M1 to EN 60721-3-3                                                                    |  |
| Protection against chemical substances | Protected according to 3C2 to EN 60721-3-3                                                                                           |  |
| Biological ambient conditions          | Suitable according to 3B1 to EN 60721-3-3                                                                                            |  |
| Pollution                              | Suitable for environments with degree of pollution 2 according to EN 61800-5-1                                                       |  |
| Cooling                                | Forced air cooling AF, according to EN 60146                                                                                         |  |
| Cooling air                            | clean and dry air                                                                                                                    |  |

<sup>1)</sup> Increased ruggedness regarding temperature range and relative humidity; therefore better than Class 3K3 to EN 60721-3-3

<sup>2)</sup> Observe the permissible ambient temperatures for the Control Unit and possibly the operator panel (IOP-2 or BOP-2).

# 11.3.2 General technical data, PM230, IP55

| Property                          | Version                                                                                                                                                                         |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Line voltage                      | 380 480 V 3 AC ± 10%                                                                                                                                                            |
| Output voltage                    | 0 V 3 AC input voltage x 0.95 (max.)                                                                                                                                            |
| Input frequency                   | 50 Hz 60 Hz, ± 3 Hz                                                                                                                                                             |
| Output frequency                  | 0 Hz 550 Hz, depending on the control mode                                                                                                                                      |
| Power factor λ                    | 0.9                                                                                                                                                                             |
| Line impedance                    | $Uk \le 1\%$ , no line reactor permitted                                                                                                                                        |
| Inrush current                    | Low LO base load input current                                                                                                                                                  |
| Pulse frequency (factory setting) | 4 kHz The pulse frequency can be increased in 2 kHz steps up to 16 kHz (up to 8 kHz for 75 kW and 90 kW). An increase in the pulse frequency results in a lower output current. |
| Braking methods                   | DC braking                                                                                                                                                                      |
| Degree of protection IP55         | To comply with this degree of protection requires the following:  Operation with operator panel or dummy cover                                                                  |
|                                   | <ul> <li>Connections for control cables are made properly using EMC cable glands.</li> <li>Restrictions for special ambient conditions (Page 562)</li> </ul>                    |
| Rated short-circuit current       | When fused using a type J or 3NE1 fuse, rated voltage 480 VAC with the rated current of the specific converter.                                                                 |
|                                   | FSA FSC: 40 kA<br>FSD FSF: 65 kA                                                                                                                                                |

# 11.3.3 Specific technical specifications PM230, IP55

Table 11-1 PM230, IP55, Frame Size A, 3-ph. AC 380 V ... 480 V

| Article No. with filter, C2<br>Article No. with filter, C1 | 6SL3223-0DE13-7AG1<br>6SL3223-0DE13-7BG1 | 6SL3223-0DE15-5AG1<br>6SL3223-0DE15-5BG1 | 6SL3223-0DE17-5AG1<br>6SL3223-0DE17-5BG1 |
|------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| LO base load power                                         | 0.37 kW                                  | 0.55 kW                                  | 0.75 kW                                  |
| LO base load input current                                 | 1.3 A                                    | 1.8 A                                    | 2.3 A                                    |
| LO base load output current                                | 1.3 A                                    | 1.7 A                                    | 2.2 A                                    |
| HO base load power                                         | 0.25 kW                                  | 0.37 kW                                  | 0.55 kW                                  |
| HO base load input current                                 | 0.9 A                                    | 1.3 A                                    | 1.8 A                                    |
| HO base load output current                                | 0.9 A                                    | 1.3 A                                    | 1.7 A                                    |
| Fuse according to IEC<br>Fuse according to UL, class J     | 3NA3803<br>10 A                          | 3NA3803<br>10 A                          | 3NA3803<br>10 A                          |
| Power loss                                                 | 0.06 kW                                  | 0.06 kW                                  | 0.06 kW                                  |
| Required cooling air flow                                  | 7 l/s                                    | 7 l/s                                    | 7 l/s                                    |
| Weight                                                     | 4.3 kg                                   | 4.3 kg                                   | 4.3 kg                                   |

Table 11-2 PM230, IP55, Frame Size A, 3-ph. AC 380 V ... 480 V

| Article No. with filter, C2<br>Article No. with filter, C1 | 6SL3223-0DE21-1AG1<br>6SL3223-0DE21-1BG1 | 6SL3223-0DE21-5AG1<br>6SL3223-0DE21-5BG1 | 6SL3223-0DE22-2AG1<br>6SL3223-0DE22-2BG1 |
|------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| LO base load power                                         | 1.1 kW                                   | 1.5 kW                                   | 2.2 kW                                   |
| LO base load input current                                 | 3.2 A                                    | 4.2 A                                    | 6.1 A                                    |
| LO base load output current                                | 3.1 A                                    | 4.1 A                                    | 5.9 A                                    |
| HO base load power                                         | 0.75 kW                                  | 1.1 kW                                   | 1.5 kW                                   |
| HO base load input current                                 | 2.3 A                                    | 3.2 A                                    | 4.2 A                                    |
| HO base load output current                                | 2.2 A                                    | 3.1 A                                    | 4.1 A                                    |
| Fuse according to IEC<br>Fuse according to UL, class J     | 3NA3803<br>10 A                          | 3NA3803<br>10 A                          | 3NA3803<br>10 A                          |
| Power loss                                                 | 0.07 kW                                  | 0.08 kW                                  | 0.1 kW                                   |
| Required cooling air flow                                  | 7 l/s                                    | 7 l/s                                    | 7 l/s                                    |
| Weight                                                     | 4.3 kg                                   | 4.3 kg                                   | 4.3 kg                                   |

Table 11-3 PM230, IP55, Frame Size A, 3-ph. AC 380 V ... 480 V

| Article No. with filter, C2<br>Article No. with filter, C1 | 6SL3223-0DE23-0AG1<br>6SL3223-0DE23-0BG1 |  |
|------------------------------------------------------------|------------------------------------------|--|
| LO base load power                                         | 3 kW                                     |  |
| LO base load input current                                 | 8.0 A                                    |  |
| LO base load output current                                | 7.7 A                                    |  |
| HO base load power                                         | 2.2 kW                                   |  |
| HO base load input current                                 | 6.1 A                                    |  |
| HO base load output current                                | 5.9 A                                    |  |

| Article No. with filter, C2<br>Article No. with filter, C1 | 6SL3223-0DE23-0AG1<br>6SL3223-0DE23-0BG1 |  |
|------------------------------------------------------------|------------------------------------------|--|
| Fuse according to IEC<br>Fuse according to UL, class J     | 3NA3803<br>10 A                          |  |
| Power loss                                                 | 0.12 kW                                  |  |
| Required cooling air flow                                  | 7 l/s                                    |  |
| Weight                                                     | 4.3 kg                                   |  |

Table 11-4 PM230, IP55, Frame Size B, 3-ph. AC 380 V ... 480 V

| Article No. with filter, C2<br>Article No. with filter, C1 | 6SL3223-0DE24-0AG1<br>6SL3223-0DE24-0BG1 | 6SL3223-0DE25-5AG1<br>6SL3223-0DE25-5BG1 | 6SL3223-0DE27-5AG1<br>6SL3223-0DE27-5BG1 |
|------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| LO base load power                                         | 4 kW                                     | 5.5 kW                                   | 7.5 kW                                   |
| LO base load input current                                 | 10.5 A                                   | 13.6 A                                   | 18.6 A                                   |
| LO base load output current                                | 10.2 A                                   | 13.2 A                                   | 18 A                                     |
| HO base load power                                         | 3 kW                                     | 4 kW                                     | 5.5 kW                                   |
| HO base load input current                                 | 8.0 A                                    | 10.5 A                                   | 13.6 A                                   |
| HO base load output current                                | 7.7 A                                    | 10.2 A                                   | 13.2 A                                   |
| Fuse according to IEC<br>Fuse according to UL, class J     | 3NA3805<br>16 A                          | 3NA3807<br>25 A                          | 3NA3810<br>35 A                          |
| Power loss                                                 | 0.14 kW                                  | 0.18 kW                                  | 0.24 kW                                  |
| Required cooling air flow                                  | 9 l/s                                    | 9 l/s                                    | 9 l/s                                    |
| Weight                                                     | 6.3 kg                                   | 6.3 kg                                   | 6.3 kg                                   |

Table 11-5  $\,$  PM230, IP55, Frame Size C, 3-ph. AC 380 V ... 480 V

| Article No. with filter, C2<br>Article No. with filter, C1 | 6SL3223-0DE31-1AG1<br>6SL3223-0DE31-1BG1 | 6SL3223-0DE31-5AG1<br>6SL3223-0DE31-5BG1 | 6SL3223-0DE31-8AG1<br> |
|------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------|
| LO base load power                                         | 11 kW                                    | 15 kW                                    | 18.5 kW                |
| LO base load input current                                 | 26.9 A                                   | 33.1 A                                   | 39.2 A                 |
| LO base load output current                                | 26 A                                     | 32 A                                     | 38 A                   |
| HO base load power                                         | 7.5 kW                                   | 11 kW                                    | 15 kW                  |
| HO base load input current                                 | 18.6 A                                   | 26.9 A                                   | 33.1 A                 |
| HO base load output current                                | 18 A                                     | 26 A                                     | 32 A                   |
| Fuse according to IEC<br>Fuse according to UL, class J     | 3NA3814<br>40 A                          | 3NA3820<br>50 A                          | 3NA3820<br>50 A        |
| Power loss                                                 | 0.32 kW                                  | 0.39 kW                                  | 0.46 kW                |
| Required cooling air flow                                  | 20 l/s                                   | 20 l/s                                   | 20 l/s                 |
| Weight                                                     | 9.5 kg                                   | 9.5 kg                                   | 9.5 kg                 |

## 11.3 Technical data, PM230 Power Module

Table 11-6 PM230, IP55, Frame Size D, 3-ph. AC 380 V ... 480 V

| Article No. with filter, C2<br>Article No. with filter, C1 | <br>6SL3223-0DE31-8BA0 | 6SL3223-0DE32-2AA0<br>6SL3223-0DE32-2BA0 | 6SL3223-0DE33-0AA0<br>6SL3223-0DE33-0BA0 |
|------------------------------------------------------------|------------------------|------------------------------------------|------------------------------------------|
| LO base load power                                         | 18.5 kW                | 22 kW                                    | 30 kW                                    |
| LO base load input current                                 | 39.2 A                 | 42 A                                     | 56 A                                     |
| LO base load output current                                | 38 A                   | 45 A                                     | 60 A                                     |
| HO base load power                                         | 15 kW                  | 18.5 kW                                  | 22 kW                                    |
| HO base load input current                                 | 33.1 A                 | 36 A                                     | 42 A                                     |
| HO base load output current                                | 32 A                   | 38 A                                     | 45 A                                     |
| Fuse according to IEC<br>Fuse according to UL, class J     | 3NA3820<br>50 A        | 3NA3822<br>63 A                          | 3NA3824<br>80 A                          |
| Power loss                                                 | 0.46 kW                | 0.52 kW                                  | 0.68 kW                                  |
| Required cooling air flow                                  | 20 l/s                 | 39 l/s                                   | 39 l/s                                   |
| Weight                                                     | 31 kg                  | 31 kg                                    | 31 kg                                    |

Table 11-7 PM230, IP55, Frame Size E, 3-ph. AC 380 V ... 480 V

| Article No. with filter, C2<br>Article No. with filter, C1 | 6SL3223-0DE33-7AA0<br>6SL3223-0DE33-7BA0     | 6SL3223-0DE34-5AA0<br>6SL3223-0DE34-5BA0     |  |
|------------------------------------------------------------|----------------------------------------------|----------------------------------------------|--|
| LO base load power                                         | 37 kW                                        | 45 kW                                        |  |
| LO base load input current                                 | 70 A                                         | 84 A                                         |  |
| LO base load output current                                | 75 A                                         | 90 A                                         |  |
| HO base load power                                         | 30 kW                                        | 37 kW                                        |  |
| HO base load input current                                 | 56 A                                         | 70 A                                         |  |
| HO base load output current                                | 60 A                                         | 75 A                                         |  |
| Fuse according to IEC Fuse according to UL, class J        | 3NA3830<br>100 A                             | 3NA3832<br>125 A                             |  |
| Power loss                                                 | 0.99 kW                                      | 1.2 kW                                       |  |
| Required cooling air flow                                  | 39 l/s                                       | 39 l/s                                       |  |
| Weight                                                     | 37 kg with filter C1<br>38 kg with filter C2 | 37 kg with filter C1<br>38 kg with filter C2 |  |

Table 11-8 PM230, IP55, Frame size F, 3-ph. AC 380 V ... 480 V

| Article No. with filter, C2<br>Article No. with filter, C1 | 6SL3223-0DE35-5AA0<br>6SL3223-0DE35-5BA0 | 6SL3223-0DE37-5AA0<br>6SL3223-0DE37-5BA0 | 6SL3223-0DE38-8AA0<br>6SL3223-0DE38-8BA0 |
|------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| LO base load power                                         | 55 kW                                    | 75 kW                                    | 90 kW                                    |
| LO base load input current                                 | 102 A                                    | 135 A                                    | 166 A                                    |
| LO base load output current                                | 110 A                                    | 145 A                                    | 178 A                                    |
| HO base load power                                         | 45 kW                                    | 55 kW                                    | 75 kW                                    |
| HO base load input current                                 | 84 A                                     | 102 A                                    | 135 A                                    |
| HO base load output current                                | 90 A                                     | 110 A                                    | 145 A                                    |
|                                                            |                                          |                                          |                                          |

## 11.3 Technical data, PM230 Power Module

| Article No. with filter, C2<br>Article No. with filter, C1 | 6SL3223-0DE35-5AA0<br>6SL3223-0DE35-5BA0 | 6SL3223-0DE37-5AA0<br>6SL3223-0DE37-5BA0 | 6SL3223-0DE38-8AA0<br>6SL3223-0DE38-8BA0 |
|------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| Fuse according to IEC<br>Fuse according to UL, class J     | 3NA3836<br>160 A                         | 3NA3140<br>200 A                         | 3NA3144<br>250 A                         |
| Power loss                                                 | 1.4 kW                                   | 1.9 kW                                   | 2.3 kW                                   |
| Required cooling air flow                                  | 117 l/s                                  | 117 l/s                                  | 117 l/s                                  |
| Weight                                                     | 70 kg                                    | 70 kg                                    | 70 kg                                    |

# 11.3.4 General technical data, PM230

| Property                          | Version                                                                                                                                                                            |  |  |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Line voltage                      | 380 480 V 3 AC ± 10%                                                                                                                                                               |  |  |
| Output voltage                    | 3-phase 0 VAC input voltage x 0.95 (max.)                                                                                                                                          |  |  |
| Input frequency                   | 50 Hz 60 Hz, ± 3 Hz                                                                                                                                                                |  |  |
| Output frequency                  | 0 Hz 550 Hz, depending on the control mode                                                                                                                                         |  |  |
| Power factor λ                    | 0.9                                                                                                                                                                                |  |  |
| Line impedance                    | Uk ≤ 1%, line reactor not permissible                                                                                                                                              |  |  |
| Inrush current                    | < LO base load input current                                                                                                                                                       |  |  |
| Pulse frequency (factory setting) | 4 kHz<br>The pulse frequency can be increased in 2 kHz steps up to 16 kHz (up to 8 kHz for 55 kW and 75 kW). An increase in the pulse frequency results in a lower output current. |  |  |
| Electromagnetic compatibility     | Devices with filters in compliance with EN 61800-3: 2004 are suitable for Category C2 environments.                                                                                |  |  |
| Braking methods                   | DC braking                                                                                                                                                                         |  |  |
| Degree of protection              | IP20 built-in units IP20 when mounted in a control cabinet PT devices IP54 on the control cabinet wall                                                                             |  |  |
| Operating temperature at          | LO base load power without derating 0° C +40° C                                                                                                                                    |  |  |
|                                   | HO base load power without derating 0° C +50° C                                                                                                                                    |  |  |
|                                   | LO/HO base load power with derating: Up to 60° C                                                                                                                                   |  |  |
|                                   | Restrictions for special ambient conditions (Page 562)                                                                                                                             |  |  |
| Storage temperature               | -40° C +70° C                                                                                                                                                                      |  |  |
| Relative humidity                 | < 95% - condensation not permissible                                                                                                                                               |  |  |
| Pollution                         | Protected according to pollution degree 2 according to EN 61800-5-1: 2007                                                                                                          |  |  |
| Ambient conditions                | Protected against damaging chemical substances according to environmental class 3C2 according to EN 60721-3-3: 1995                                                                |  |  |
| Shock and vibration               | <ul> <li>Long-term storage in the transport packaging according to Class 1M2 according to<br/>EN 60721-3-1: 1997</li> </ul>                                                        |  |  |
|                                   | <ul> <li>Transport in the transport packaging according to Class 2M3 according to EN 60721-3-2:<br/>1997</li> </ul>                                                                |  |  |
|                                   | Vibration during operation according to Class 3M2 according to EN 60721-3-3: 1995                                                                                                  |  |  |
| Installation altitude             | without derating: up to 1000 m above ing: Restrictions for special ambient conditions (Page 562) with derating: up to 4000 m above sea level                                       |  |  |
| Permissible short-circuit current | Frame size D F: 65 kA <sup>1)</sup>                                                                                                                                                |  |  |
| Overvoltage category              | Supply circuits: Overvoltage category III Non-supply circuits: Overvoltage category II                                                                                             |  |  |
| Standards                         | UL <sup>1),2)</sup> , CE, C-tick<br>The drive only satisfies the UL requirements when UL-certified fuses are used.                                                                 |  |  |

<sup>1)</sup> If fuse-protected with a listed Class J or 3NE1 fuse, rated voltage 600 VAC with the rated current of the specific converter.

<sup>2)</sup> UL available soon for frame sizes D ... F

## 11.3.5 Detailed technical data, PM230

Table 11-9 PM230, IP20, frame size A, 3 AC 380 V ... 480 V

| Article number without filter<br>Article number with filter | 6SL3210-1NE11-3UG1<br>6SL3210-1NE11-3AG1 | 6SL3210-1NE11-7UG1<br>6SL3210-1NE11-7AG1 | 6SL3210-1NE12-2UG1<br>6SL3210-1NE12-2AG1 |
|-------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| LO base load power                                          | 0.37 kW                                  | 0.55 kW                                  | 0.75 kW                                  |
| LO base load input current                                  | 1.3 A                                    | 1.8 A                                    | 2.3 A                                    |
| LO base load output current                                 | 1.3 A                                    | 1.7 A                                    | 2.2 A                                    |
| HO base load power                                          | 0.25 kW                                  | 0.37 kW                                  | 0.55 kW                                  |
| HO base load input current                                  | 0.9 A                                    | 1.3 A                                    | 1.8 A                                    |
| HO base load output current                                 | 0.9 A                                    | 1.3 A                                    | 1.7 A                                    |
| Fuse according to IEC / UL<br>Fuse according to UL, Class J | 3NE1813-0<br>2 A                         | 3NE1813-0<br>4 A                         | 3NE1813-0<br>4 A                         |
| Circuit breaker 3RV2711-1KD10                               | 12.5 A                                   | 12.5 A                                   | 12.5 A                                   |
| Power loss                                                  | 0.04 kW                                  | 0.04 kW                                  | 0.05 kW                                  |
| Required cooling air flow                                   | 1.5 l/s                                  | 1.5 l/s                                  | 4.5 l/s                                  |
| Weight without filter                                       | 1.4 kg                                   | 1.4 kg                                   | 1.4 kg                                   |
| Weight with filter                                          | 1.6 kg                                   | 1.6 kg                                   | 1.6 kg                                   |

Table 11-10 PM230, IP20, frame size A, 3 AC 380 V ... 480 V

| Article number without filter<br>Article number with filter | 6SL3210-1NE13-1UG1<br>6SL3210-1NE13-1AG1 | 6SL3210-1NE14-1UG1<br>6SL3210-1NE14-1AG1 | 6SL3210-1NE15-8UG1<br>6SL3210-1NE15-8AG1 |
|-------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| LO base load power                                          | 1.1 kW                                   | 1.5 kW                                   | 2.2 kW                                   |
| LO base load input current                                  | 3.2 A                                    | 4.2 A                                    | 6.1 A                                    |
| LO base load output current                                 | 3.1 A                                    | 4.1 A                                    | 5.9 A                                    |
| HO base load power                                          | 0.75 kW                                  | 1.1 kW                                   | 1.5 kW                                   |
| HO base load input current                                  | 2.3 A                                    | 3.2 A                                    | 4.2 A                                    |
| HO base load output current                                 | 2.2 A                                    | 3.1 A                                    | 4.1 A                                    |
| Fuse according to IEC / UL<br>Fuse according to UL, Class J | 3NE1813-0<br>6 A                         | 3NE1813-0<br>6 A                         | 3NE1813-0<br>10 A                        |
| Power loss                                                  | 0.06 kW                                  | 0.07 kW                                  | 0.08 kW                                  |
| Circuit breaker N3RV2711-1KD10                              | 12.5 A                                   | 12.5 A                                   | 12.5 A                                   |
| Required cooling air flow                                   | 4.5 l/s                                  | 4.5 l/s                                  | 4.5 l/s                                  |
| Weight without filter                                       | 1.4 kg                                   | 1.4 kg                                   | 1.4 kg                                   |
| Weight with filter                                          | 1.6 kg                                   | 1.6 kg                                   | 1.6 kg                                   |

Table 11-11 PM230, IP20, frame size A, 3 AC 380 V ... 480 V

| Article number without filter<br>Article number with filter | 6SL3210-1NE17-7UG1<br>6SL3210-1NE17-7AG1 |  |
|-------------------------------------------------------------|------------------------------------------|--|
| LO base load power                                          | 3 kW                                     |  |
| LO base load input current                                  | 8.0 A                                    |  |

## 11.3 Technical data, PM230 Power Module

| Article number without filter<br>Article number with filter | 6SL3210-1NE17-7UG1<br>6SL3210-1NE17-7AG1 |  |
|-------------------------------------------------------------|------------------------------------------|--|
| LO base load output current                                 | 7.7 A                                    |  |
| HO base load power                                          | 2.2 kW                                   |  |
| HO base load input current                                  | 6.1 A                                    |  |
| HO base load output current                                 | 5.9 A                                    |  |
| Fuse according to IEC / UL Fuse according to UL, Class J    | 3NE1813-0<br>10 A                        |  |
| Circuit breaker N3RV2711-1KD10                              | 12.5 A                                   |  |
| Power loss                                                  | 0.11 kW                                  |  |
| Required cooling air flow                                   | 4.5 l/s                                  |  |
| Weight without filter                                       | 1.4 kg                                   |  |
| Weight with filter                                          | 1.6 kg                                   |  |

Table 11-12 PM230, PT, frame size A, 3 AC 380 V ... 480 V

| Article number without filter Article number with filter    | 6SL3211-1NE17-7UG1<br>6SL3211-1NE17-7AG1 |  |
|-------------------------------------------------------------|------------------------------------------|--|
| LO base load power                                          | 3 kW                                     |  |
| LO base load input current                                  | 8.0 A                                    |  |
| LO base load output current                                 | 7.7 A                                    |  |
| HO base load power                                          | 2.2 kW                                   |  |
| HO base load input current                                  | 6.1 A                                    |  |
| HO base load output current                                 | 5.9 A                                    |  |
| Fuse according to IEC / UL<br>Fuse according to UL, Class J | 3NE1813-0<br>10 A                        |  |
| Power loss                                                  | 0.11 kW                                  |  |
| Required cooling air flow                                   | 4.5 l/s                                  |  |
| Weight without filter                                       | 1.7 kg                                   |  |
| Weight with filter                                          | 1.9 kg                                   |  |

Table 11-13 PM230, IP20, frame size B, 3-phase 380 ... 480 VAC

| Article number without filter<br>Article number with filter | 6SL3210-1NE21-0UG1<br>6SL3210-1NE21-0AG1 | 6SL3210-1NE21-3UG1<br>6SL3210-1NE21-3AG1 | 6SL3210-1NE21-8UG1<br>6SL3210-1NE21-8AG1 |
|-------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| LO base load power                                          | 4 kW                                     | 5.5 kW                                   | 7.5 kW                                   |
| LO base load input current                                  | 10.5 A                                   | 13.6 A                                   | 18.6 A                                   |
| LO base load output current                                 | 10.2 A                                   | 13.2 A                                   | 18 A                                     |
| HO base load power                                          | 3 kW                                     | 4 kW                                     | 5.5 kW                                   |
| HO base load input current                                  | 8.0 A                                    | 10.5 A                                   | 13.6 A                                   |
| HO base load output current                                 | 7.7 A                                    | 10.2 A                                   | 13.2 A                                   |
| Fuse according to IEC / UL Fuse according to UL, Class J    | 3NE1813-0<br>15 A                        | 3NE1814-0<br>20 A                        | 3NE1815-0<br>25 A                        |

| Article number without filter Article number with filter | 6SL3210-1NE21-0UG1<br>6SL3210-1NE21-0AG1 | 6SL3210-1NE21-3UG1<br>6SL3210-1NE21-3AG1 | 6SL3210-1NE21-8UG1<br>6SL3210-1NE21-8AG1 |
|----------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| Power loss                                               | 0.12 kW                                  | 0.15 kW                                  | 0.22 kW                                  |
| Required cooling air flow                                | 9.2 l/s                                  | 9.2 l/s                                  | 9.2 l/s                                  |
| Weight without filter                                    | 2.8 kg                                   | 2.8 kg                                   | 2.8 kg                                   |
| Weight with filter                                       | 3 kg                                     | 3 kg                                     | 3 kg                                     |

Table 11-14 PM230, PT, frame size B, 3 AC 380 V ... 480 V

| Article number without filter<br>Article number with filter | 6SL3211-1NE21-8UG1<br>6SL3211-1NE21-8AG1 |   |
|-------------------------------------------------------------|------------------------------------------|---|
| LO base load power                                          | 7.5 kW                                   | _ |
| LO base load input current                                  | 18.6 A                                   |   |
| LO base load output current                                 | 18 A                                     |   |
| HO base load power                                          | 5.5 kW                                   |   |
| HO base load input current                                  | 13.6 A                                   |   |
| HO base load output current                                 | 13.2 A                                   |   |
| Fuse according to IEC / UL Fuse according to UL, Class J    | 3NE1815-0<br>25 A                        |   |
| Power loss                                                  | 0.22 kW                                  |   |
| Required cooling air flow                                   | 9.2 l/s                                  |   |
| Weight without filter                                       | 3.4 kg                                   |   |
| Weight with filter                                          | 3.6 kg                                   |   |

Table 11-15 PM230, IP20, frame size C, 3 AC 380 V ... 480 V

| Article number without filter<br>Article number with filter | 6SL3210-1NE22-6UG1<br>6SL3210-1NE22-6AG1 | 6SL3210-1NE23-2UG1<br>6SL3210-1NE23-2AG1 | 6SL3210-1NE23-8UG1<br>6SL3210-1NE23-8AG1 |
|-------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| LO base load power                                          | 11 kW                                    | 15 kW                                    | 18.5 kW                                  |
| LO base load input current                                  | 26.9 A                                   | 33.1 A                                   | 39.2 A                                   |
| LO base load output current                                 | 26 A                                     | 32 A                                     | 38 A                                     |
| HO base load power                                          | 7.5 kW                                   | 11 kW                                    | 15 kW                                    |
| HO base load input current                                  | 18.6 A                                   | 26.9 A                                   | 33.1 A                                   |
| HO base load output current                                 | 18 A                                     | 26 A                                     | 32 A                                     |
| Fuse according to IEC / UL<br>Fuse according to UL, Class J | 3NE1803-0<br>35 A                        | 3NE1817-0<br>45 A                        | 3NE1817-0<br>50 A                        |
| Power loss                                                  | 0.3 kW                                   | 0.35 kW                                  | 0.45 kW                                  |
| Required cooling air flow                                   | 18.5 l/s                                 | 18.5 l/s                                 | 18.5 l/s                                 |
| Weight without filter                                       | 4.5 kg                                   | 4.5 kg                                   | 4.5 kg                                   |
| Weight with filter                                          | 5.1 kg                                   | 5.1 kg                                   | 5.1 kg                                   |

Table 11-16 PM230, PT, frame size C, 3 AC 380 V ... 480 V

| Article number without filter<br>Article number with filter | 6SL3211-1NE23-8UG1<br>6SL3211-1NE23-8AG1 |  |
|-------------------------------------------------------------|------------------------------------------|--|
| LO base load power                                          | 18.5 kW                                  |  |
| LO base load input current                                  | 39.2 A                                   |  |
| LO base load output current                                 | 38 A                                     |  |
| HO base load power                                          | 15 kW                                    |  |
| HO base load input current                                  | 33.1 A                                   |  |
| HO base load output current                                 | 32 A                                     |  |
| Fuse according to IEC / UL<br>Fuse according to UL, Class J | 3NE1817-0<br>50 A                        |  |
| Power loss                                                  | 0.45 kW                                  |  |
| Required cooling air flow                                   | 18.5 l/s                                 |  |
| Weight without filter                                       | 5.4 kg                                   |  |
| Weight with filter                                          | 6 kg                                     |  |

Table 11-17 PM230, IP20, frame size D, 3 AC 380 V ... 480 V

| Article number without filter<br>Article number with filter | 6SL3210-1NE24-5UL0<br>6SL3210-1NE24-5AL0 | 6SL3210-1NE26-0UL0<br>6SL3210-1NE26-0AL0 |  |
|-------------------------------------------------------------|------------------------------------------|------------------------------------------|--|
| LO base load power                                          | 22 kW                                    | 30 kW                                    |  |
| LO base load input current                                  | 42 A                                     | 56 A                                     |  |
| LO base load output current                                 | 45 A                                     | 60 A                                     |  |
| HO base load power                                          | 18.5 kW                                  | 22 kW                                    |  |
| HO base load input current                                  | 36 A                                     | 42 A                                     |  |
| HO base load output current                                 | 38 A                                     | 45 A                                     |  |
| Fuse according to IEC / UL                                  | 3NE1818-0                                | 3NE1820-0                                |  |
| Power loss                                                  | 0.52 kW                                  | 0.68 kW                                  |  |
| Required cooling air flow                                   | 80 l/s                                   | 80 l/s                                   |  |
| Weight without filter                                       | 11 kg                                    | 11 kg                                    |  |
| Weight with filter                                          | 14 kg                                    | 14 kg                                    |  |

Table 11-18 PM230, IP20, frame size E, 3 AC 380 V ... 480 V

| Article number without filter<br>Article number with filter | 6SL3210-1NE27-5UL0<br>6SL3210-1NE27-5AL0 | 6SL3210-1NE28-8UL0<br>6SL3210-1NE28-8AL0 |  |
|-------------------------------------------------------------|------------------------------------------|------------------------------------------|--|
| LO base load power                                          | 37 kW                                    | 45 kW                                    |  |
| LO base load input current                                  | 70 A                                     | 84 A                                     |  |
| LO base load output current                                 | 75 A                                     | 90 A                                     |  |
| HO base load power                                          | 30 kW                                    | 37 kW                                    |  |
| HO base load input current                                  | 56 A                                     | 70 A                                     |  |
| HO base load output current                                 | 60 A                                     | 75 A                                     |  |
| Fuse according to IEC / UL                                  | 3NE1021-0                                | 3NE1022-0                                |  |

| Article number without filter<br>Article number with filter | 6SL3210-1NE27-5UL0<br>6SL3210-1NE27-5AL0 | 6SL3210-1NE28-8UL0<br>6SL3210-1NE28-8AL0 |  |
|-------------------------------------------------------------|------------------------------------------|------------------------------------------|--|
| Power loss                                                  | 0.99 kW                                  | 1.2 kW                                   |  |
| Required cooling air flow                                   | 80 l/s                                   | 80 l/s                                   |  |
| Weight without filter                                       | 15 kg                                    | 15 kg                                    |  |
| Weight with filter                                          | 22 kg                                    | 22 kg                                    |  |

Table 11-19  $\,$  PM230, IP20, frame size F, 3 AC 380 V ... 480 V

| Article number without filter<br>Article number with filter | 6SL3210-1NE31-1UL0<br>6SL3210-1NE31-1AL0 | 6SL3210-1NE31-5UL0<br>6SL3210-1NE31-5AL0 |   |
|-------------------------------------------------------------|------------------------------------------|------------------------------------------|---|
| LO base load power                                          | 55 kW                                    | 75 kW                                    |   |
| LO base load input current                                  | 102 A                                    | 135 A                                    |   |
| LO base load output current                                 | 110 A                                    | 145 A                                    |   |
| HO base load power                                          | 45 kW                                    | 55 kW                                    |   |
| HO base load input current                                  | 84 A                                     | 102 A                                    |   |
| HO base load output current                                 | 90 A                                     | 110 A                                    |   |
| Fuse according to IEC / UL                                  | 3NE1224-0                                | 3NE1225-0                                |   |
| Power loss                                                  | 1.4 kW                                   | 1.9 kW                                   |   |
| Required cooling air flow                                   | 150 l/s                                  | 150 l/s                                  |   |
| Weight without filter                                       | 33 kg                                    | 33 kg                                    | _ |
| Weight with filter                                          | 48 kg                                    | 48 kg                                    |   |

# 11.3.6 Current reduction depending on pulse frequency

## Current derating depending on the pulse frequency

| LO base | Output ba | se-load cui | rent at a pu | ulse freque | ncy of           |                  |                    |                  |
|---------|-----------|-------------|--------------|-------------|------------------|------------------|--------------------|------------------|
| load    | 2 kHz     | 4 kHz       | 6 kHz        | 8 kHz       | 10 kHz           | 12 kHz           | 14 kHz             | 16 kHz           |
| kW      | Α         | Α           | Α            | Α           | Α                | Α                | Α                  | Α                |
| 0.37    |           | 1.3         | 1.11         | 0.91        | 0.78             | 0.65             | 0.59               | 0.52             |
| 0.55    |           | 1.7         | 1.45         | 1.19        | 1.02             | 0.85             | 0.77               | 0.68             |
| 0.75    |           | 2.2         | 1.87         | 1.54        | 1.32             | 1.10             | 0.99               | 0.88             |
| 1.1     |           | 3.1         | 2.64         | 2.17        | 1.86             | 1.55             | 1.4                | 1.24             |
| 1.5     |           | 4.1         | 3.49         | 2.87        | 2.46             | 2.05             | 1.85               | 1.64             |
| 2.2     |           | 5.9         | 5.02         | 4.13        | 3.54             | 2.95             | 2.66               | 2.36             |
| 3.0     |           | 7.7         | 6.55         | 5.39        | 4.62             | 3.85             | 3.47               | 3.08             |
| 4.0     |           | 10.2        | 8.67         | 7.14        | 6.12             | 5.1              | 4.59               | 4.08             |
| 5.5     |           | 13.2        | 11.22        | 9.24        | 7.92             | 6.6              | 5.94               | 5.28             |
| 7.5     |           | 18          | 15.3         | 12.6        | 10.8             | 9                | 8.1                | 7.2              |
| 11.0    |           | 26          | 22.1         | 18.2        | 15.6             | 13               | 11.7               | 10.4             |
| 15.0    |           | 32          | 27.2         | 22.4        | 19.2             | 16               | 14.4               | 12.8             |
| 18.5    |           | 38          | 32.3         | 26.6        | 22.8             | 19               | 17.1               | 15.2             |
| 22      |           | 45          | 38.25        | 31.5        | 27               | 22.5             | 20.25              | 18               |
| 30      |           | 60          | 51           | 42          | 36               | 30               | 27                 | 24               |
| 37      |           | 75          | 63.75        | 52.5        | 45               | 37.5             | 33.75              | 30               |
| 45      |           | 90          | 76.5         | 63          | 54               | 45               | 40.5               | 36               |
| 55      |           | 110         | 93.5         | 77          | 66 <sup>1)</sup> | 55 <sup>1)</sup> | 49.5 <sup>1)</sup> | 44 <sup>1)</sup> |
| 75      |           | 145         | 123.3        | 101.5       |                  |                  |                    |                  |
| 90      |           | 178         | 151.3        | 124.6       |                  |                  |                    |                  |

The permissible cable length to the motor also depends on the cable type and the selected pulse frequency.

<sup>1)</sup> Values apply to IP20 versions only.

### Protective devices for the Power Module

The fuses listed in the following tables are examples of suitable fuses.

Additional components for branch protection are available in the Internet:

Branch protection and short-circuit strength according to UL and IEC (<a href="https://support.industry.siemens.com/cs/ww/en/view/109479152">https://support.industry.siemens.com/cs/ww/en/view/109479152</a>)

## Typical converter load cycles

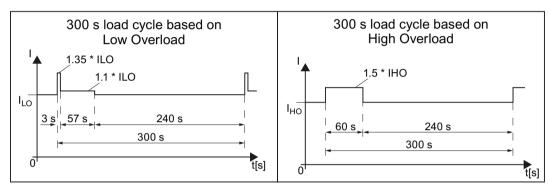



Figure 11-3 "Low Overload" and "High Overload" load cycles

### 11.4.1 Ambient conditions

| Property                               | Version                                                                                    |  |
|----------------------------------------|--------------------------------------------------------------------------------------------|--|
| Ambient conditions for tran            | sport in the transport packaging                                                           |  |
| Climatic ambient conditions            | - 40 °C + 70 °C, according to Class 2K4 to EN 60721-3-2:1997 maximum humidity 95% at 40 °C |  |
| Mechanical ambient conditions          | Shocks and vibrations permissible according to 2M3 to IEC 60721-3-2:1997                   |  |
| Protection against chemical substances | Protected according to Class 2C2 to IEC 60721-3-2:1997                                     |  |
| Biological environmental conditions    | Suitable according to Class 2B1 to IEC 60721-3-2:1997                                      |  |
| Ambient conditions for long            | g-term storage in the product packaging                                                    |  |
| Climatic ambient conditions            | - 25 °C + 55 °C, according to Class 1K3 to IEC 60721-3-1:1997                              |  |
| Protection against chemical substances | Protected according to Class 1C2 to IEC 60721-3-1:1997                                     |  |
| Biological environmental conditions    | Suitable according to Class 1B1 to IEC 60721-3-1:1997                                      |  |
| Ambient conditions in operation        |                                                                                            |  |

| Property                               | Version                                                                                                                                         |  |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Installation altitude                  | Up to 1000 m above sea level without derating, > 1000 m Restrictions for special ambient conditions (Page 562)                                  |  |
| Climatic ambient                       | Frame sizes FSD FSF temperature range <sup>2)</sup>                                                                                             |  |
| conditions 1)                          | - in operation acc. to LO: -20 °C +40 °C                                                                                                        |  |
|                                        | – in operation acc. to HO: $-20 ^{\circ}\text{C}$ $+50 ^{\circ}\text{C}$                                                                        |  |
|                                        | – for higher temperatures                                                                                                                       |  |
|                                        | Restrictions for special ambient conditions (Page 562)                                                                                          |  |
|                                        | Relative humidity: 5 95%, condensation not permitted                                                                                            |  |
|                                        | <ul> <li>Oil mist, ice formation, condensation, dripping water, spraying water, splashing water and<br/>water jets are not permitted</li> </ul> |  |
| Mechanical ambient condi-              | Vibration levels permissible according to Class 3M1 to EN 60721-3-3:2002                                                                        |  |
| tions                                  | <ul> <li>Shocks permissible according to Class 3M1 to EN 60721-3-3:2002</li> </ul>                                                              |  |
| Protection against chemical substances | Protected according to 3C2 to IEC 60721-3-3:2002                                                                                                |  |
| Biological environmental conditions    | Suitable according to 3B1 to IEC 60721-3-3: 2002                                                                                                |  |
| Pollution                              | Suitable for environments with degree of pollution 2 according to EN 61800-5-1                                                                  |  |
| Cooling                                | Forced air cooling AF, according to EN 60146                                                                                                    |  |
| Cooling air                            | Clean and dry air                                                                                                                               |  |

<sup>&</sup>lt;sup>1)</sup> Increased ruggedness regarding temperature range and relative humidity; therefore better than 3K3 according to IEC 60721-3-3: 2002

<sup>&</sup>lt;sup>2)</sup> Observe the permissible ambient temperatures for the Control Unit and possibly the operator panel (IOP-2 or BOP-2).

# 11.4.2 General technical data, 400 V converters

| Property                                                  | Version                                                                                                                                                                                                                        |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Line voltage                                              | 3 AC 380 V 480 V ± 10% (in operation -20% < 1 min)                                                                                                                                                                             |
| Line system configurations                                | Grounded TN/TT line systems or non-grounded IT line systems                                                                                                                                                                    |
| Line impedance                                            | Uk < 4%, line reactor is not required                                                                                                                                                                                          |
| Power factor λ                                            | > 0.9                                                                                                                                                                                                                          |
| Output voltage                                            | 3 AC 0 V 0.95 x input voltage (max.)                                                                                                                                                                                           |
| Input frequency                                           | 50 Hz 60 Hz, ± 3 Hz                                                                                                                                                                                                            |
| Output frequency                                          | 0 550 Hz, depending on the control mode                                                                                                                                                                                        |
| Inrush current                                            | < LO base load input current                                                                                                                                                                                                   |
| Overvoltage category according to EN 61800-5-1            | III for line supplies                                                                                                                                                                                                          |
| Pulse frequency                                           | Factory setting                                                                                                                                                                                                                |
|                                                           | <ul> <li>4 kHz for devices with an LO base load power &lt; 75 kW</li> </ul>                                                                                                                                                    |
|                                                           | • 2 kHz for devices with an LO base load power ≥ 75 kW                                                                                                                                                                         |
|                                                           | Can be adjusted in 2 kHz steps as follows:                                                                                                                                                                                     |
|                                                           | • 2 kHz 16 kHz for devices with an LO base load power < 55 kW                                                                                                                                                                  |
|                                                           | • 2 kHz 8 kHz for devices with an LO base load power $\geq$ 55 kW                                                                                                                                                              |
|                                                           | • 2 kHz 4 kHz for devices with an LO base load power $\geq$ 110 kW                                                                                                                                                             |
|                                                           | If you increase the pulse frequency, the converter reduces the maximum output current.                                                                                                                                         |
| Short-circuit current rating (SCCR) and branch protection | ≤ 100 kA rms  Branch protection and short-circuit strength according to UL and IEC ( <a href="https://support.industry.siemens.com/cs/ww/en/view/109479152">https://support.industry.siemens.com/cs/ww/en/view/109479152</a> ) |
| Braking methods                                           | DC braking, compound braking                                                                                                                                                                                                   |
| Degree of protection according to EN 60529                | IP20 Must be installed in a control cabinet                                                                                                                                                                                    |
| Protection class according to EN 61800-5-1                | The converters are devices with protection class I                                                                                                                                                                             |
| Touch protection according to EN 50274                    | DGUV regulation 3 when used for the intended purpose                                                                                                                                                                           |
| Cooling in compliance with EN 60146                       | Forced air cooling AF                                                                                                                                                                                                          |

## 11.4.3 Specific technical data, 400 V converters

The fuses listed in the following tables are examples of suitable fuses.

You can find additional suitable fuses in the Internet:

Branch protection and short-circuit strength according to UL and IEC (<a href="https://support.industry.siemens.com/cs/ww/en/view/109479152">https://support.industry.siemens.com/cs/ww/en/view/109479152</a>)

Table 11-20 PM240P-2, IP20, Frame Size D, 3-ph. AC 380 V ... 480 V

| Article number without filter<br>Article number with filter           | 6SL3210-1RE24-5UL0<br>6SL3210-1RE24-5AL0 | 6SL3210-1RE26-0UL0<br>6SL3210-1RE26-0AL0 | 6SL3210-1RE27-5UL0<br>6SL3210-1RE27-5AL0 |
|-----------------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| LO base load power                                                    | 22 kW                                    | 30 kW                                    | 37 kW                                    |
| LO base load input current                                            | 42 A                                     | 57 A                                     | 70 A                                     |
| LO base load output current                                           | 45 A                                     | 60 A                                     | 75 A                                     |
| HO base load power                                                    | 18.5 kW                                  | 22 kW                                    | 30 kW                                    |
| HO base load input current                                            | 38 A                                     | 47 A                                     | 62 A                                     |
| HO base load output current                                           | 38 A                                     | 45 A                                     | 60 A                                     |
| Siemens fuse according to IEC/UL<br>Fuse according to IEC/UL, Class J | 3NE1820-0 / 80 A<br>70 A                 | 3NE1021-0 / 100 A<br>90 A                | 3NE1021-0 / 100 A<br>100 A               |
| Power loss without filter                                             | 0.68 kW                                  | 0.76 kW                                  | 1.01 kW                                  |
| Power loss with filter                                                | 0.68 kW                                  | 0.77 kW                                  | 1.02 kW                                  |
| Required cooling air flow                                             | 55 l/s                                   | 55 l/s                                   | 55 l/s                                   |
| Weight without filter                                                 | 16 kg                                    | 17 kg                                    | 17 kg                                    |
| Weight with filter                                                    | 17.5 kg                                  | 18.5 kg                                  | 18.5 kg                                  |

Table 11-21 PM240P-2, IP20, Frame Size E, 3-ph. AC 380 V ... 480 V

| Article number without filter<br>Article number with filter           | 6SL3210-1RE28-8UL0<br>6SL3210-1RE28-8AL0 | 6SL3210-1RE31-1UL0<br>6SL3210-1RE31-1AL0 |  |
|-----------------------------------------------------------------------|------------------------------------------|------------------------------------------|--|
| LO base load power                                                    | 45 kW                                    | 55 kW                                    |  |
| LO base load input current                                            | 86 A                                     | 104 A                                    |  |
| LO base load output current                                           | 90 A                                     | 110 A                                    |  |
| HO base load power                                                    | 37 kW                                    | 45 kW                                    |  |
| HO base load input current                                            | 78 A                                     | 94 A                                     |  |
| HO base load output current                                           | 75 A                                     | 90 A                                     |  |
| Siemens fuse according to IEC/UL<br>Fuse according to IEC/UL, Class J | 3NE1022-0 / 125 A<br>125 A               | 3NE1224-0 / 160 A<br>150 A               |  |
| Power loss without filter                                             | 1.19 kW                                  | 1.54 kW                                  |  |
| Power loss with filter                                                | 1.2 kW                                   | 1.55 kW                                  |  |
| Required cooling air flow                                             | 83 l/s                                   | 83 l/s                                   |  |
| Weight without filter                                                 | 26 kg                                    | 26 kg                                    |  |
| Weight with filter                                                    | 28 kg                                    | 28 kg                                    |  |

Table 11-22 PM240P-2, IP20, Frame Size F, 3-ph. AC 380 V ... 480 V

| Article number without filter<br>Article number with filter           | 6SL3210-1RE31-5UL0<br>6SL3210-1RE31-5AL0 | 6SL3210-1RE31-8UL0<br>6SL3210-1RE31-8AL0 | 6SL3210-1RE32-1UL0<br>6SL3210-1RE32-1AL0 |
|-----------------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| LO base load power                                                    | 75 kW                                    | 90 kW                                    | 110 kW                                   |
| LO base load input current                                            | 140 A                                    | 172 A                                    | 198 A                                    |
| LO base load output current                                           | 145 A                                    | 178 A                                    | 205 A                                    |
| HO base load power                                                    | 55 kW                                    | 75 kW                                    | 90 kW                                    |
| HO base load input current                                            | 117 A                                    | 154 A                                    | 189 A                                    |
| HO base load output current                                           | 110 A                                    | 145 A                                    | 178 A                                    |
| Siemens fuse according to IEC/UL<br>Fuse according to IEC/UL, Class J | 3NE1225-0 / 200 A<br>200 A               | 3NE1227-0 / 250 A<br>250 A               | 3NE1230-0 / 315 A<br>300 A               |
| Power loss without filter                                             | 1.95 kW                                  | 2.54 kW                                  | 2.36 kW                                  |
| Power loss with filter                                                | 1.97 kW                                  | 2.56 kW                                  | 2.38 kW                                  |
| Required cooling air flow                                             | 153 l/s                                  | 153 l/s                                  | 153 l/s                                  |
| Weight without filter                                                 | 57 kg                                    | 57 kg                                    | 61 kg                                    |
| Weight with filter                                                    | 63 kg                                    | 63 kg                                    | 65 kg                                    |
|                                                                       |                                          |                                          |                                          |

Table 11-23 PM240P-2, IP20, Frame Size F, 3-ph. AC 380 V ... 480 V

| Article number without filter<br>Article number with filter           | 6SL3210-1RE32-5UL0<br>6SL3210-1RE32-5AL0 |  |
|-----------------------------------------------------------------------|------------------------------------------|--|
| LO base load power                                                    | 132 kW                                   |  |
| LO base load input current                                            | 242 A                                    |  |
| LO base load output current                                           | 250 A                                    |  |
| HO base load power                                                    | 110 kW                                   |  |
| HO base load input current                                            | 218 A                                    |  |
| HO base load output current                                           | 205 A                                    |  |
| Siemens fuse according to IEC/UL<br>Fuse according to IEC/UL, Class J | 3NE1331-0 / 350 A<br>350 A               |  |
| Power loss without filter                                             | 3.09 kW                                  |  |
| Power loss with filter                                                | 3.12 kW                                  |  |
| Required cooling air flow                                             | 153 l/s                                  |  |
| Weight without filter                                                 | 61 kg                                    |  |
| Weight with filter                                                    | 65 kg                                    |  |

# 11.4.4 Current derating depending on the pulse frequency, 400 V converters

| Article number        | LO<br>power<br>[kW] | LO base load output current [A] |       |       |       |    |      |      |    |
|-----------------------|---------------------|---------------------------------|-------|-------|-------|----|------|------|----|
| Pulse frequency [kHz] |                     | 2                               | 4 *)  | 6     | 8     | 10 | 12   | 14   | 16 |
| 6SL3210-1RE24-5 . L0  | 22                  | 45                              | 45    | 38.3  | 31.5  | 27 | 22.5 | 20.3 | 18 |
| 6SL3210-1RE26-0 . L0  | 30                  | 60                              | 60    | 51    | 42    | 36 | 30   | 27   | 24 |
| 6SL3210-1RE27-5 . LO  | 37                  | 75                              | 75    | 63.8  | 52.5  | 45 | 37.5 | 33.8 | 30 |
| 6SL3210-1RE28-8 . LO  | 45                  | 90                              | 90    | 76.5  | 63    | 54 | 45   | 40.5 | 36 |
| 6SL3210-1RE31-1 . LO  | 55                  | 110                             | 110   | 93.5  | 77    |    |      |      |    |
| Pulse frequency [kHz] |                     | 2 *)                            | 4     | 6     | 8     | 10 | 12   | 14   | 16 |
| 6SL3210-1RE31-5 . LO  | 75                  | 145                             | 145   | 123.3 | 101.5 |    |      |      |    |
| 6SL3210-1RE31-8 . LO  | 90                  | 178                             | 178   | 151.3 | 124.6 |    |      |      |    |
| 6SL3210-1RE32-1 . LO  | 110                 | 205                             | 143.5 |       |       |    |      |      |    |
| 6SL3210-1RE32-5 . L0  | 132                 | 250                             | 175   |       |       |    |      |      |    |

<sup>\*)</sup> Factory setting

The permissible motor cable length depends on the particular cable type and the pulse frequency that has been selected

# 11.4.5 General technical data, 690 V converters

| Property                                                  | Version                                                                                                                                                                                                                        |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Line voltage                                              | 3 AC 500 V 690 V ± 10% (in operation -20% < 1 min) with Class J fuses, maximum 600 V                                                                                                                                           |
| Line system configurations                                | Grounded TN/TT line systems or non-grounded IT line systems                                                                                                                                                                    |
| Line impedance                                            | Uk < 4%, line reactor is not required                                                                                                                                                                                          |
| Power factor λ                                            | > 0.9                                                                                                                                                                                                                          |
| Output voltage                                            | 3 AC 0 V 0.95 × input voltage (max.)                                                                                                                                                                                           |
| Input frequency                                           | 50 Hz 60 Hz, ± 3 Hz                                                                                                                                                                                                            |
| Output frequency                                          | 0 550 Hz, depending on the control mode                                                                                                                                                                                        |
| Inrush current                                            | < LO base load input current                                                                                                                                                                                                   |
| Overvoltage category according to EN 61800-5-1            | III for line supplies                                                                                                                                                                                                          |
| Pulse frequency                                           | 2 kHz (factory setting), can be adjusted to 4 kHz                                                                                                                                                                              |
|                                                           | If you increase the pulse frequency, the converter reduces the maximum output current.                                                                                                                                         |
| Short-circuit current rating (SCCR) and branch protection | ≤ 100 kA rms  Branch protection and short-circuit strength according to UL and IEC ( <a href="https://support.industry.siemens.com/cs/ww/en/view/109479152">https://support.industry.siemens.com/cs/ww/en/view/109479152</a> ) |
| Braking methods                                           | DC braking, compound braking                                                                                                                                                                                                   |
| Degree of protection according to EN 60529                | IP20; must be installed in a control cabinet                                                                                                                                                                                   |
| Protection class according to EN 61800-5-1                | The converters are devices with protection class I                                                                                                                                                                             |
| Touch protection according to EN 50274                    | DGUV regulation 3 when used for the intended purpose                                                                                                                                                                           |
| Cooling in compliance with EN 60146                       | Forced air cooling AF                                                                                                                                                                                                          |

## 11.4.6 Specific technical data, 690 V converters

The fuses listed in the following tables are examples of suitable fuses.

You can find additional suitable fuses in the Internet:

Branch protection and short-circuit strength according to UL and IEC (<a href="https://support.industry.siemens.com/cs/ww/en/view/109479152">https://support.industry.siemens.com/cs/ww/en/view/109479152</a>)

Table 11-24 PM240P-2, IP20, frame size D, 3 AC 500 V ... 690 V

| Article number without filter<br>Article number with filter           | 6SL3210-1RH21-4UL0<br>6SL3210-1RH21-4AL0 | 6SL3210-1RH22-0UL0<br>6SL3210-1RH22-0AL0 | 6SL3210-1RH22-3UL0<br>6SL3210-1RH22-3AL0 |
|-----------------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| LO base load power                                                    | 11 kW                                    | 15 kW                                    | 18.5 kW                                  |
| LO base load input current                                            | 14 A                                     | 18 A                                     | 22 A                                     |
| LO base load output current                                           | 14 A                                     | 19 A                                     | 23 A                                     |
| HO base load power                                                    | 7.5 kW                                   | 11 kW                                    | 15 kW                                    |
| HO base load input current                                            | 11 A                                     | 14 A                                     | 20 A                                     |
| HO base load output current                                           | 11 A                                     | 14 A                                     | 19 A                                     |
| Siemens fuse according to IEC/UL<br>Fuse according to IEC/UL, Class J | 3NE1815-0 / 25 A<br>20 A                 | 3NE1815-0 / 25 A<br>25 A                 | 3NE1803-0 / 35 A<br>30 A                 |
| Power loss                                                            | 0.32 kW                                  | 0.41 kW                                  | 0.48 kW                                  |
| Required cooling air flow                                             | 55 l/s                                   | 55 l/s                                   | 55 l/s                                   |
| Weight without filter                                                 | 17 kg                                    | 17 kg                                    | 17 kg                                    |
| Weight with filter                                                    | 18.5 kg                                  | 18.5 kg                                  | 18.5 kg                                  |

Table 11-25 PM240P-2, IP20, frame size D, 3 AC 500 V ... 690 V

| Article number without filter<br>Article number with filter           | 6SL3210-1RH22-7UL0<br>6SL3210-1RH22-7AL0 | 6SL3210-1RH23-5UL0<br>6SL3210-1RH23-5AL0 | 6SL3210-1RH24-2UL0<br>6SL3210-1RH24-2AL0 |
|-----------------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| LO base load power                                                    | 22 kW                                    | 30 kW                                    | 37 kW                                    |
| LO base load input current                                            | 25 A                                     | 33 A                                     | 40 A                                     |
| LO base load output current                                           | 27 A                                     | 35 A                                     | 42 A                                     |
| HO base load power                                                    | 18.5 kW                                  | 22 kW                                    | 30 kW                                    |
| HO base load input current                                            | 24 A                                     | 28 A                                     | 36 A                                     |
| HO base load output current                                           | 23 A                                     | 27 A                                     | 35 A                                     |
| Siemens fuse according to IEC/UL<br>Fuse according to IEC/UL, Class J | 3NE1803-0 / 35 A<br>35 A                 | 3NE1817-0 / 50 A<br>50 A                 | 3NE1818-0 / 63 A<br>60 A                 |
| Power loss without filter                                             | 0.56 kW                                  | 0.72 kW                                  | 0.88 kW                                  |
| Power loss with filter                                                | 0.56 kW                                  | 0.73 kW                                  | 0.88 kW                                  |
| Required cooling air flow                                             | 55 l/s                                   | 55 l/s                                   | 55 l/s                                   |
| Weight without filter                                                 | 17 kg                                    | 17 kg                                    | 17 kg                                    |
| Weight with filter                                                    | 18.5 kg                                  | 18.5 kg                                  | 18.5 kg                                  |

Table 11-26 PM240P-2, IP20, frame sizes E, 3 AC 500 V ... 690 V

| Article number without filter<br>Article number with filter           | 6SL3210-1RH25-2UL0<br>6SL3210-1RH25-2AL0 | 6SL3210-1RH26-2UL0<br>6SL3210-1RH26-2AL0 |  |
|-----------------------------------------------------------------------|------------------------------------------|------------------------------------------|--|
| LO base load power                                                    | 45 kW                                    | 55 kW                                    |  |
| LO base load input current                                            | 50 A                                     | 59 A                                     |  |
| LO base load output current                                           | 52 A                                     | 62 A                                     |  |
| HO base load power                                                    | 37 kW                                    | 45 kW                                    |  |
| HO base load input current                                            | 44 A                                     | 54 A                                     |  |
| HO base load output current                                           | 42 A                                     | 52 A                                     |  |
| Siemens fuse according to IEC/UL<br>Fuse according to IEC/UL, Class J | 3NA1820-0 / 80 A<br>80 A                 | 3NE1820-0 / 80 A<br>80 A                 |  |
| Power loss without filter                                             | 1.00 kW                                  | 1.21 kW                                  |  |
| Power loss with filter                                                | 1.00 kW                                  | 1.22 kW                                  |  |
| Required cooling air flow                                             | 83 l/s                                   | 83 l/s                                   |  |
| Weight without filter                                                 | 26 kg                                    | 26 kg                                    |  |
| Weight with filter                                                    | 28 kg                                    | 28 kg                                    |  |

Table 11-27 PM240-2, IP20, frame size F, 3 AC 500 V ... 690 V

| Article number without filter<br>Article number with filter           | 6SL3210-1RH28-0UL0<br>6SL3210-1RH28-0AL0 | 6SL3210-1RH31-0UL0<br>6SL3210-1RH31-0AL0 | 6SL3210-1RH31-2UL0<br>6SL3210-1RH31-2AL0 |
|-----------------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| LO base load power                                                    | 75 kW                                    | 90 kW                                    | 110 kW                                   |
| LO base load input current                                            | 78 A                                     | 97 A                                     | 111 A                                    |
| LO base load output current                                           | 80 A                                     | 100 A                                    | 115 A                                    |
| HO base load power                                                    | 55 kW                                    | 75 kW                                    | 90 kW                                    |
| HO base load input current                                            | 66 A                                     | 85 A                                     | 106 A                                    |
| HO base load output current                                           | 62 A                                     | 80 A                                     | 100 A                                    |
| Siemens fuse according to IEC/UL<br>Fuse according to IEC/UL, Class J | 3NE1021-0 / 100 A<br>110 A               | 3NE1022-0 / 125 A<br>150 A               | 3NE1224-0 / 160 A<br>150 A               |
| Power loss without filter                                             | 1.34 kW                                  | 1.71 kW                                  | 2 kW                                     |
| Power loss with filter                                                | 1.35 kW                                  | 1.72 kW                                  | 2.02 kW                                  |
| Required cooling air flow                                             | 153 l/s                                  | 153 l/s                                  | 153 l/s                                  |
| Weight without filter                                                 | 60 kg                                    | 60 kg                                    | 60 kg                                    |
| Weight with filter                                                    | 64 kg                                    | 64 kg                                    | 64 kg                                    |

Table 11-28 PM240-2, IP20, frame size F, 3 AC 500 V ... 690 V

| Article number without filter<br>Article number with filter | 6SL3210-1RH31-4UL0<br>6SL3210-1RH31-4AL0 |  |
|-------------------------------------------------------------|------------------------------------------|--|
| LO base load power                                          | 132 kW                                   |  |
| LO base load input current                                  | 137 A                                    |  |
| LO base load output current                                 | 142 A                                    |  |
| HO base load power                                          | 110 kW                                   |  |

| Article number without filter<br>Article number with filter           | 6SL3210-1RH31-4UL0<br>6SL3210-1RH31-4AL0 |  |
|-----------------------------------------------------------------------|------------------------------------------|--|
| HO base load input current                                            | 122 A                                    |  |
| HO base load output current                                           | 115 A                                    |  |
| Siemens fuse according to IEC/UL<br>Fuse according to IEC/UL, Class J | 3NE1225-0 / 200 A<br>200 A               |  |
| Power loss without filter                                             | 2.56 kW                                  |  |
| Power loss with filter                                                | 2.59 kW                                  |  |
| Required cooling air flow                                             | 153 l/s                                  |  |
| Weight without filter                                                 | 60 kg                                    |  |
| Weight with filter                                                    | 64 kg                                    |  |

# 11.4.7 Current derating depending on the pulse frequency, 690 V converters

| Article number        | LO pow-<br>er [kW] | LO base load output current [A] |      |
|-----------------------|--------------------|---------------------------------|------|
| Pulse frequency [kHz] |                    | 2                               | 4    |
| 6SL3210-1RH21-4 . L0  |                    | 14                              | 8.4  |
| 6SL3210-1RH22-0 . L0  |                    | 19                              | 11.4 |
| 6SL3210-1RH22-3 . L0  |                    | 23                              | 13.8 |
| 6SL3210-1RH22-7 . L0  |                    | 27                              | 16.2 |
| 6SL3210-1RH23-5 . L0  |                    | 35                              | 21   |
| 6SL3210-1RH24-2 . L0  |                    | 42                              | 25.2 |
| 6SL3210-1RH25-2 . L0  |                    | 52                              | 31.2 |
| 6SL3210-1RH26-2 . L0  |                    | 62                              | 37.2 |
| 6SL3210-1RH28-0 . L0  |                    | 80                              | 48   |
| 6SL3210-1RH31-0 . L0  |                    | 100                             | 60   |
| 6SL3210-1RH31-2 . L0  |                    | 115                             | 69   |
| 6SL3210-1RH31-4 . L0  |                    | 142                             | 85.2 |

The permissible motor cable length depends on the cable type and the selected pulse frequency.

# 11.5 Technical data, PM330 Power Module

### Permissible converter overload

The converters have different load capabilities, "High Overload" and "Low Overload", depending on the expected.

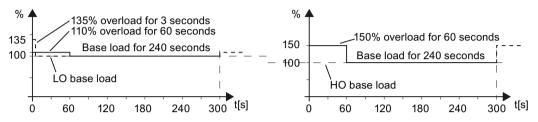



Figure 11-4 Load cycles, "Low Overload" and "High Overload"

## 11.5.1 General technical data, PM330

Table 11-29 General technical data

| Electrical data                                                                                                             |                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Line system configurations                                                                                                  | Grounded TN/TT systems or ungrounded IT systems (a grounded phase conductor is not permissible in 690 V line supplies)                                                                                                                                    |
| Line requirement                                                                                                            | A line reactor (2% u <sub>k</sub> ) must be connected in series                                                                                                                                                                                           |
| Line voltage                                                                                                                | 380 V (-10 %) 480 V (+10 %)<br>500 V (-10 %) 690 V (+10 %)                                                                                                                                                                                                |
| Line frequency                                                                                                              | 47 63 Hz                                                                                                                                                                                                                                                  |
| Output frequency                                                                                                            | 0 100 Hz                                                                                                                                                                                                                                                  |
| Displacement factor $\cos \phi$ power factor $\lambda$                                                                      | $0.96$ $0.75 \dots 0.93$ (with line reactor $u_k = 2\%$ )                                                                                                                                                                                                 |
| Converter efficiency                                                                                                        | > 98%                                                                                                                                                                                                                                                     |
| Short-circuit current rating according to IEC, in conjunction with the specified fuses                                      | 160 630 kW: 100 kA                                                                                                                                                                                                                                        |
| Short-circuit current rating according to UL61800-5-1 (up to 480 V AC or 600 V AC), in conjunction with the specified fuses | 160 630 kW: 100 kA Can be used on line supplies that cannot supply more than 100 kA symmetrically at a maximum voltage of 480 V AC or 600 V AC when they are protected with the semiconductor fuses specified in Chapter "Technical Data" of this manual. |
| Overvoltage category                                                                                                        | III according to EN 61800-5-1                                                                                                                                                                                                                             |
| Mechanical data                                                                                                             |                                                                                                                                                                                                                                                           |
| Degree of protection                                                                                                        | IP20                                                                                                                                                                                                                                                      |
| Protection class                                                                                                            | according to EN 61800-5-1: Class I (with protective conductor system) and Class III (PELV)                                                                                                                                                                |
| Cooling method                                                                                                              | Forced air cooling AF according to EN 60146                                                                                                                                                                                                               |
| Sound pressure level L <sub>PA</sub> (1 ma)                                                                                 | $\leq$ 74 dB(A) 1)                                                                                                                                                                                                                                        |

| Touch protection                                     | according to EN 61800-5-1: Fo                                                                                                                              | or the intended purpose                  |                                                                 |  |  |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------|--|--|
| Compliance with standards                            |                                                                                                                                                            |                                          |                                                                 |  |  |
| Standards                                            | EN 60146-1-1, EN 61800-2, El<br>UL61800-5-1, CSA 22.2 No. 2                                                                                                | N 61800-3, EN 61800-5-1, EN 6<br>74-13   | 50204-1, EN 60529                                               |  |  |
| CE marking                                           | In accordance with EMC Direct                                                                                                                              | tive No. 2014/30/EU and Low-Vo           | oltage Directive No. 2014/35/EU                                 |  |  |
| Radio interference suppression                       | In accordance with the EMC penvironment <sup>2)</sup> . Application in "first environme                                                                    | ·                                        | eed drives EN 61800-3, "second                                  |  |  |
| Approval                                             | cULus (File No.: E192450), CE                                                                                                                              | , RCM, EAC, KC                           |                                                                 |  |  |
| Ambient conditions                                   | During storage 3)                                                                                                                                          | During transport 3)                      | During operation                                                |  |  |
| Ambient temperature                                  | -25° +55° C                                                                                                                                                | -25 +70 °C<br>from –40 °C for 24 hours   | 0° +40° C<br>up to + 50° C with derating                        |  |  |
| Relative humidity<br>(no condensation)               | 5 to 95%                                                                                                                                                   | 5 95% at 40° C                           | 5 95%                                                           |  |  |
| Corresponds to class                                 | 1K4 according to EN 2K3 according to 3K3 according to EN 60721-3-1 EN 60721-3-2 EN 60721-3-3                                                               |                                          |                                                                 |  |  |
| Environmental class / harmful chemical substances    | 1C2 according to<br>EN 60721-3-1                                                                                                                           |                                          |                                                                 |  |  |
| Organic/biological influences                        | 1B1 according to         2B1 according to         3B1 according to           EN 60721-3-1         EN 60721-3-2         EN 60721-3-3                        |                                          |                                                                 |  |  |
| Pollution degree                                     | 2 according to EN 61800-5-1                                                                                                                                |                                          |                                                                 |  |  |
| Installation altitude                                | up to 1000 m above sea level without derating, > 1000 m above sea level with derating (see Chapter Restrictions for special ambient conditions (Page 562)) |                                          |                                                                 |  |  |
| Mechanical strength                                  | During storage 3)                                                                                                                                          | During transport 3)                      | During operation                                                |  |  |
| Vibrational load<br>- Displacement<br>- Acceleration | Fc test according to EN                                                                                                                                    |                                          | 0.075 mm for 10 58 Hz<br>9.81 ma/s <sup>2</sup> (1 x g) at > 58 |  |  |
| Shock load - Displacement                            | Fc test according to EN Fc test according to EN Fc test according to EN 60068-2-6 Fc test according to EN 60068-2-27 (EA shock ty                          |                                          |                                                                 |  |  |
| - Acceleration                                       | ±1.5 mm for 5 9 Hz<br>0.5 g for 9 200 Hz                                                                                                                   | ±1.5 mm for 5 9 Hz<br>0.5 g for 9 200 Hz | 49 ma/s² (5 x g)/30 ms<br>147 m/s² (15 x g)/11 ms               |  |  |

Deviations from the defined classes are shown in italics.

maximum sound pressure level, ascertained in the IP20 cabinet

<sup>&</sup>lt;sup>2)</sup> Standard construction: Devices installed in the control cabinet with installation in conformance with EMC regulations, line reactor uk = 2%, shielded motor cable (e.g. Protoflex EMC) with max. 100 m cable length, line harmonics according to EN 61000-2-4: Class 2, THD(U) total = 8% for typical line conditions (RSC > 30 ... 50); THD(I) total: typically 30 ... 45 % (15 < RSC < 50)

<sup>3)</sup> in transport packaging

### 11.5.2 Power-dependent technical data, PM330

#### Note

### **Recommended connection cross-sections**

The recommended connection cross-sections are determined for copper cables at  $45 \,^{\circ}$ C ambient temperature and cables with a permitted operating temperature at the conductor of  $70 \,^{\circ}$ C (routing type C - factor for bundling 0.75 considered) according to DIN VDE 0298-4/08.03).

Protective conductor cross-section (S: Cross-section of the supply connection phase conductor, MS: Cross-section of the external protective conductor):

Minimum cross-sections:

- $S < 16 \text{ mm}^2 \rightarrow MS = S$
- $16 \text{ mm}^2 \le S \le 35 \text{ mm}^2 \rightarrow MS = 16 \text{ mm}^2$
- $S > 35 \text{ mm}^2 \rightarrow MS = 0.5 \times S$

Recommended cross-sections:

• MS ≥ S

Table 11-30 PM330 frame sizes GX, 3-phase 380 ... 480 VAC

| Article No.                           | 6SL3310-                      | 1PE33-0AA0    | 1PE33-7AA0    | 1PE34-6AA0    |
|---------------------------------------|-------------------------------|---------------|---------------|---------------|
| Rated input current                   |                               |               |               |               |
| - at 380/400 V, 45° C                 |                               | 317 A         | 375 A         | 469 A         |
| - at 480 V, 45° C                     |                               | 262 A         | 314 A         | 376 A         |
| - at 380/400 V, 55° C                 |                               | 269 A         | 319 A         | 399 A         |
| - at 480 V, 55° C                     |                               | 220 A         | 266 A         | 319 A         |
| Rated input current DCP/DCN           |                               |               |               |               |
| (for 2/3 of the converter power)      |                               |               |               |               |
| - at 510 $V_{DC}$ , 45 $^{\circ}C$    |                               | 255 A         | 315 A         | 392 A         |
| - at 650 V <sub>DC</sub> , 45 °C      |                               | 209 A         | 263 A         | 314 A         |
| - at 510 V <sub>DC</sub> , 55 °C      |                               | 217 A         | 268 A         | 333 A         |
| - at 650 V <sub>DC</sub> , 55 °C      |                               | 177 A         | 223 A         | 267 A         |
| Rated output current I <sub>N</sub>   |                               |               |               |               |
| - at 380/400 V, 45° C                 |                               | 300 A         | 370 A         | 460 A         |
| - at 480 V, 45° C                     |                               | 245 A         | 308 A         | 369 A         |
| - at 380/400 V, 55° C                 |                               | 255 A         | 315 A         | 391 A         |
| - at 480 V, 55° C                     |                               | 208 A         | 262 A         | 313 A         |
| LO base load power                    |                               | 160 kW        | 200 kW        | 250 kW        |
| LO base load input current at 400 V   |                               | 307 A         | 365 A         | 459 A         |
| LO base load output current at 400 V  |                               | 290 A         | 360 A         | 450 A         |
| HO base load power                    |                               | 132 kW        | 160 kW        | 200 kW        |
| HO base load input current at 400 V   |                               | 254 A         | 300 A         | 375 A         |
| HO base load output current at 400 \  | /                             | 240 A         | 296 A         | 368 A         |
| Fuse according to IEC                 |                               | 3NE1333-2     | 3NE1334-2     | 3NE1435-2     |
| -                                     |                               | (450 A/690 V) | (500 A/690 V) | (560 A/690 V) |
| manufacturer:                         |                               | Siemens AG    | Siemens AG    | Siemens AG    |
| Maximum permissible line short-circu  | uit current I <sub>kmax</sub> | ≤ 100 kA      | ≤ 100 kA      | ≤ 100 kA      |
| Minimum line short-circuit current re | quired I <sub>kmin</sub> 1)   | > 3.5 kA      | > 4.5 kA      | > 7.0 kA      |

| Article No. 6SL3310-                                                                                                  | 1PE33-0AA0                                        | 1PE33-7AA0                                        | 1PE34-6AA0                                         |
|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|----------------------------------------------------|
| Fuse in compliance with UL <sup>2)</sup>                                                                              | 3NE1333-2<br>(450 A/690 V)                        | 3NE1334-2<br>(500 A/690 V)                        | 3NE1435-2<br>(560 A/690 V)                         |
| Manufacturer:                                                                                                         | Siemens AG                                        | Siemens AG                                        | Siemens AG                                         |
| Maximum permissible line short-circuit current $I_{kmax}$                                                             | ≤ 100 kA                                          | ≤ 100 kA                                          | ≤ 100 kA                                           |
| Minimum line short-circuit current required I <sub>kmin</sub> 1)                                                      | > 3.5 kA                                          | > 4.5 kA                                          | > 7.0 kA                                           |
| max. power loss, at I <sub>N</sub> , 45 °C, 400 V                                                                     | 3.642 kW                                          | 4.414 kW                                          | 5.125 kW                                           |
| Required cooling air flow                                                                                             | 210 l/s                                           | 210 l/s                                           | 210 l/s                                            |
| Maximum connectable cross-section of the line, motor and DC-link cable                                                | 2 x 240 mm <sup>2</sup><br>2 x 500 kcmil          | 2 x 240 mm <sup>2</sup><br>2 x 500 kcmil          | 2 x 240 mm <sup>2</sup><br>2 x 500 kcmil           |
| Recommended cable cross-section for 380 V/400 V - line cable - motor cable                                            | 2 x 120 mm <sup>2</sup><br>2 x 95 mm <sup>2</sup> | 2 x 120 mm <sup>2</sup><br>2 x 95 mm <sup>2</sup> | 2 x 185 mm <sup>2</sup><br>2 x 150 mm <sup>2</sup> |
| Recommended cable cross-section for 480 V - line cable - motor cable                                                  | 2 x 95 mm <sup>2</sup><br>2 x 70 mm <sup>2</sup>  | 2 x 120 mm <sup>2</sup><br>2 x 95 mm <sup>2</sup> | 2 x 120 mm <sup>2</sup><br>2 x 120 mm <sup>2</sup> |
| Recommended cable cross-section for 380 V/400 V - DC link infeed (2/3 converter power) - Braking Module <sup>3)</sup> | 2 x 120 mm²<br>35 mm²                             | 2 x 120 mm²<br>35 mm²                             | 2 x 150 mm²<br>35 mm²                              |
| Recommended cable cross-section for 480 V - DC link infeed (2/3 converter power) - Braking Module <sup>3)</sup>       | 2 x 95 mm²<br>35 mm²                              | 2 x 95 mm²<br>35 mm²                              | 2 x 120 mm²<br>35 mm²                              |
| Tightening torque for line, motor, DC link, and ground cable                                                          | 50 Nm / 443 lbf in                                | 50 Nm / 443 lbf in                                | 50 Nm / 443 lbf in                                 |
| Dimensions: Width x height x depth [mm]                                                                               | 452 x 1447 x 327.5                                | 452 x 1447 x 327.5                                | 452 x 1447 x 327.5                                 |
| Weight                                                                                                                | 98 kg                                             | 104 kg                                            | 109 kg                                             |

The line supply must be capable of supplying the minimum short-circuit current so that the fuses trigger and consequential damage is avoided.

Note: If the minimum short-circuit current is not reached, then the tripping time for the fuses increases, and this may result in consequential damage.

Table 11-31 PM330, frame size HX, 3-phase 380 ... 480 VAC

| Article No.                      | 6SL3310- | 1PE35-8AA0 | 1PE36-6AA0 | 1PE37-4AA0 |
|----------------------------------|----------|------------|------------|------------|
| Rated input current              | '        |            |            |            |
| - at 380/400 V, 45° C            |          | 597 A      | 668 A      | 750 A      |
| - at 480 V, 45° C                |          | 497 A      | 536 A      | 614 A      |
| - at 380/400 V, 55° C            |          | 507 A      | 568 A      | 637 A      |
| - at 480 V, 55° C                |          | 422 A      | 456 A      | 522 A      |
| Rated input current DCP/DCN      |          |            |            |            |
| (for 2/3 of the converter power) |          |            |            |            |
| - at 510 V <sub>DC</sub> , 45 °C |          | 498 A      | 558 A      | 626 A      |
| - at 650 V <sub>DC</sub> , 45 °C |          | 415 A      | 448 A      | 513 A      |
| - at 510 V <sub>DC</sub> , 55 °C |          | 423 A      | 474 A      | 532 A      |
| - at 650 V <sub>DC</sub> , 55 °C |          | 352 A      | 381 A      | 436 A      |

<sup>&</sup>lt;sup>2)</sup> When semiconductor fuses are used, they must be mounted in the same higher construction as the converter.

<sup>3)</sup> When connecting a Braking Module with rated power 50 kW, P<sub>20</sub> power 200 kW.

| Article No. 6SL3                                                                    | 3310- 1PE35-8AA0             | 1PE36-6AA0                  | 1PE37-4AA0                  |
|-------------------------------------------------------------------------------------|------------------------------|-----------------------------|-----------------------------|
| Rated output current I <sub>N</sub>                                                 | ·                            |                             |                             |
| - at 380/400 V, 45° C                                                               | 585 A                        | 655 A                       | 735 A                       |
| - at 480 V, 45° C                                                                   | 487 A                        | 526 A                       | 602 A                       |
| - at 380/400 V, 55° C                                                               | 497 A                        | 557 A                       | 625 A<br>512 A              |
| - at 480 V, 55° C                                                                   | 414 A                        | 447 A                       |                             |
| LO base load power                                                                  | 315 kW                       | 355 kW                      | 400 kW                      |
| LO base load input current at 400 V<br>LO base load output current at 400 V         | 581 A<br>570 A               | 653 A<br>640 A              | 734 A<br>720 A              |
| · · · · · · · · · · · · · · · · · · ·                                               |                              |                             |                             |
| HO base load power                                                                  | 250 kW<br>477 A              | 250 kW<br>501 A             | 315 kW                      |
| HO base load input current at 400 V<br>HO base load output current at 400 V         | 477 A<br>468 A               | 491 A                       | 562 A<br>551 A              |
| ·                                                                                   |                              |                             |                             |
| Fuse according to IEC                                                               | 3NE1437-2                    | 3NE1438-2                   | 3NE1448-2                   |
| manufacturer:                                                                       | (710 A/690 V)<br>Siemens AG  | (800 A/690 V)<br>Siemens AG | (850 A/690 V)<br>Siemens AG |
|                                                                                     |                              | ≤ 100 kA                    | ≤ 100 kA                    |
| Maximum permissible line short-circuit cur                                          |                              |                             |                             |
| Minimum line short-circuit current require                                          |                              | > 11.0 kA                   | > 13.0 kA                   |
| Fuse in compliance with UL 2)                                                       | 3NE1437-2                    | 3NE1438-2                   | 3NE1448-2                   |
|                                                                                     | (710 A/690 V)                | (800 A/690 V)               | (850 A/690 V)               |
| Manufacturer:                                                                       | Siemens AG                   | Siemens AG                  | Siemens AG                  |
| Maximum permissible line short-circuit cur                                          |                              | ≤ 100 kA                    | ≤ 100 kA                    |
| Minimum line short-circuit current require                                          | $d I_{kmin}^{1)} > 10.0 kA$  | > 11.0 kA                   | > 13.0 kA                   |
| max. power loss, at $I_N$ , 45 °C, 400 V                                            | 6.791 kW                     | 7.687 kW                    | 8.385 kW                    |
| Required cooling air flow                                                           | 360 l/s                      | 360 l/s                     | 360 l/s                     |
| Maximum connectable cross-section of the                                            |                              | 4 x 240 mm <sup>2</sup>     | 4 x 240 mm <sup>2</sup>     |
| tor and DC-link cable                                                               | 4 x 500 kcmil                | 4 x 500 kcmil               | 4 x 500 kcmil               |
| Recommended cable cross-section for 380                                             | V/400 V                      |                             |                             |
| - line cable                                                                        | 2 x 240 mm <sup>2</sup>      | 3 x 150 mm <sup>2</sup>     | 3 x 185 mm <sup>2</sup>     |
| - motor cable                                                                       | 2 x 185 mm²                  | 2 x 240 mm <sup>2</sup>     | 2 x 240 mm <sup>2</sup>     |
| Recommended cable cross-section for 480                                             | V                            |                             |                             |
| - line cable                                                                        | 2 x 185 mm <sup>2</sup>      | 2 x 240 mm <sup>2</sup>     | 2 x 240 mm <sup>2</sup>     |
| - motor cable                                                                       | 2 x 150 mm²                  | 2 x 185 mm <sup>2</sup>     | 2 x 240 mm <sup>2</sup>     |
| Recommended cable cross-section for 380                                             |                              |                             |                             |
| - DC link infeed (2/3 converter power)                                              | 2 x 185 mm <sup>2</sup>      | 2 x 240 mm <sup>2</sup>     | 3 x 150 mm <sup>2</sup>     |
| - Braking Module <sup>3)</sup>                                                      | 35 mm²                       | 35 mm <sup>2</sup>          | 35 mm²                      |
| Recommended cable cross-section for 480                                             |                              |                             |                             |
| - DC link infeed (2/3 converter power)                                              | 2 x 150 mm <sup>2</sup>      | 2 x 185 mm <sup>2</sup>     | 2 x 240 mm <sup>2</sup>     |
| - Braking Module 3)                                                                 | 35 mm²                       | 35 mm <sup>2</sup>          | 35 mm²                      |
| Tightening torque for line, motor, DC link, as cable                                | nd ground 50 Nm / 443 lbf in | 50 Nm / 443 lbf in          | 50 Nm / 443 lbf in          |
| Dimensions: Width x height x depth [mm]                                             | 548 x 1695 x 393             | 548 x 1695 x 393            | 548 x 1695 x 393            |
| Weight                                                                              | 151 kg                       | 157 kg                      | 159 kg                      |
| Minimum control cabinet size for installation Power Module (width x height x depth) | on of the 80                 | 00 mm x 2000 mm x 600       | mm                          |

The line supply must be capable of supplying the minimum short-circuit current so that the fuses trigger and consequential damage is avoided.

Note: If the minimum short-circuit current is not reached, then the tripping time for the fuses increases, and this may result in consequential damage.

When semiconductor fuses are used, they must be mounted in the same higher construction as the converter.

Table 11-32 PM330, frame size JX, 3-phase 380 ... 480 VAC

| Article No. 6S                            | L3310-                   | 1PE38-4AA0              | 1PE38-8AA0              | 1PE41-0AA0              |
|-------------------------------------------|--------------------------|-------------------------|-------------------------|-------------------------|
| Rated input current                       |                          |                         |                         |                         |
| - at 380/400 V, 45° C                     |                          | 870 A                   | 945 A                   | 1061 A                  |
| - at 480 V, 45° C                         |                          | 702 A                   | 767 A                   | 880 A                   |
| - at 380/400 V, 55° C                     |                          | 740 A                   | 803 A                   | 901 A                   |
| - at 480 V, 55° C                         |                          | 596 A                   | 652 A                   | 748 A                   |
| Rated input current DCP/DCN               |                          |                         |                         |                         |
| (for 2/3 of the converter power)          |                          |                         |                         |                         |
| - at 510 $V_{DC}$ , 45 $^{\circ}C$        |                          | 715 A                   | 775 A                   | 870 A                   |
| - at 650 V <sub>DC</sub> , 45 °C          |                          | 577 A                   | 629 A                   | 722 A                   |
| - at 510 V <sub>DC</sub> , 55 °C          |                          | 608 A                   | 659 A                   | 739 A                   |
| - at 650 V <sub>DC</sub> , 55 °C          |                          | 490 A                   | 535 A                   | 613 A                   |
| Rated output current I <sub>N</sub>       |                          | 0.40.4                  | 040.4                   | 1001                    |
| - at 380/400 V, 45° C                     |                          | 840 A                   | 910 A                   | 1021 A                  |
| - at 480 V, 45° C                         |                          | 677 A                   | 739 A                   | 847 A                   |
| - at 380/400 V, 55° C                     |                          | 714 A                   | 774 A                   | 868 A                   |
| - at 480 V, 55° C                         |                          | 576 A                   | 628 A                   | 720 A                   |
| LO base load power                        |                          | 450 kW                  | 500 kW                  | 560 kW                  |
| LO base load input current at 400 V       |                          | 850 A                   | 925 A                   | 1039 A                  |
| LO base load output current at 400 V      |                          | 820 A                   | 890 A                   | 1000 A                  |
| HO base load power                        |                          | 355 kW                  | 400 kW                  | 450 kW                  |
| HO base load input current at 400 V       |                          | 696 A                   | 756 A                   | 816 A                   |
| HO base load output current at 400 V      |                          | 672 A                   | 728 A                   | 786 A                   |
| Fuse according to IEC                     |                          | 2 x 3NE1334-2 //        | 2 x 3NE1435-2 //        | 2 x 3NE1436-2 //        |
|                                           |                          | (2 x 500 A / 690 V)     | (2 x 560 A / 690 V)     | (2 x 630 A / 690 V)     |
| manufacturer:                             |                          | Siemens AG              | Siemens AG              | Siemens AG              |
| Maximum permissible line short-circuit c  | urrent I <sub>kmax</sub> | ≤ 100 kA                | ≤ 100 kA                | ≤ 100 kA                |
| Minimum line short-circuit current requir | red I <sub>kmin</sub> 1) | > 10.4 kA               | > 14.0 kA               | > 16.0 kA               |
| Fuse in compliance with UL <sup>2)</sup>  |                          | 3NB3350-1KK26           | 3NB3351-1KK26           | 3NB3352-1KK26           |
| ·                                         |                          | (1000 A/690 V)          | (1100 A/690 V)          | (1250 A/690 V)          |
| Manufacturer:                             |                          | Siemens AG              | Siemens AG              | Siemens AG              |
| Minimum line short-circuit current requir | red I <sub>kmin</sub> 1) | 8.6 kA                  | 17.0 kA                 | 18.0 kA                 |
| max. power loss, at $I_N$ , 45 °C, 400 V  |                          | 10.418 kW               | 10.885 kW               | 12.495 kW               |
| Required cooling air flow                 |                          | 450 l/s                 | 450 l/s                 | 450 l/s                 |
| Maximum connectable cross-section of t    | he power                 | 6 x 240 mm <sup>2</sup> | 6 x 240 mm <sup>2</sup> | 6 x 240 mm <sup>2</sup> |
| cable                                     |                          | 6 x 500 kcmil           | 6 x 500 kcmil           | 6 x 500 kcmil           |
| Maximum connectable cross-section of the  | ne motor ca-             | 4 x 240 mm <sup>2</sup> | 8 x 240 mm <sup>2</sup> | 8 x 240 mm <sup>2</sup> |
| ble                                       |                          | 4 x 500 kcmil           | 8 x 500 kcmil           | 8 x 500 kcmil           |
| Maximum connectable cross-section of t    | he DC link               | 4 x 240 mm <sup>2</sup> | 4 x 240 mm <sup>2</sup> | 4 x 240 mm <sup>2</sup> |
| cable                                     |                          | 4 x 500 kcmil           | 4 x 500 kcmil           | 4 x 500 kcmil           |
| Recommended cable cross-section for 38    | 30 V/400 V               |                         |                         |                         |
| - line cable                              |                          | 4 x 185 mm <sup>2</sup> | 4 x 185 mm <sup>2</sup> | 4 x 240 mm <sup>2</sup> |
| - motor cable 3)                          |                          | 4 x 150 mm <sup>2</sup> | 4 x 185 mm <sup>2</sup> | 4 x 240 mm <sup>2</sup> |

<sup>&</sup>lt;sup>3)</sup> When connecting a Braking Module with rated power 50 kW, P<sub>20</sub> power 200 kW.

| Article No.                            | 6SL3310-                                  | 1PE38-4AA0              | 1PE38-8AA0              | 1PE41-0AA0              |  |  |
|----------------------------------------|-------------------------------------------|-------------------------|-------------------------|-------------------------|--|--|
| Recommended cable cross-sect           | Recommended cable cross-section for 480 V |                         |                         |                         |  |  |
| - line cable                           |                                           | 4 x 120 mm <sup>2</sup> | 4 x 150 mm <sup>2</sup> | 4 x 185 mm <sup>2</sup> |  |  |
| - motor cable <sup>3)</sup>            |                                           | 4 x 120 mm <sup>2</sup> | 4 x 150 mm <sup>2</sup> | 4 x 150 mm <sup>2</sup> |  |  |
| Recommended cable cross-sect           | ion for 380 V/400 V                       |                         |                         |                         |  |  |
| - DC link infeed (2/3 converter p      | oower)                                    | 4 x 120 mm <sup>2</sup> | 4 x 150 mm <sup>2</sup> | 4 x 185 mm <sup>2</sup> |  |  |
| - Braking Module 4)                    |                                           | 35 mm <sup>2</sup>      | 35 mm <sup>2</sup>      | 35 mm²                  |  |  |
| Recommended cable cross-sect           | ion for 480 V                             |                         |                         |                         |  |  |
| - DC link infeed (2/3 converter p      | oower)                                    | 3 x 120 mm <sup>2</sup> | 3 x 150 mm <sup>2</sup> | 3 x 185 mm <sup>2</sup> |  |  |
| - Braking Module 4)                    |                                           | 35 mm <sup>2</sup>      | 35 mm <sup>2</sup>      | 35 mm²                  |  |  |
| Tightening torque for line, moto cable | r, DC link, and ground                    | 50 Nm / 443 lbf in      | 50 Nm / 443 lbf in      | 50 Nm / 443 lbf in      |  |  |
| Dimensions: Width x height x d         | epth [mm]                                 | 801 x 1621 x 393        | 801 x 1621 x 393        | 801 x 1621 x 393        |  |  |
| Weight                                 |                                           | 235 kg                  | 250 kg                  | 250 kg                  |  |  |

The line supply must be capable of supplying the minimum short-circuit current so that the fuses trigger and consequential damage is avoided.

Table 11-33 PM330, frame size HX, 3-phase 500 ... 690 VAC, Part 1

| Article No.                          | 6SL3310- | 1PG33-7AA0 | 1PG34-0AA0 | 1PG34-5AA0 |
|--------------------------------------|----------|------------|------------|------------|
| Rated input current                  |          |            |            |            |
| - at 500 V, 45 °C                    |          | 383 A      | 416 A      | 471 A      |
| - at 600 V, 45 °C                    |          | 367 A      | 412 A      | 459 A      |
| - at 690 V, 45 °C                    |          | 354 A      | 409 A      | 447 A      |
| - at 500 V, 55 °C                    |          | 326 A      | 354 A      | 400 A      |
| - at 600 V, 55 °C                    |          | 312 A      | 350 A      | 390 A      |
| - at 690 V, 55 °C                    |          | 301 A      | 348 A      | 380 A      |
| Rated input current DCP/DCN          |          |            |            |            |
| (for 2/3 of the converter power)     |          |            |            |            |
| - at 675 V <sub>DC</sub> , 45 °C     |          | 314 A      | 341 A      | 385 A      |
| - at 810 V <sub>DC</sub> , 45 °C     |          | 301 A      | 337 A      | 376 A      |
| - at 930 V <sub>DC</sub> , 45 °C     |          | 290 A      | 335 A      | 366 A      |
| - at 675 V <sub>DC</sub> , 55 °C     |          | 267 A      | 290 A      | 328 A      |
| - at 810 V <sub>DC</sub> , 55 °C     |          | 255 A      | 287 A      | 319 A      |
| - at 930 V <sub>DC</sub> , 55 °C     |          | 246 A      | 284 A      | 311 A      |
| Rated output current I <sub>N</sub>  |          |            |            |            |
| - at 500 V, 45 °C                    |          | 368 A      | 400 A      | 453 A      |
| - at 600 V, 45 °C                    |          | 353 A      | 396 A      | 441 A      |
| - at 690 V, 45 °C                    |          | 340 A      | 393 A      | 430 A      |
| - at 500 V, 55 °C                    |          | 313 A      | 340 A      | 385 A      |
| - at 600 V, 55 °C                    |          | 300 A      | 337 A      | 375 A      |
| - at 690 V, 55 °C                    |          | 289 A      | 334 A      | 366 A      |
| LO base load power                   |          | 315 kW     | 355 kW     | 400 kW     |
| LO base load input current at 690 V  |          | 343 A      | 401 A      | 437 A      |
| LO base load output current at 690 V | /        | 330 A      | 385 A      | 420 A      |

Note: If the minimum short-circuit current is not reached, then the tripping time for the fuses increases, and this may result in consequential damage.

<sup>2)</sup> When semiconductor fuses are used, they must be mounted in the same higher construction as the converter.

<sup>3)</sup> The motor cables must be evenly distributed at both connection chambers.

<sup>&</sup>lt;sup>4)</sup> For connection of the Braking Module with rated power of 50 kW, P<sub>20</sub> power of 200 kW.

| Article No.                                               | 6SL3310-                               | 1PG33-7AA0                | 1PG34-0AA0              | 1PG34-5AA0              |
|-----------------------------------------------------------|----------------------------------------|---------------------------|-------------------------|-------------------------|
| HO base load power                                        |                                        | 250 kW                    | 315 kW                  | 355 kW                  |
| HO base load input current                                | at 690 V                               | 283 A                     | 327 A                   | 362 A                   |
| HO base load output curren                                | t at 690 V                             | 272 A                     | 314 A                   | 348 A                   |
| Fuse according to IEC                                     |                                        | 3NE1333-2                 | 3NE1334-2               | 3NE1435-2               |
| -                                                         |                                        | (450 A/690 V)             | (500 A/690 V)           | (560 A/690 V)           |
| manufacturer:                                             |                                        | Siemens AG                | Siemens AG              | Siemens AG              |
| Maximum permissible line s                                | hort-circuit current I <sub>kmax</sub> | ≤ 100 kA                  | ≤ 100 kA                | ≤ 100 kA                |
| Minimum line short-circuit                                | current required I <sub>kmin</sub> 1)  | > 3.5 kA                  | > 4.5 kA                | > 7.0 kA                |
| Fuse in compliance with UL                                | 2)                                     | 3NE1333-2                 | 3NE1334-2               | 3NE1435-2               |
|                                                           |                                        | (450 A/690 V)             | (500 A/690 V)           | (560 A/690 V)           |
| Manufacturer:                                             |                                        | Siemens AG                | Siemens AG              | Siemens AG              |
| Maximum permissible line s                                | hort-circuit current I <sub>kmax</sub> | ≤ 100 kA                  | ≤ 100 kA                | ≤ 100 kA                |
| Minimum line short-circuit                                | current required I <sub>kmin</sub> 1)  | > 3.5 kA                  | > 4.5 kA                | > 7.0 kA                |
| max. power loss, at I <sub>N</sub> , 45 °C                | C, 690 V                               | 5.402 kW                  | 6.191 kW                | 6.884 kW                |
| Required cooling air flow                                 |                                        | 360 l/s                   | 360 l/s                 | 360 l/s                 |
| Maximum connectable cros                                  | s-section of the line, mo-             | 4 x 240 mm <sup>2</sup>   | 4 x 240 mm <sup>2</sup> | 4 x 240 mm <sup>2</sup> |
| tor and DC-link cable                                     |                                        | 4 x 500 kcmil             | 4 x 500 kcmil           | 4 x 500 kcmil           |
| Recommended cable cross-s                                 | section for 500 V                      |                           |                         | '                       |
| - line cable                                              |                                        | 2 x 120 mm <sup>2</sup>   | 2 x 150 mm <sup>2</sup> | 2 x 185 mm <sup>2</sup> |
| - motor cable                                             |                                        | 2 x 120 mm <sup>2</sup>   | 2 x 120 mm <sup>2</sup> | 2 x 150 mm <sup>2</sup> |
| Recommended cable cross-s                                 | section for 690 V                      |                           |                         |                         |
| - line cable                                              |                                        | 2 x 120 mm <sup>2</sup>   | 2 x 150 mm <sup>2</sup> | 2 x 185 mm <sup>2</sup> |
| - motor cable                                             |                                        | 2 x 95 mm <sup>2</sup>    | 2 x 120 mm <sup>2</sup> | 2 x 150 mm <sup>2</sup> |
| Recommended cable cross-s                                 | section for 500 V                      |                           |                         |                         |
| - DC link infeed (2/3 convert                             | er power)                              | 2 x 95 mm <sup>2</sup>    | 2 x 120 mm <sup>2</sup> | 2 x 150 mm <sup>2</sup> |
| Recommended cable cross-s                                 | section for 690 V                      |                           |                         |                         |
| - DC link infeed (2/3 convert                             | er power)                              | 2 x 95 mm <sup>2</sup>    | 2 x 120 mm <sup>2</sup> | 2 x 150 mm <sup>2</sup> |
| Tightening torque for line, m<br>cable                    | otor, DC link, and ground              | 50 Nm / 443 lbf in        | 50 Nm / 443 lbf in      | 50 Nm / 443 lbf in      |
| Dimensions: Width x height                                | x depth [mm]                           | 548 x 1695 x 393          | 548 x 1695 x 393        | 548 x 1695 x 393        |
| Weight                                                    |                                        | 158 kg                    | 158 kg                  | 162 kg                  |
| Minimum control cabinet six<br>Power Module (width x heig |                                        | 800 mm x 2000 mm x 600 mm |                         |                         |

The line supply must be capable of supplying the minimum short-circuit current so that the fuses trigger and consequential damage is avoided.
Note: If the minimum short-circuit current is not reached, then the tripping time for the fuses increases, and this may result in consequential damage.

<sup>&</sup>lt;sup>2)</sup> When semiconductor fuses are used, they must be mounted in the same higher construction as the converter.

Table 11-34 PM330, frame size HX, 3-phase 500 ... 690 VAC, Part 2

|                                                                      | 6SL3310-                    | 1PG35-2AA0                  |  |
|----------------------------------------------------------------------|-----------------------------|-----------------------------|--|
| Rated input current                                                  |                             |                             |  |
| - at 500 V, 45 °C                                                    |                             | 537 A                       |  |
| - at 600 V, 45 °C                                                    |                             | 517 A                       |  |
| - at 690 V, 45 °C                                                    |                             | 499 A                       |  |
| - at 500 V, 55 °C                                                    |                             | 456 A                       |  |
| - at 600 V, 55 °C                                                    |                             | 440 A                       |  |
| - at 690 V, 55 °C                                                    |                             | 425 A                       |  |
| Rated input current DCP/DCN                                          |                             |                             |  |
| (for 2/3 of the converter power)                                     |                             | 422.4                       |  |
| - at 675 V <sub>DC</sub> , 45 °C                                     |                             | 439 A                       |  |
| - at 810 V <sub>DC</sub> , 45 °C                                     |                             | 423 A                       |  |
| - at 930 V <sub>DC</sub> , 45 °C                                     |                             | 409 A<br>373 A              |  |
| - at 675 V <sub>DC</sub> , 55 °C<br>- at 810 V <sub>DC</sub> , 55 °C |                             | 360 A                       |  |
| - at 930 V <sub>DC</sub> , 55 °C                                     |                             | 347 A                       |  |
| · · · · · · · · · · · · · · · · · · ·                                |                             | J 7 / /                     |  |
| Rated output current I <sub>N</sub>                                  |                             | 516 A                       |  |
| - at 500 V, 45 °C<br>- at 600 V, 45 °C                               |                             | 497 A                       |  |
| - at 690 V, 45 °C                                                    |                             | 480 A                       |  |
| - at 500 V, 55 °C                                                    |                             | 438 A                       |  |
| - at 600 V, 55 °C                                                    |                             | 422 A                       |  |
| - at 690 V, 55 °C                                                    |                             | 408 A                       |  |
| LO base load power                                                   |                             | 450 kW                      |  |
| LO base load input current at 690 V                                  |                             | 489 A                       |  |
| LO base load output current at 690 V                                 |                             | 470 A                       |  |
| HO base load power                                                   |                             | 400 kW                      |  |
| HO base load input current at 690 V                                  |                             | 410 A                       |  |
| HO base load output current at 690 V                                 |                             | 394 A                       |  |
|                                                                      | <del></del>                 |                             |  |
| Fuse according to IEC                                                |                             | 3NE1436-2                   |  |
| manufacturer:                                                        |                             | (630 A/690 V)<br>Siemens AG |  |
|                                                                      |                             |                             |  |
| Maximum permissible line short-circui                                |                             | ≤ 100 kA                    |  |
| Minimum line short-circuit current req                               | uired I <sub>kmin</sub> 1)  | > 8.5 kA                    |  |
| Fuse in compliance with UL 2)                                        |                             | 3NE1436-2                   |  |
|                                                                      |                             | (630 A/690 V)               |  |
| Manufacturer:                                                        |                             | Siemens AG                  |  |
| Maximum permissible line short-circui                                | t current I <sub>kmax</sub> | ≤ 100 kA                    |  |
| Minimum line short-circuit current req                               | uired I <sub>kmin</sub> 1)  | > 8.5 kA                    |  |
| max. power loss, at I <sub>N</sub> , 45 °C, 690 V                    |                             | 7.716 kW                    |  |
| Required cooling air flow                                            | ,                           | 360 l/s                     |  |
| Maximum connectable cross-section o                                  | of the line mo-             | 4 x 240 mm <sup>2</sup>     |  |
| tor and DC-link cable                                                | and mile, mo-               | 4 x 500 kcmil               |  |
| Recommended cable cross-section for                                  | 500 V                       |                             |  |
| - line cable                                                         |                             | 3 x 120 mm <sup>2</sup>     |  |
| - motor cable                                                        |                             | 3 x 95 mm <sup>2</sup>      |  |
| Recommended cable cross-section for                                  | 690 V                       |                             |  |
| - line cable                                                         |                             | 3 x 120 mm <sup>2</sup>     |  |
| - motor cable                                                        |                             | 3 x 95 mm <sup>2</sup>      |  |
|                                                                      |                             |                             |  |

| Article No.                                                                      | 6SL3310-         | 1PG35-2AA0                |
|----------------------------------------------------------------------------------|------------------|---------------------------|
| Recommended cable cross-section for 500 V - DC link infeed (2/3 converter power) |                  | 2 x 150 mm <sup>2</sup>   |
| Recommended cable cross-section -<br>- DC link infeed (2/3 converter power       |                  | 2 x 150 mm <sup>2</sup>   |
| Tightening torque for line, motor, DC cable                                      | link, and ground | 50 Nm / 443 lbf in        |
| Dimensions: Width x height x depth                                               | ı [mm]           | 548 x 1695 x 393          |
| Weight                                                                           | ,                | 162 kg                    |
| Minimum control cabinet size for in<br>Power Module (width x height x de         |                  | 800 mm x 2000 mm x 600 mm |

The line supply must be capable of supplying the minimum short-circuit current so that the fuses trigger and consequential damage is avoided.

Table 11-35 PM330, frame size JX, 3 AC 500 V ... 690 V

| Article No.                         | 6SL3310- | 1PG35-8AA0 | 1PG36-5AA0 | 1PG37-2AA0 |
|-------------------------------------|----------|------------|------------|------------|
| Rated input current                 |          |            |            |            |
| - at 500 V, 45 °C                   |          | 596 A      | 679 A      | 753 A      |
| - at 600 V, 45 °C                   |          | 578 A      | 647 A      | 720 A      |
| - at 690 V, 45 °C                   |          | 555 A      | 618 A      | 690 A      |
| - at 500 V, 55 °C                   |          | 506 A      | 577 A      | 640 A      |
| - at 600 V, 55 °C                   |          | 492 A      | 550 A      | 612 A      |
| - at 690 V, 55 °C                   |          | 472 A      | 525 A      | 587 A      |
| Rated input current DCP/DCN         |          |            |            |            |
| (for 2/3 of the converter power)    |          |            |            |            |
| - at 675 $V_{DC}$ , 45 $^{\circ}C$  |          | 495 A      | 557 A      | 617 A      |
| - at 810 V <sub>DC</sub> , 45 °C    |          | 474 A      | 531 A      | 590 A      |
| - at 930 V <sub>DC</sub> , 45 °C    |          | 456 A      | 507 A      | 566 A      |
| - at 675 V <sub>DC</sub> , 55 °C    |          | 420 A      | 473 A      | 525 A      |
| - at 810 V <sub>DC</sub> , 55 °C    |          | 403 A      | 451 A      | 502 A      |
| - at 930 V <sub>DC</sub> , 55 °C    |          | 387 A      | 431 A      | 481 A      |
| Rated output current I <sub>N</sub> |          |            |            |            |
| - at 500 V, 45 °C                   |          | 581 A      | 654 A      | 725 A      |
| - at 600 V, 45 °C                   |          | 557 A      | 623 A      | 693 A      |
| - at 690 V, 45 °C                   |          | 535 A      | 595 A      | 665 A      |
| - at 500 V, 55 °C                   |          | 494 A      | 555 A      | 616 A      |
| - at 600 V, 55 °C                   |          | 473 A      | 530 A      | 589 A      |
| - at 690 V, 55 °C                   |          | 455 A      | 506 A      | 565 A      |
| LO base load power                  |          | 500 kW     | 560 kW     | 630 kW     |
| LO base load input current at 690 V | /        | 540 A      | 602 A      | 675 A      |
| LO base load output current at 690  | V        | 520 A      | 580 A      | 650 A      |
| HO base load power                  |          | 450 kW     | 500 kW     | 560 kW     |
| HO base load input current at 690 V | V        | 461 A      | 494 A      | 552 A      |
| HO base load output current at 690  | ) V      | 444 A      | 476 A      | 532 A      |

Note: If the minimum short-circuit current is not reached, then the tripping time for the fuses increases, and this may result in consequential damage.

<sup>&</sup>lt;sup>2)</sup> When semiconductor fuses are used, they must be mounted in the same higher construction as the converter.

| Article No. 6SL3310-                                                               | 1PG35-8AA0                                         | 1PG36-5AA0                                         | 1PG37-2AA0                                         |
|------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| Fuse according to IEC                                                              | 3NE1437-2<br>(710 A/690 V)                         | 3NE1438-2<br>(800 A/690 V)                         | 3NE1448-2<br>(850 A/690 V)                         |
| manufacturer:                                                                      | Siemens AG                                         | Siemens AG                                         | Siemens AG                                         |
| Maximum permissible line short-circuit current I <sub>kmax</sub>                   |                                                    | ≤ 100 kA                                           | ≤ 100 kA                                           |
| Minimum line short-circuit current required $I_{kmin}$ 1)                          | > 10.0 kA                                          | > 11.0 kA                                          | > 13.0 kA                                          |
| Fuse in compliance with UL <sup>2)</sup> Manufacturer:                             | 3NE1437-2<br>(710 A/690 V)<br>Siemens AG           | 3NE1438-2<br>(800 A/690 V)<br>Siemens AG           | 3NE1448-2<br>(850 A/690 V)<br>Siemens AG           |
| Maximum permissible line short-circuit current $I_{kmax}$                          |                                                    | ≤ 100 kA                                           | ≤ 100 kA                                           |
| Minimum line short-circuit current required $I_{kmin}$ <sup>1)</sup>               | > 10.0 kA                                          | > 11.0 kA                                          | > 13.0 kA                                          |
| max. power loss, at I <sub>N</sub> , 45 °C, 690 V                                  | 8.134 kW                                           | 8.828 kW                                           | 9.937 kW                                           |
| Required cooling air flow                                                          | 450 l/s                                            | 450 l/s                                            | 450 l/s                                            |
| Maximum connectable cross-section of the power cable                               | 6 x 240 mm <sup>2</sup><br>6 x 500 kcmil           | 6 x 240 mm <sup>2</sup><br>6 x 500 kcmil           | 6 x 240 mm <sup>2</sup><br>6 x 500 kcmil           |
| Maximum connectable cross-section of the motor cable                               | 4 x 240 mm <sup>2</sup><br>4 x 500 kcmil           | 4 x 240 mm <sup>2</sup><br>4 x 500 kcmil           | 4 x 240 mm <sup>2</sup><br>4 x 500 kcmil           |
| Maximum connectable cross-section of the DC link cable                             | 4 x 240 mm <sup>2</sup><br>4 x 500 kcmil           | 4 x 240 mm <sup>2</sup><br>4 x 500 kcmil           | 4 x 240 mm <sup>2</sup><br>4 x 500 kcmil           |
| Recommended cable cross-section for 500 V - line cable - motor cable <sup>3)</sup> | 2 x 240 mm <sup>2</sup><br>2 x 185 mm <sup>2</sup> | 3 x 185 mm <sup>2</sup><br>2 x 240 mm <sup>2</sup> | 3 x 185 mm <sup>2</sup><br>2 x 240 mm <sup>2</sup> |
| Recommended cable cross-section for 690 V - line cable - motor cable <sup>3)</sup> | 2 x 240 mm <sup>2</sup><br>2 x 185 mm <sup>2</sup> | 3 x 150 mm <sup>2</sup><br>2 x 240 mm <sup>2</sup> | 3 x 185 mm <sup>2</sup><br>2 x 240 mm <sup>2</sup> |
| Recommended cable cross-section for 500 V - DC link infeed (2/3 converter power)   | 2 x 185 mm <sup>2</sup>                            | 2 x 185 mm²                                        | 2 x 240 mm <sup>2</sup>                            |
| Recommended cable cross-section for 690 V - DC link infeed (2/3 converter power)   | 2 x 150 mm <sup>2</sup>                            | 2 x 185 mm <sup>2</sup>                            | 2 x 185 mm <sup>2</sup>                            |
| Tightening torque for line, motor, DC link, and groun cable                        | d 50 Nm / 443 lbf in                               | 50 Nm / 443 lbf in                                 | 50 Nm / 443 lbf in                                 |
| Dimensions: Width x height x depth [mm]                                            | 801 x 1621 x 393                                   | 801 x 1621 x 393                                   | 801 x 1621 x 393                                   |
| Weight                                                                             | 234 kg                                             | 234 kg                                             | 244 kg                                             |

The line supply must be capable of supplying the minimum short-circuit current so that the fuses trigger and consequential damage is avoided.

Note: If the minimum short circuit current is not reached, then the tripping time for the fuses increases, and this may recult

Note: If the minimum short-circuit current is not reached, then the tripping time for the fuses increases, and this may result in consequential damage.

<sup>&</sup>lt;sup>2)</sup> When semiconductor fuses are used, they must be mounted in the same higher construction as the converter.

<sup>&</sup>lt;sup>3)</sup> The motor cables must be evenly distributed at both connection chambers.

### Protective devices for the Power Module

The fuses listed in the following tables are examples of suitable fuses.

Additional components for branch protection are available in the Internet:

Branch protection and short-circuit strength according to UL and IEC (<a href="https://support.industry.siemens.com/cs/ww/en/view/109486009">https://support.industry.siemens.com/cs/ww/en/view/109486009</a>)

## Typical converter load cycles

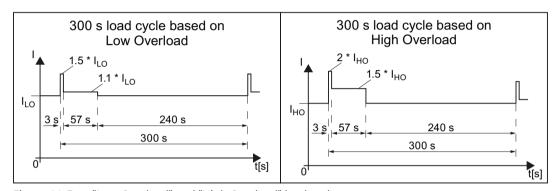



Figure 11-5 "Low Overload" and "High Overload" load cycles

### 11.6.1 Ambient conditions

| Property                      | Version                                                                                    |
|-------------------------------|--------------------------------------------------------------------------------------------|
| Ambient conditions for tra    | nsport in the transport packaging                                                          |
| Air-conditioning              | - 40 °C + 70 °C, according to Class 2K4 to EN 60721-3-2:1997 maximum humidity 95% at 40 °C |
| Mechanical system             | Shocks and vibrations permissible according to 2M3 to IEC 60721-3-2:1997                   |
| Chemical substances           | Protected according to Class 2C2 to IEC 60721-3-2:1997                                     |
| Biological ambient conditions | Suitable according to Class 2B1 to IEC 60721-3-2:1997                                      |
| Ambient conditions for lor    | ng-term storage in the product packaging or in transport packaging                         |
| Air-conditioning              | - 25 °C + 55 °C, according to Class 1K3 to IEC 60721-3-1:1997                              |
| Chemical substances           | Protected according to Class 1C2 to IEC 60721-3-1:1997                                     |
| Biological ambient conditions | Suitable according to Class 1B1 to IEC 60721-3-1:1997                                      |
| Ambient conditions in ope     | ration                                                                                     |
| Installation altitude         | Up to 1000 m above sea level without limitations                                           |
|                               | Restrictions for special ambient conditions (Page 562)                                     |

| Property                      | Version                                                                                                                   |  |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|
| Air-conditioning 1)           | FSA FSC ambient operating temperature <sup>2)</sup>                                                                       |  |
|                               | – For operation according to Low Overload: -10 $^{\circ}$ C +40 $^{\circ}$ C                                              |  |
|                               | <ul> <li>For operation according to High Overload: -10 °C +50 °C</li> </ul>                                               |  |
|                               | <ul> <li>Restrictions for special ambient conditions (Page 562)</li> </ul>                                                |  |
|                               | FSD FSG ambient operating temperature <sup>2)</sup>                                                                       |  |
|                               | <ul> <li>For operation according to Low Overload: -20 °C +40 °C</li> </ul>                                                |  |
|                               | <ul> <li>For operation according to High Overload: -20 °C +50 °C</li> </ul>                                               |  |
|                               | <ul> <li>Restrictions for special ambient conditions (Page 562)</li> </ul>                                                |  |
|                               | Relative humidity: 5 95%, condensation not permitted                                                                      |  |
|                               | • Oil mist, ice formation, condensation, dripping water, spraying water, splashing water and water jets are not permitted |  |
| Mechanical system             | Vibration test during operation according to IEC 60068-2-6 Test Fc (sinusoidal)                                           |  |
|                               | • 0 57 Hz: 0.075 mm deflection amplitude                                                                                  |  |
|                               | • 57 150 Hz: 1 g acceleration amplitude                                                                                   |  |
|                               | 10 frequency cycles per axis                                                                                              |  |
|                               | Shock test according to IEC 60068-2-27 Test Ea (half-sine)                                                                |  |
|                               | • 5 g peak acceleration                                                                                                   |  |
|                               | 30 ms duration                                                                                                            |  |
|                               | <ul> <li>3 shocks in all three axes in both directions</li> </ul>                                                         |  |
| Chemical substances           | Protected according to 3C2 to IEC 60721-3-3:2002                                                                          |  |
| Biological ambient conditions | Suitable according to 3B1 to IEC 60721-3-3: 2002                                                                          |  |
| Pollution                     | Suitable for environments with degree of pollution 2 according to EN 61800-5-1                                            |  |
| Cooling                       | Forced air cooling AF, according to EN 60146                                                                              |  |
| Cooling air                   | Clean and dry air                                                                                                         |  |
| Noise emission                | Maximum 75 db(A)                                                                                                          |  |

<sup>1)</sup> Increased ruggedness regarding temperature range and relative humidity; therefore better than 3K3 according to IEC 60721-3-3: 2002

<sup>&</sup>lt;sup>2)</sup> Observe the permissible ambient operating temperatures for the Control Unit and the Operator Panel (IOP-2 or BOP-2).

# 11.6.2 General technical data, 200 V converters

| Property                                           | Version                                                                                                                                                                                                                                                                       |                                                                                 |                                            |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------|
| Line voltage                                       | FSA FSC                                                                                                                                                                                                                                                                       | 200 V 240 V 1 AC ± 10%                                                          | 0.55 kW 4 kW - LO<br>0.37 kW 3 kW - HO     |
|                                                    |                                                                                                                                                                                                                                                                               | 200 V 240 V 3 AC ± 10%                                                          | 0.55 kW 7.5 kW - LO<br>0.37 kW 5.5 kW - HO |
|                                                    | FSD FSF                                                                                                                                                                                                                                                                       | 200 V 240 V 3 AC ± 10% (in operation -20% < 1 min)                              | 11 kW 55 kW - LO<br>7.5 kW 45 kW - HO      |
| Line supply configurations                         |                                                                                                                                                                                                                                                                               | TT line supplies or non-grounded IT li<br>ecting the line supply and motor (Pag |                                            |
| Line impedance                                     | FSA FSC                                                                                                                                                                                                                                                                       | $2\% \le Uk < 4\%$ . For Uk < 2%, we rewith the next higher power rating.       | commend a line reactor, or a Power Module  |
|                                                    | FSD FSF                                                                                                                                                                                                                                                                       | No restrictions                                                                 |                                            |
| Power factor λ                                     | FSA FSC                                                                                                                                                                                                                                                                       | 0.7 without line reactor for Uk $\geq$ 2° 0.85 with line reactor for Uk $<$ 2%  | %                                          |
|                                                    | FSD FSF                                                                                                                                                                                                                                                                       | > 0.9                                                                           |                                            |
| Output voltage                                     | 0 V 3 AC 0.9                                                                                                                                                                                                                                                                  | 95 × input voltage                                                              |                                            |
| Input frequency                                    | 50 Hz 60 Hz, ± 3 Hz                                                                                                                                                                                                                                                           |                                                                                 |                                            |
| Output frequency                                   | 0 550 Hz, depending on the control mode                                                                                                                                                                                                                                       |                                                                                 |                                            |
| Inrush current                                     | < LO base load input current                                                                                                                                                                                                                                                  |                                                                                 |                                            |
| Overvoltage category according to EN 61800-5-1     | III for line supplies                                                                                                                                                                                                                                                         |                                                                                 |                                            |
| Pulse frequency                                    | 4 kHz (factory setting),                                                                                                                                                                                                                                                      |                                                                                 |                                            |
|                                                    | Adjustable in steps of 2 kHz.  Current reduction as a function of the pulse frequency (Page 539)                                                                                                                                                                              |                                                                                 |                                            |
|                                                    | If you increase                                                                                                                                                                                                                                                               | the pulse frequency, the converter re                                           | educes the maximum output current.         |
| Short-circuit current (SCCR) and branch protection | Maximum permissible line short-circuit current ≤ 100 kA rms  Branch protection and short-circuit strength according to UL and IEC ( <a href="https://support.industry.siemens.com/cs/ww/en/view/109782705">https://support.industry.siemens.com/cs/ww/en/view/109782705</a> ) |                                                                                 |                                            |
| Degree of protection ac-                           | IP20                                                                                                                                                                                                                                                                          |                                                                                 |                                            |
| cording to EN 60529                                | IP55 PT devi                                                                                                                                                                                                                                                                  | ces outside the control cabinet                                                 |                                            |
| Protection class according to EN 61800-5-1         | The converters are devices with protection class I                                                                                                                                                                                                                            |                                                                                 |                                            |
| Touch protection according to EN 50274             | DGUV regulation 3 when used for the intended purpose                                                                                                                                                                                                                          |                                                                                 |                                            |
| Cooling in compliance with EN 60146                | Forced air cod                                                                                                                                                                                                                                                                | oling AF                                                                        |                                            |
| Safety Integrated                                  | See function n                                                                                                                                                                                                                                                                | nanual "Safety Integrated"                                                      |                                            |
|                                                    | Overview                                                                                                                                                                                                                                                                      | of the manuals (Page 581)                                                       |                                            |

# 11.6.3 Specific technical data, 200 V converters

Table 11-36 PM240-2, IP20, frame size A, 200 V ... 240 V 1 AC / 3 AC

| Article No. without filter<br>Article No. with filter  | 6SL3210-1PB13-0UL0<br>6SL3210-1PB13-0AL0 | 6SL3210-1PB13-8UL0<br>6SL3210-1PB13-8AL0 |  |
|--------------------------------------------------------|------------------------------------------|------------------------------------------|--|
| LO base load power                                     | 0.55 kW                                  | 0.75 kW                                  |  |
| 1 AC LO base load input current                        | 7.5 A                                    | 9.6 A                                    |  |
| 3 AC LO base load input current                        | 4.2 A                                    | 5.5 A                                    |  |
| LO base load output current                            | 3.2 A                                    | 4.2 A                                    |  |
| HO base load power                                     | 0.37 kW                                  | 0.55 kW                                  |  |
| 1 AC HO base load input current                        | 6.6 A                                    | 8.4 A                                    |  |
| 3 AC HO base load input current                        | 3.0 A                                    | 4.2 A                                    |  |
| HO base load output current                            | 2.3 A                                    | 3.2 A                                    |  |
| Fuse according to IEC<br>Fuse according to UL, class J | 3NA3805 (16 A)<br>15 A                   | 3NA3805 (16 A)<br>15 A                   |  |
| Power loss                                             | 0.04 kW                                  | 0.04 kW                                  |  |
| Required cooling air flow                              | 5 l/s                                    | 5 l/s                                    |  |
| Weight without filter                                  | 1.4 kg                                   | 1.4 kg                                   |  |
| Weight with filter                                     | 1.6 kg                                   | 1.6 kg                                   |  |

Table 11-37 PM240-2, PT, frame size A, 200 V ... 240 V 1 AC / 3 AC

| Article No. without filter<br>Article No. with filter  | 6SL3211-1PB13-8UL0<br>6SL3211-1PB13-8AL0 |   |
|--------------------------------------------------------|------------------------------------------|---|
| LO base load power                                     | 0.75 kW                                  |   |
| 1 AC LO base load input current                        | 9.6 A                                    |   |
| 3 AC LO base load input current                        | 5.5 A                                    | ' |
| LO base load output current                            | 4.2 A                                    |   |
| HO base load power                                     | 0.55 kW                                  |   |
| 1 AC HO base load input current                        | 8.4 A                                    |   |
| 3 AC HO base load input current                        | 4.2 A                                    | , |
| HO base load output current                            | 3.2 A                                    | ' |
| Fuse according to IEC<br>Fuse according to UL, class J | 3NA3 805 (16 A)<br>15 A                  |   |
| Power loss                                             | 0.04 kW                                  |   |
| Required cooling air flow                              | 5 l/s                                    |   |
| Weight without filter                                  | 1.8 kg                                   |   |
| Weight with filter                                     | 2.0 kg                                   |   |

Table 11-38 PM240-2, IP20, frame size B, 200 V ... 240 V 1 AC / 3 AC

| Article No. without filter<br>Article No. with filter  | 6SL3210-1PB15-5UL0<br>6SL3210-1PB15-5AL0 | 6SL3210-1PB17-4UL0<br>6SL3210-1PB17-4AL0 | 6SL3210-1PB21-0UL0<br>6SL3210-1PB21-0AL0 |
|--------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| LO base load power                                     | 1.1 kW                                   | 1.5 kW                                   | 2.2 kW                                   |
| 1 AC LO base load input current                        | 13.5 A                                   | 18.1 A                                   | 24.0 A                                   |
| 3 AC LO base load input current                        | 7.8 A                                    | 9.7 A                                    | 13.6 A                                   |
| LO base load output current                            | 6 A                                      | 7.4 A                                    | 10.4 A                                   |
| HO base load power                                     | 0.75 kW                                  | 1.1 kW                                   | 1.5 kW                                   |
| 1 AC HO base load input current                        | 11.8 A                                   | 15.8 A                                   | 20.9 A                                   |
| 3 AC HO base load input current                        | 5.5 A                                    | 7.8 A                                    | 9.7 A                                    |
| HO base load output current                            | 4.2 A                                    | 6 A                                      | 7.4 A                                    |
| Fuse according to IEC<br>Fuse according to UL, class J | 3NA3812 (32 A)<br>35 A                   | 3NA3812 (32 A)<br>35 A                   | 3NA3812 (32 A)<br>35 A                   |
| Power loss                                             | 0.05 kW                                  | 0.07 kW                                  | 0.12 kW                                  |
| Required cooling air flow                              | 9.2 l/s                                  | 9.2 l/s                                  | 9.2 l/s                                  |
| Weight without filter                                  | 2.8 kg                                   | 2.8 kg                                   | 2.8 kg                                   |
| Weight with filter                                     | 3.1 kg                                   | 3.1 kg                                   | 3.1 kg                                   |

Table 11-39 PM240-2, PT, frame size B, 200 V ... 240 V 1 AC / 3 AC

| Article No. without filter<br>Article No. with filter | 6SL3211-1PB21-0UL0<br>6SL3211-1PB21-0AL0 |  |
|-------------------------------------------------------|------------------------------------------|--|
| LO base load power                                    | 2.2 kW                                   |  |
| 1 AC LO base load input current                       | 24.0 A                                   |  |
| 3 AC LO base load input current                       | 13.6 A                                   |  |
| LO base load output current                           | 10.4 A                                   |  |
| HO base load power                                    | 1.5 kW                                   |  |
| 1 AC HO base load input current                       | 20.9 A                                   |  |
| 3 AC HO base load input current                       | 9.7 A                                    |  |
| HO base load output current                           | 7.4 A                                    |  |
| Fuse according to IEC Fuse according to UL, class J   | 3NA3812 (32 A)<br>35 A                   |  |
| Power loss                                            | 0.12 kW <sup>1)</sup>                    |  |
| Required cooling air flow                             | 9.2 l/s                                  |  |
| Weight without filter                                 | 3.4 kg                                   |  |
| Weight with filter                                    | 3.7 kg                                   |  |

<sup>1)</sup> approx. 0.08 kW through the heat sink

Table 11-40 PM240-2, IP 20, frame size C, 200 V ... 240 V 1 AC / 3 AC

| Article No. without filter<br>Article No. with filter  | 6SL3210-1PB21-4UL0<br>6SL3210-1PB21-4AL0 | 6SL3210-1PB21-8UL0<br>6SL3210-1PB21-8AL0 |  |
|--------------------------------------------------------|------------------------------------------|------------------------------------------|--|
| LO base load power                                     | 3 kW                                     | 4 kW                                     |  |
| 1 AC LO base load input current                        | 35.9 A                                   | 43.0 A                                   |  |
| 3 AC LO base load input current                        | 17.7 A                                   | 22.8 A                                   |  |
| LO base load output current                            | 13.6 A                                   | 17.5 A                                   |  |
| HO base load power                                     | 2.2 kW                                   | 3 kW                                     |  |
| 1 AC HO base load input current                        | 31.3 A                                   | 37.5 A                                   |  |
| 3 AC HO base load input current                        | 13.6 A                                   | 17.7 A                                   |  |
| HO base load output current                            | 10.4 A                                   | 13.6 A                                   |  |
| Fuse according to IEC<br>Fuse according to UL, class J | 3NA3820 (50 A)<br>50 A                   | 3NA3820 (50 A)<br>50 A                   |  |
| Power loss                                             | 0.14 kW                                  | 0.18 kW                                  |  |
| Required cooling air flow                              | 18.5 l/s                                 | 18.5 l/s                                 |  |
| Weight without filter                                  | 5.0 kg                                   | 5.0 kg                                   |  |
| Weight with filter                                     | 5.2 kg                                   | 5.2 kg                                   |  |

Table 11-41 PM240-2, PT, frame size C, 200 V ... 240 V 1 AC / 3 AC

| Article No. without filter<br>Article No. with filter  | 6SL3211-1PB21-8UL0<br>6SL3211-1PB21-8AL0 |  |
|--------------------------------------------------------|------------------------------------------|--|
| LO base load power                                     | 4 kW                                     |  |
| 1 AC LO base load input current                        | 43.0 A                                   |  |
| 3 AC LO base load input current                        | 22.8 A                                   |  |
| LO base load output current                            | 17.5 A                                   |  |
| HO base load power                                     | 3 kW                                     |  |
| 1 AC HO base load input current                        | 37.5 A                                   |  |
| 3 AC HO base load input current                        | 17.7 A                                   |  |
| HO base load output current                            | 13.6 A                                   |  |
| Fuse according to IEC<br>Fuse according to UL, class J | 3NA3820 (50 A)<br>50 A                   |  |
| Power loss                                             | 0.18 kW <sup>1)</sup>                    |  |
| Required cooling air flow                              | 18.5 l/s                                 |  |
| Weight without filter                                  | 5.9 kg                                   |  |
| Weight with filter                                     | 6.2 kg                                   |  |

<sup>1)</sup> approx. 0.09 kW through the heat sink

Table 11-42 PM240-2, IP 20, frame size C, 200 V ... 240 V 3 AC

| Article No. without filter<br>Article No. with filter  | 6SL3210-1PC22-2UL0<br>6SL3210-1PC22-2AL0 | 6SL3210-1PC22-8UL0<br>6SL3210-1PC22-8AL0 |  |
|--------------------------------------------------------|------------------------------------------|------------------------------------------|--|
| LO base load power                                     | 5.5 kW                                   | 7.5 kW                                   |  |
| LO base load input current                             | 28.6 A                                   | 36.4 A                                   |  |
| LO base load output current                            | 22.0 A                                   | 28.0 A                                   |  |
| HO base load power                                     | 4 kW                                     | 5.5 kW                                   |  |
| HO base load input current                             | 22.8 A                                   | 28.6 A                                   |  |
| HO base load output current                            | 17.5 A                                   | 22.0 A                                   |  |
| Fuse according to IEC<br>Fuse according to UL, class J | 3NA3820 (50 A)<br>50 A                   | 3NA3820 (50 A)<br>50 A                   |  |
| Power loss                                             | 0.2 kW                                   | 0.26 kW                                  |  |
| Required cooling air flow                              | 18.5 l/s                                 | 18.5 l/s                                 |  |
| Weight without filter                                  | 5.0 kg                                   | 5.0 kg                                   |  |
| Weight with filter                                     | 5.2 kg                                   | 5.2 kg                                   |  |

Table 11-43 PM240-2, PT, frame size C, 200 V ... 240 V 3 AC

| Article No. without filter<br>Article No. with filter  | 6SL3211-1PC22-2UL0<br>6SL3211-1PC22-2AL0 | 6SL3211-1PC22-8UL0<br>6SL3211-1PC22-8AL0 |   |
|--------------------------------------------------------|------------------------------------------|------------------------------------------|---|
| LO base load power                                     | 5.5 kW                                   | 7.5 kW                                   | _ |
| LO base load input current                             | 28.6 A                                   | 36.4 A                                   |   |
| LO base load output current                            | 22.0 A                                   | 28.0 A                                   |   |
| HO base load power                                     | 4 kW                                     | 5.5 kW                                   |   |
| HO base load input current                             | 22.8 A                                   | 28.6 A                                   |   |
| HO base load output current                            | 17.5 A                                   | 22.0 A                                   |   |
| Fuse according to IEC<br>Fuse according to UL, class J | 3NA3820 (50 A)<br>50 A                   | 3NA3820 (50 A)<br>50 A                   |   |
| Power loss                                             | 0.2 kW <sup>1)</sup>                     | 0.26 kW <sup>2)</sup>                    |   |
| Required cooling air flow                              | 18.5 l/s                                 | 18.5 l/s                                 |   |
| Weight without filter                                  | 5.9 kg                                   | 5.9 kg                                   |   |
| Weight with filter                                     | 6.2 kg                                   | 6.2 kg                                   |   |

<sup>1)</sup> approx. 0.2 kW through the heatsink

Table 11-44 PM240-2, IP20, frame size D, 200 V ... 240 V 3 AC

| Article No. without filter | 6SL3210-1PC24-2UL0 | 6SL3210-1PC25-4UL0 | 6SL3210-1PC26-8UL0 |
|----------------------------|--------------------|--------------------|--------------------|
| LO base load power         | 11 kW              | 15 kW              | 18.5 kW            |
| LO base load input current | 40 A               | 51 A               | 64 A               |

<sup>&</sup>lt;sup>2)</sup> approx. 0.25 kW through the heatsink

| Article No. without filter                             | 6SL3210-1PC24-2UL0     | 6SL3210-1PC25-4UL0     | 6SL3210-1PC26-8UL0      |
|--------------------------------------------------------|------------------------|------------------------|-------------------------|
| LO base load output current                            | 42 A                   | 54 A                   | 68 A                    |
| HO base load power                                     | 7.5 kW                 | 11 kW                  | 15 kW                   |
| HO base load input current                             | 36 A                   | 43 A                   | 56 A                    |
| HO base load output current                            | 35 A                   | 42 A                   | 54 A                    |
| Fuse according to IEC<br>Fuse according to UL, class J | 3NA3822 (63 A)<br>60 A | 3NA3824 (80 A)<br>70 A | 3NA3830 (100 A)<br>90 A |
| Power loss                                             | 0.45 kW                | 0.61 kW                | 0.82 kW                 |
| Required cooling air flow                              | 55 l/s                 | 55 l/s                 | 55 l/s                  |
| Weight                                                 | 18.3 kg                | 18.3 kg                | 18.3 kg                 |

Table 11-45 PM240-2, PT, frame size D, 200 V ... 240 V 3 AC

| Article No. without filter                             | 6SL3211-1PC26-8UL0      |  |
|--------------------------------------------------------|-------------------------|--|
| LO base load power                                     | 18.5 kW                 |  |
| LO base load input current                             | 64 A                    |  |
| LO base load output current                            | 68 A                    |  |
| HO base load power                                     | 15 kW                   |  |
| HO base load input current                             | 56 A                    |  |
| HO base load output current                            | 54 A                    |  |
| Fuse according to IEC<br>Fuse according to UL, class J | 3NA3830 (100 A)<br>90 A |  |
| Power loss                                             | 0.82 kW <sup>1)</sup>   |  |
| Required cooling air flow                              | 55 l/s                  |  |
| Weight                                                 | 19.5 kg                 |  |

<sup>1)</sup> approx. 0.72 kW through the heatsink

Table 11-46 PM240-2, IP20, frame size E, 200 V ... 240 V 3 AC

| Article No. without filter                           | 6SL3210-1PC28-0UL0       | 6SL3210-1PC31-1UL0       |  |
|------------------------------------------------------|--------------------------|--------------------------|--|
| LO base load power                                   | 22 kW                    | 30 kW                    |  |
| LO base load input current                           | 76 A                     | 98 A                     |  |
| LO base load output current                          | 80 A                     | 104 A                    |  |
| HO base load power                                   | 18.5 kW                  | 22 kW                    |  |
| HO base load input current                           | 71 A                     | 83 A                     |  |
| IO base load output current                          | 68 A                     | 80 A                     |  |
| use according to IEC<br>use according to UL, class J | 3NA3830 (100 A)<br>100 A | 3NA3836 (160 A)<br>150 A |  |
| Power loss                                           | 0.92 kW                  | 1.28 kW                  |  |

| Article No. without filter | 6SL3210-1PC28-0UL0 | 6SL3210-1PC31-1UL0 |  |
|----------------------------|--------------------|--------------------|--|
| Required cooling air flow  | 83 l/s             | 83 l/s             |  |
| Weight                     | 26.8 kg            | 26.8 kg            |  |

Table 11-47 PM240-2, PT, frame size E, 200 V to 240 V 3 AC

| Article No. without filter                             | 6SL3211-1PC31-1UL0       |  |
|--------------------------------------------------------|--------------------------|--|
| LO base load power                                     | 30 kW                    |  |
| LO base load input current                             | 98 A                     |  |
| LO base load output current                            | 104 A                    |  |
| HO base load power                                     | 22 kW                    |  |
| HO base load input current                             | 83 A                     |  |
| HO base load output current                            | 80 A                     |  |
| Fuse according to IEC<br>Fuse according to UL, class J | 3NA3836 (160 A)<br>150 A |  |
| Power loss                                             | 1.28 kW <sup>1)</sup>    |  |
| Required cooling air flow                              | 83 l/s                   |  |
| Weight                                                 | 29.5 kg                  |  |

<sup>1)</sup> approx. 1.1 kW through the heatsink

Table 11-48 PM240-2, IP20, frame size F, 200 V ... 240 V 3 AC

| Article No. without filter                             | 6SL3210-1PC31-3UL0       | 6SL3210-1PC31-6UL0       | 6SL3210-1PC31-8UL0       |
|--------------------------------------------------------|--------------------------|--------------------------|--------------------------|
| LO base load power                                     | 37 kW                    | 45 kW                    | 55 kW                    |
| LO base load input current                             | 126 A                    | 149 A                    | 172 A                    |
| LO base load output current                            | 130 A                    | 154 A                    | 178 A                    |
| HO base load power                                     | 30 kW                    | 37 kW                    | 45 kW                    |
| HO base load input current                             | 110 A                    | 138 A                    | 164 A                    |
| HO base load output current                            | 104 A                    | 130 A                    | 154 A                    |
| Fuse according to IEC<br>Fuse according to UL, class J | 3NA3140 (200 A)<br>175 A | 3NA3140 (200 A)<br>200 A | 3NA3142 (224 A)<br>250 A |
| Power loss                                             | 1.38 kW                  | 1.72 kW                  | 2.09 kW                  |
| Required cooling air flow                              | 153 l/s                  | 153 l/s                  | 153 l/s                  |
| Weight                                                 | 58 kg                    | 58 kg                    | 58 kg                    |

Table 11-49 PM240-2, PT, frame size F, 200 V to 240 V 3 AC

| Article No. without filter                             | 6SL3211-1PC31-8UL0       |   |
|--------------------------------------------------------|--------------------------|---|
| LO base load power                                     | 55 kW                    | ' |
| LO base load input current                             | 172 A                    |   |
| LO base load output current                            | 178 A                    |   |
| HO base load power                                     | 45 kW                    |   |
| HO base load input current                             | 164 A                    |   |
| HO base load output current                            | 154 A                    | , |
| Fuse according to IEC<br>Fuse according to UL, class J | 3NA3142 (224 A)<br>250 A |   |
| Power loss                                             | 2.09 kW <sup>1)</sup>    |   |
| Required cooling air flow                              | 153 l/s                  |   |
| Weight                                                 | 60.5 kg                  |   |

<sup>1)</sup> approx. 1.9 kW through the heatsink

## 11.6.4 Current derating depending on the pulse frequency, 200 V converters

#### LO base load

| Article number       | LO    |      |      | Pu      | lse frequ | iency [k | Hz]      |      |      |
|----------------------|-------|------|------|---------|-----------|----------|----------|------|------|
|                      | power | 2    | 4 *) | 6       | 8         | 10       | 12       | 14   | 16   |
|                      | [kW]  |      |      | LO base | load ou   | tput cur | rent [A] |      |      |
| 6SL3210-1PB13-0 . L0 | 0.55  | 3.2  | 3.2  | 2.7     | 2.2       | 1.9      | 1.6      | 1.4  | 1.3  |
| 6SL3211PB13-8 . LO   | 0.75  | 4.2  | 4.2  | 3.6     | 2.9       | 2.5      | 2.1      | 1.9  | 1.7  |
| 6SL3210-1PB15-5 . L0 | 1.1   | 6    | 6    | 5.1     | 4.2       | 3.6      | 3        | 2.7  | 2.4  |
| 6SL3210-1PB17-4 . LO | 1.5   | 7.4  | 7.4  | 6.3     | 5.2       | 4.4      | 3.7      | 3.3  | 3    |
| 6SL3211PB21-0 . LO   | 2.2   | 10.4 | 10.4 | 8.8     | 7.3       | 6.2      | 5.2      | 4.7  | 4.2  |
| 6SL3210-1PB21-4 . L0 | 3     | 13.6 | 13.6 | 11.6    | 9.5       | 8.2      | 6.8      | 6.1  | 5.4  |
| 6SL3211PB21-8 . LO   | 4     | 17.5 | 17.5 | 14.9    | 12.3      | 10.5     | 8.8      | 7.9  | 7    |
| 6SL3210-1PC22-2 . L0 | 5.5   | 22   | 22   | 18.7    | 15.4      | 13.2     | 11       | 9.9  | 8.8  |
| 6SL3210-1PC22-8 . L0 | 7.5   | 28   | 28   | 23.8    | 19.6      | 16.8     | 14       | 12.6 | 11.2 |
| 6SL3210-1PC24-2UL0   | 11    | 42   | 42   | 35.7    | 29.4      | 25.2     | 21       | 18.9 | 16.8 |
| 6SL3210-1PC25-4UL0   | 15    | 54   | 54   | 45.9    | 37.8      | 32.4     | 27       | 24.3 | 21.6 |
| 6SL3211PC26-8UL0     | 18.5  | 68   | 68   | 57.8    | 47.6      | 40.8     | 34       | 30.6 | 27.2 |
| 6SL3210-1PC28-0UL0   | 22    | 80   | 80   | 68      | 56        | 48       | 40       | 36   | 32   |
| 6SL3211PC31-1UL0     | 30    | 104  | 104  | 88.4    | 72.8      | 62.4     | 52       | 46.8 | 41.6 |
| 6SL3210-1PC31-3UL0   | 37    | 130  | 130  | 110.5   | 91        |          |          |      |      |
| 6SL3210-1PC31-6UL0   | 45    | 154  | 154  | 130.9   | 107.8     |          |          |      |      |
| 6SL3211PC31-8UL0     | 55    | 178  | 178  | 151.3   | 124.6     |          |          |      |      |

<sup>\*)</sup> Factory setting

The permissible motor cable length depends on the particular cable type and the pulse frequency that has been selected.

## 11.6.5 General technical data, 400 V converters

| Property                                       | Version                                                                                |                                                                                                                                                                                |  |
|------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Line voltage                                   | FSA FSC                                                                                | 380 V 480 V 3 AC ± 10%                                                                                                                                                         |  |
|                                                | FSD FSG                                                                                | 380 V (-20 %) 480 V 3 AC + 10%                                                                                                                                                 |  |
| Line supply configurations                     |                                                                                        | TT line supplies or non-grounded IT line supplies<br>ting the line supply and motor (Page 90)                                                                                  |  |
| Line impedance                                 | FSA FSC                                                                                | $1\% \le Uk < 4\%$ , for values smaller than 1%, we recommend a line reactor, or a Power Module with the next higher power rating.                                             |  |
|                                                | FSD FSG                                                                                | No restrictions                                                                                                                                                                |  |
| Power factor λ                                 | FSA FSC                                                                                | 0.7 without line reactor for $Uk \ge 1\%$<br>0.85 with line reactor for $Uk < 1\%$                                                                                             |  |
|                                                | FSD FSG                                                                                | > 0.9                                                                                                                                                                          |  |
| Output voltage                                 | 0 V 3 AC 0.9                                                                           | 95 x input voltage (max.)                                                                                                                                                      |  |
| Input frequency                                | 50 Hz 60 Hz                                                                            | z, ± 3 Hz                                                                                                                                                                      |  |
| Output frequency                               | 0 550 Hz, d                                                                            | epending on the control mode                                                                                                                                                   |  |
| Inrush current                                 | < LO base load                                                                         | input current                                                                                                                                                                  |  |
| Overvoltage category according to EN 61800-5-1 | III for line supp                                                                      | plies                                                                                                                                                                          |  |
| Pulse frequency                                | Factory setting                                                                        | I                                                                                                                                                                              |  |
|                                                | <ul> <li>4 kHz for devices with an LO base load power &lt; 110 kW</li> </ul>           |                                                                                                                                                                                |  |
|                                                | • 2 kHz for d                                                                          | evices with an LO base load power ≥ 110 kW                                                                                                                                     |  |
|                                                | Can be adjuste                                                                         | ed in 2 kHz steps as follows:                                                                                                                                                  |  |
|                                                | <ul> <li>2 kHz 16 kHz for devices with an LO base load power &lt; 55 kW</li> </ul>     |                                                                                                                                                                                |  |
|                                                | • 2 kHz 8                                                                              | kHz for devices with an LO base load output of 55 kW 250 kW                                                                                                                    |  |
|                                                | If you increase the pulse frequency, the converter reduces the maximum output current. |                                                                                                                                                                                |  |
|                                                | Current                                                                                | reduction as a function of the pulse frequency (Page 549)                                                                                                                      |  |
| Short-circuit current (SCCR)                   |                                                                                        | missible line short-circuit current ≤ 100 kA rms                                                                                                                               |  |
| and branch protection                          |                                                                                        | rotection and short-circuit strength according to UL and IEC ( <a href="https://cry.siemens.com/cs/ww/en/view/109782705">https://cry.siemens.com/cs/ww/en/view/109782705</a> ) |  |
| Braking methods                                | DC braking, co                                                                         | mpound braking, dynamic braking with integrated braking chopper                                                                                                                |  |
| Degree of protection accord-                   | IP20                                                                                   |                                                                                                                                                                                |  |
| ing to EN 60529                                | IP55 PT devi                                                                           | tes outside the control cabinet                                                                                                                                                |  |
| Protection class according to EN 61800-5-1     | The converters are devices with protection class I                                     |                                                                                                                                                                                |  |
| Touch protection according to EN 50274         | DGUV regulati                                                                          | on 3 when used for the intended purpose                                                                                                                                        |  |
| Cooling in compliance with EN 60146            | Forced air coc                                                                         | ling AF                                                                                                                                                                        |  |
| Safety Integrated                              |                                                                                        | nanual "Safety Integrated"                                                                                                                                                     |  |
|                                                | Overview                                                                               | of the manuals (Page 581)                                                                                                                                                      |  |

## 11.6.6 Specific technical data, 400 V converters

Table 11-50 PM240-2, IP20, frame size A, 380 V ... 480 V 3 AC

| Article No. without filter<br>Article No. with filter  | 6SL3210-1PE11-8UL1<br>6SL3210-1PE11-8AL1 | 6SL3210-1PE12-3UL1<br>6SL3210-1PE12-3AL1 | 6SL3210-1PE13-2UL1<br>6SL3210-1PE13-2AL1 |
|--------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| LO base load power                                     | 0.55 kW                                  | 0.75 kW                                  | 1.1 kW                                   |
| LO base load input current                             | 2.3 A                                    | 2.9 A                                    | 4.1 A                                    |
| LO base load output current                            | 1.7 A                                    | 2.2 A                                    | 3.1 A                                    |
| HO base load power                                     | 0.37 kW                                  | 0.55 kW                                  | 0.75 kW                                  |
| HO base load input current                             | 2.0 A                                    | 2.6 A                                    | 3.3 A                                    |
| HO base load output current                            | 1.3 A                                    | 1.7 A                                    | 2.2 A                                    |
| Fuse according to IEC<br>Fuse according to UL, class J | 3NA3803 (10 A)<br>10 A                   | 3NA3803 (10 A)<br>10 A                   | 3NA3805 (16 A)<br>15 A                   |
| Power loss                                             | 0.04 kW                                  | 0.04 kW                                  | 0.04 kW                                  |
| Required cooling air flow                              | 5 l/s                                    | 5 l/s                                    | 5 l/s                                    |
| Weight without filter                                  | 1.3 kg                                   | 1.3 kg                                   | 1.3 kg                                   |
| Weight with filter                                     | 1.5 kg                                   | 1.5 kg                                   | 1.5 kg                                   |

Table 11-51 PM240-2, IP20, frame size A, 380 V ... 480 V 3 AC

| Article No. without filter<br>Article No. with filter  | 6SL3210-1PE14-3UL1<br>6SL3210-1PE14-3AL1 | 6SL3210-1PE16-1UL1<br>6SL3210-1PE16-1AL1 | 6SL3210-1PE18-0UL1<br>6SL3210-1PE18-0AL1 |
|--------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| LO base load power                                     | 1.5 kW                                   | 2.2 kW                                   | 3.0 kW                                   |
| LO base load input current                             | 5.5 A                                    | 7.7 A                                    | 10.1 A                                   |
| LO base load output current                            | 4.1 A                                    | 5.9 A                                    | 7.7 A                                    |
| HO base load power                                     | 1.1 kW                                   | 1.5 kW                                   | 2.2 kW                                   |
| HO base load input current                             | 4.7 A                                    | 6.1 A                                    | 8.8 A                                    |
| HO base load output current                            | 3.1 A                                    | 4.1 A                                    | 5.9 A                                    |
| Fuse according to IEC<br>Fuse according to UL, class J | 3NA3805 (16 A)<br>15 A                   | 3NA3805 (16 A)<br>15 A                   | 3NA3805 (16 A)<br>15 A                   |
| Power loss                                             | 0.07 kW                                  | 0.1 kW                                   | 0.12 kW                                  |
| Required cooling air flow                              | 5 l/s                                    | 5 l/s                                    | 5 l/s                                    |
| Weight without filter                                  | 1.4 kg                                   | 1.4 kg                                   | 1.4 kg                                   |
| Weight with filter                                     | 1.6 kg                                   | 1.6 kg                                   | 1.6 kg                                   |

Table 11-52 PM240-2, PT, frame size A, 380 V ... 480 V 3 AC

| Article No. without filter<br>Article No. with filter  | 6SL3211-1PE18-0UL1<br>6SL3211-1PE18-0AL1 |  |
|--------------------------------------------------------|------------------------------------------|--|
| LO base load power                                     | 3.0 kW                                   |  |
| LO base load input current                             | 10.1 A                                   |  |
| LO base load output current                            | 7.7 A                                    |  |
| HO base load power                                     | 2.2 kW                                   |  |
| HO base load input current                             | 8.8 A                                    |  |
| HO base load output current                            | 5.9 A                                    |  |
| Fuse according to IEC<br>Fuse according to UL, class J | 3NA3805 (16 A)<br>15 A                   |  |
| Power loss without filter                              | 0.12 kW <sup>1)</sup>                    |  |
| Required cooling air flow                              | 7 l/s                                    |  |
| Weight without filter                                  | 1.8 kg                                   |  |
| Weight with filter                                     | 2.0 kg                                   |  |

<sup>1)</sup> approx. 0.1 kW through the heatsink

Table 11-53 PM240-2, IP20, frame size B, 380 V ... 480 V 3 AC

| Article No. without filter<br>Article No. with filter  | 6SL3210-1PE21-1UL0<br>6SL3210-1PE21-1AL0 | 6SL3210-1PE21-4UL0<br>6SL3210-1PE21-4AL0 | 6SL3210-1PE21-8UL0<br>6SL3210-1PE21-8AL0 |
|--------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| LO base load power                                     | 4.0 kW                                   | 5.5 kW                                   | 7.5 kW                                   |
| LO base load input current                             | 13.3 A                                   | 17.2 A                                   | 22.2 A                                   |
| LO base load output current                            | 10.2 A                                   | 13.2 A                                   | 18.0 A                                   |
| HO base load power                                     | 3.0 kW                                   | 4.0 kW                                   | 5.5 kW                                   |
| HO base load input current                             | 11.6 A                                   | 15.3 A                                   | 19.8 A                                   |
| HO base load output current                            | 7.7 A                                    | 10.2 A                                   | 13.2 A                                   |
| Fuse according to IEC<br>Fuse according to UL, class J | 3NA3812 (32 A)<br>35 A                   | 3NA3812 (32 A)<br>35 A                   | 3NA3812 (32 A)<br>35 A                   |
| Power loss                                             | 0.11 kW                                  | 0.15 kW                                  | 0.2 kW                                   |
| Required cooling air flow                              | 9.2 l/s                                  | 9.2 l/s                                  | 9.2 l/s                                  |
| Weight without filter                                  | 2.9 kg                                   | 2.9 kg                                   | 3.0 kg                                   |
| Weight with filter                                     | 3.1 kg                                   | 3.1 kg                                   | 3.2 kg                                   |

Table 11-54 PM240-2, PT, frame size B, 380 V ... 480 V 3 AC

| Article No. without filter<br>Article No. with filter | 6SL3211-1PE21-8UL0<br>6SL3211-1PE21-8AL0 |  |
|-------------------------------------------------------|------------------------------------------|--|
| LO base load power                                    | 7.5 kW                                   |  |
| LO base load input current                            | 22.2 A                                   |  |
| LO base load output current                           | 18.0 A                                   |  |

| Article No. without filter<br>Article No. with filter | 6SL3211-1PE21-8UL0<br>6SL3211-1PE21-8AL0 |  |
|-------------------------------------------------------|------------------------------------------|--|
| HO base load power                                    | 5.5 kW                                   |  |
| HO base load input current                            | 19.8 A                                   |  |
| HO base load output current                           | 13.7 A                                   |  |
| Fuse according to IEC Fuse according to UL, class J   | 3NA3812 (32 A)<br>35 A                   |  |
| Power loss                                            | 0.2 kW <sup>1)</sup>                     |  |
| Required cooling air flow                             | 9.2 l/s                                  |  |
| Weight without filter                                 | 3.6 kg                                   |  |
| Weight with filter                                    | 3.9 kg                                   |  |

<sup>1)</sup> approx. 0.16 kW through the heatsink

Table 11-55 PM240-2, IP20, frame size C, 380 V ... 480 V 3 AC

| Article No. without filter<br>Article No. with filter  | 6SL3210-1PE22-7UL0<br>6SL3210-1PE22-7AL0 | 6SL3210-1PE23-3UL0<br>6SL3210-1PE23-3AL0 |  |
|--------------------------------------------------------|------------------------------------------|------------------------------------------|--|
| LO base load power                                     | 11.0 kW                                  | 15.0 kW                                  |  |
| LO base load input current                             | 32.6 A                                   | 39.9 A                                   |  |
| LO base load output current                            | 26.0 A                                   | 32.0 A                                   |  |
| HO base load power                                     | 7.5 kW                                   | 11.0 kW                                  |  |
| HO base load input current                             | 27.0 A                                   | 36.0 A                                   |  |
| HO base load output current                            | 18.0 A                                   | 26.0 A                                   |  |
| Fuse according to IEC<br>Fuse according to UL, class J | 3NA3820 (50 A)<br>50 A                   | 3NA3820 (50 A)<br>50 A                   |  |
| Power loss                                             | 0.3 kW                                   | 0.37 kW                                  |  |
| Required cooling air flow                              | 18.5 l/s                                 | 18.5 l/s                                 |  |
| Weight without filter                                  | 4.7 kg                                   | 4.8 kg                                   |  |
| Weight with filter                                     | 5.3 kg                                   | 5.4 kg                                   |  |

Table 11-56 PM240-2, PT, frame size C, 380 V ... 480 V 3 AC

| Article No. without filter<br>Article No. with filter | 6SL3211-1PE23-3UL0<br>6SL3211-1PE23-3AL0 |  |
|-------------------------------------------------------|------------------------------------------|--|
| LO base load power                                    | 15.0 kW                                  |  |
| LO base load input current                            | 39.9 A                                   |  |
| LO base load output current                           | 32.0 A                                   |  |
| HO base load power                                    | 11.0 kW                                  |  |
| HO base load input current                            | 36.0 A                                   |  |
| HO base load output current                           | 26.0 A                                   |  |

| Article No. without filter<br>Article No. with filter  | 6SL3211-1PE23-3UL0<br>6SL3211-1PE23-3AL0 |
|--------------------------------------------------------|------------------------------------------|
| Fuse according to IEC<br>Fuse according to UL, class J | 3NA3820 (50 A)<br>50 A                   |
| Power loss                                             | 0.37 kW <sup>1)</sup>                    |
| Required cooling air flow                              | 18.5 l/s                                 |
| Weight without filter                                  | 5.8 kg                                   |
| Weight with filter                                     | 6.3 kg                                   |

<sup>1)</sup> approx. 0.3 kW through the heatsink

Table 11-57 PM240-2, IP20, frame size D, 380 V ... 480 V 3 AC

| Article No. without filter<br>Article No. with filter  | 6SL3210-1PE23-8UL0<br>6SL3210-1PE23-8AL0 | 6SL3210-1PE24-5UL0<br>6SL3210-1PE24-5AL0 | 6SL3210-1PE26-0UL0<br>6SL3210-1PE26-0AL0 |
|--------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| LO base load power                                     | 18.5 kW                                  | 22 kW                                    | 30 kW                                    |
| LO base load input current                             | 36 A                                     | 42 A                                     | 57 A                                     |
| LO base load output current                            | 38 A                                     | 45 A                                     | 60 A                                     |
| HO base load power                                     | 15 kW                                    | 18.5 kW                                  | 22 kW                                    |
| HO base load input current                             | 33 A                                     | 38 A                                     | 47 A                                     |
| HO base load output current                            | 32 A                                     | 38 A                                     | 45 A                                     |
| Fuse according to IEC<br>Fuse according to UL, class J | 3NA3822 (63 A)<br>60 A                   | 3NA3824 (80 A)<br>70 A                   | 3NA3830 (100 A)<br>90 A                  |
| Power loss without filter                              | 0.57 kW                                  | 0.70 kW                                  | 0.82 kW                                  |
| Power loss with filter                                 | 0.58 kW                                  | 0.71 kW                                  | 0.83 kW                                  |
| Required cooling air flow                              | 55 l/s                                   | 55 l/s                                   | 55 l/s                                   |
| Weight without filter                                  | 16.6 kg                                  | 16.6 kg                                  | 18.3 kg                                  |
| Weight with filter                                     | 18.3 kg                                  | 18.3 kg                                  | 19 kg                                    |

Table 11-58 PM240-2, IP20, frame size D, 380 V ... 480 V 3 AC

| Article No. without filter<br>Article No. with filter  | 6SL3210-1PE27-5UL0<br>6SL3210-1PE27-5AL0 |  |
|--------------------------------------------------------|------------------------------------------|--|
| LO base load power                                     | 37 kW                                    |  |
| LO base load input current                             | 70 A                                     |  |
| LO base load output current                            | 75 A                                     |  |
| HO base load power                                     | 30 kW                                    |  |
| HO base load input current                             | 62 A                                     |  |
| HO base load output current                            | 60 A                                     |  |
| Fuse according to IEC<br>Fuse according to UL, class J | 3NA3830 (100 A)<br>100 A                 |  |
| Power loss without filter                              | 1.09 kW                                  |  |

| Article No. without filter<br>Article No. with filter | 6SL3210-1PE27-5UL0<br>6SL3210-1PE27-5AL0 |  |
|-------------------------------------------------------|------------------------------------------|--|
| Power loss with filter                                | 1.10 kW                                  |  |
| Required cooling air flow                             | 55 l/s                                   |  |
| Weight without filter                                 | 18.3 kg                                  |  |
| Weight with filter                                    | 19 kg                                    |  |

Table 11-59 PM240-2, PT, frame size D, 380 V ... 480 V 3 AC

| Article No. without filter<br>Article No. with filter  | 6SL3211-1PE27-5UL0<br>6SL3211-1PE27-5AL0 |  |
|--------------------------------------------------------|------------------------------------------|--|
| LO base load power                                     | 37 kW                                    |  |
| LO base load input current                             | 70 A                                     |  |
| LO base load output current                            | 75 A                                     |  |
| HO base load power                                     | 30 kW                                    |  |
| HO base load input current                             | 62 A                                     |  |
| HO base load output current                            | 60 A                                     |  |
| Fuse according to IEC<br>Fuse according to UL, class J | 3NA3830 (100 A)<br>100 A                 |  |
| Power loss without filter                              | 1.09 kW <sup>1)</sup>                    |  |
| Power loss with filter                                 | 1.10 kW <sup>1)</sup>                    |  |
| Required cooling air flow                              | 55 l/s                                   |  |
| Weight without filter                                  | 20 kg                                    |  |
| Weight with filter                                     | 22 kg                                    |  |

<sup>1)</sup> Approx. 1 kW through the heatsink

Table 11-60 PM240-2, IP20, frame size E, 380 V ... 480 V 3 AC

| Article No. without filter<br>Article No. with filter  | 6SL3210-1PE28-8UL0<br>6SL3210-1PE28-8AL0 | 6SL3210-1PE31-1UL0<br>6SL3210-1PE31-1AL0 |  |
|--------------------------------------------------------|------------------------------------------|------------------------------------------|--|
| LO base load power                                     | 45 kW                                    | 55 kW                                    |  |
| LO base load input current                             | 86 A                                     | 104 A                                    |  |
| LO base load output current                            | 90 A                                     | 110 A                                    |  |
| HO base load power                                     | 37 kW                                    | 45 kW                                    |  |
| HO base load input current                             | 78 A                                     | 94 A                                     |  |
| HO base load output current                            | 75 A                                     | 90 A                                     |  |
| Fuse according to IEC<br>Fuse according to UL, class J | 3NA3832 (125 A)<br>125 A                 | 3NA3836 (160 A)<br>150 A                 |  |
| Power loss without filter                              | 1.29 kW                                  | 1.65 kW                                  |  |
| Power loss with filter                                 | 1.30 kW                                  | 1.67 kW                                  |  |
| Required cooling air flow                              | 83 l/s                                   | 83 l/s                                   |  |

| Article No. without filter<br>Article No. with filter | 6SL3210-1PE28-8UL0<br>6SL3210-1PE28-8AL0 | 6SL3210-1PE31-1UL0<br>6SL3210-1PE31-1AL0 |  |
|-------------------------------------------------------|------------------------------------------|------------------------------------------|--|
| Weight without filter                                 | 26.4 kg                                  | 26.4 kg                                  |  |
| Weight with filter                                    | 28.4 kg                                  | 28.4 kg                                  |  |

Table 11-61 PM240-2, PT, frame size E, 380 V ... 480 V 3 AC

| Article No. without filter<br>Article No. with filter | 6SL3211-1PE31-1UL0<br>6SL3211-1PE31-1AL0 |   |
|-------------------------------------------------------|------------------------------------------|---|
| LO base load power                                    | 55 kW                                    | ' |
| LO base load input current                            | 104 A                                    |   |
| LO base load output current                           | 110 A                                    |   |
| HO base load power                                    | 45 kW                                    |   |
| HO base load input current                            | 94 A                                     |   |
| HO base load output current                           | 90 A                                     |   |
| Fuse according to IEC Fuse according to UL, class J   | 3NA3836 (160 A)<br>150 A                 |   |
| Power loss without filter                             | 1.65 kW <sup>1)</sup>                    |   |
| Power loss with filter                                | 1.67 kW <sup>1)</sup>                    |   |
| Required cooling air flow                             | 83 l/s                                   |   |
| Weight without filter                                 | 30.5 kg                                  |   |
| Weight with filter                                    | 32 kg                                    |   |

<sup>1)</sup> Approx. 1.4 kW through the heatsink

Table 11-62 PM240-2, IP20, frame size F, 380 V ... 480 V 3 AC

| Article No. without filter<br>Article No. with filter | 6SL3210-1PE31-5UL0<br>6SL3210-1PE31-5AL0 | 6SL3210-1PE31-8UL0<br>6SL3210-1PE31-8AL0 | 6SL3210-1PE32-1UL0<br>6SL3210-1PE32-1AL0 |
|-------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| LO base load power                                    | 75 kW                                    | 90 kW                                    | 110 kW                                   |
| LO base load input current                            | 140 A                                    | 172 A                                    | 198 A                                    |
| LO base load output current                           | 145 A                                    | 178 A                                    | 205 A                                    |
| HO base load power                                    | 55 kW                                    | 75 kW                                    | 90 kW                                    |
| HO base load input current                            | 117 A                                    | 154 A                                    | 189 A                                    |
| HO base load output current                           | 110 A                                    | 145 A                                    | 178 A                                    |
| Fuse according to IEC Fuse according to UL, class J   | 3NA3140 (200 A)<br>200 A                 | 3NA3142 (224 A)<br>250 A                 | 3NA3250 (300 A)<br>300 A                 |
| Power loss without filter                             | 1.91 kW                                  | 2.46 kW                                  | 2.28 kW                                  |
| Power loss with filter                                | 1.93 kW                                  | 2.48 kW                                  | 2.30 kW                                  |
| Required cooling air flow                             | 153 l/s                                  | 153 l/s                                  | 153 l/s                                  |

| Article No. without filter<br>Article No. with filter | 6SL3210-1PE31-5UL0<br>6SL3210-1PE31-5AL0 | 6SL3210-1PE31-8UL0<br>6SL3210-1PE31-8AL0 | 6SL3210-1PE32-1UL0<br>6SL3210-1PE32-1AL0 |
|-------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| Weight without filter                                 | 58 kg                                    | 58 kg                                    | 62 kg                                    |
| Weight with filter                                    | 64 kg                                    | 64 kg                                    | 66 kg                                    |

Table 11-63 PM240-2, IP20, frame size F, 380 V ... 480 V 3 AC

| Article No. without filter<br>Article No. with filter | 6SL3210-1PE32-5UL0<br>6SL3210-1PE32-5AL0 |  |
|-------------------------------------------------------|------------------------------------------|--|
| LO base load power                                    | 132 kW                                   |  |
| LO base load input current                            | 242 A                                    |  |
| LO base load output current                           | 250 A                                    |  |
| HO base load power                                    | 110 kW                                   |  |
| HO base load input current                            | 218 A                                    |  |
| HO base load output current                           | 205 A                                    |  |
| Fuse according to IEC Fuse according to UL, class J   | 3NA3252 (315 A)<br>350 A                 |  |
| Power loss without filter                             | 2.98 kW                                  |  |
| Power loss with filter                                | 3.02 kW                                  |  |
| Required cooling air flow                             | 153 l/s                                  |  |
| Weight without filter                                 | 62 kg                                    |  |
| Weight with filter                                    | 66 kg                                    |  |

Table 11-64 PM240-2, PT, frame size F, 380 V ... 480 V 3 AC

| Article No. without filter<br>Article No. with filter  | 6SL3211-1PE32-5UL0<br>6SL3211-1PE32-5AL0 |  |
|--------------------------------------------------------|------------------------------------------|--|
| LO base load power                                     | 132 kW                                   |  |
| LO base load input current                             | 242 A                                    |  |
| LO base load output current                            | 250 A                                    |  |
| HO base load power                                     | 110 kW                                   |  |
| HO base load input current                             | 218 A                                    |  |
| HO base load output current                            | 205 A                                    |  |
| Fuse according to IEC<br>Fuse according to UL, class J | 3NA3252 (315 A)<br>350 A                 |  |
| Power loss without filter                              | 2.98 kW <sup>1)</sup>                    |  |
| Power loss with filter                                 | 3.02 kW <sup>1)</sup>                    |  |
| Required cooling air flow                              | 153 l/s                                  |  |

| Article No. without filter<br>Article No. with filter | 6SL3211-1PE32-5UL0<br>6SL3211-1PE32-5AL0 |  |
|-------------------------------------------------------|------------------------------------------|--|
| Weight without filter                                 | 63.5 kg                                  |  |
| Weight with filter                                    | 68.5 kg                                  |  |

<sup>1)</sup> Approx. 2.6 kW through the heatsink

Table 11-65 PM240-2, frame size G, 380 V ... 480 V 3 AC

| Article No. with filter class C3<br>Article No. with filter class C2         | 6SL3210-1PE33-0CL0<br>6SL3210-1PE33-0AL0     | 6SL3210-1PE33-7CL0<br>6SL3210-1PE33-7AL0     | 6SL3210-1PE34-8CL0<br>6SL3210-1PE34-8AL0     |
|------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|
| LO base load power                                                           | 160 kW                                       | 200 kW                                       | 250 kW                                       |
| LO base load input current                                                   | 300 A                                        | 365 A                                        | 470 A                                        |
| LO base load output current                                                  | 302 A                                        | 370 A                                        | 477 A                                        |
| HO base load power                                                           | 132 kW                                       | 160 kW                                       | 200 kW                                       |
| HO base load input current                                                   | 275 A                                        | 330 A                                        | 400 A                                        |
| HO base load output current                                                  | 250 A                                        | 302 A                                        | 370 A                                        |
| Fuse according to IEC Fuse according to UL, class J Fuse according to IEC/UL | 3NA3254 (355 A)<br>400 A<br>3NE1334-2 (500A) | 3NA3260 (400 A)<br>500 A<br>3NE1334-2 (500A) | 3NA3372 (630 A)<br>600 A<br>3NE1436-2 (630A) |
| Power loss with filter class C3<br>Power loss with filter class C2           | 3.67 kW<br>3.67 kW                           | 4.62 kW<br>4.62 kW                           | 6.18 kW<br>6.18 kW                           |
| Required cooling air flow                                                    | 210 l/s                                      | 210 l/s                                      | 210 l/s                                      |
| Weight with filter class C3<br>Weight with filter class C2                   | 105 kg<br>107 kg                             | 113 kg<br>114 kg                             | 120 kg<br>122 kg                             |

## 11.6.7 Current derating depending on the pulse frequency, 400 V converters

#### LO base load

| Article number       | LO    |                                 |       | Pul     | lse frequ | ency [k  | Hz]      |      |      |
|----------------------|-------|---------------------------------|-------|---------|-----------|----------|----------|------|------|
|                      | power | 2                               | 4 *)  | 6       | 8         | 10       | 12       | 14   | 16   |
|                      | [kW]  |                                 | •     | LO base | load ou   | tput cur | rent [A] | •    |      |
| 6SL3210-1PE11-8 . L1 | 0.55  | 1.7                             | 1.7   | 1.4     | 1.2       | 1        | 0.9      | 0.8  | 0.7  |
| 6SL3210-1PE12-3 . L1 | 0.75  | 2.2                             | 2.2   | 1.9     | 1.5       | 1.3      | 1.1      | 1    | 0.9  |
| 6SL3210-1PE13-2 . L1 | 1.1   | 3.1                             | 3.1   | 2.6     | 2.2       | 1.9      | 1.6      | 1.4  | 1.2  |
| 6SL3210-1PE14-3 . L1 | 1.5   | 4.1                             | 4.1   | 3.5     | 2.9       | 2.5      | 2.1      | 1.8  | 1.6  |
| 6SL3210-1PE16-1 . L1 | 2.2   | 5.9                             | 5.9   | 5       | 4.1       | 3.5      | 3        | 2.7  | 2.4  |
| 6SL3211PE18-0 . L1   | 3     | 7.7                             | 7.7   | 6.5     | 5.4       | 4.6      | 3.9      | 3.5  | 3.1  |
| 6SL3210-1PE21-1 . L0 | 4     | 10.2                            | 10.2  | 8.7     | 7.1       | 6.1      | 5.1      | 4.6  | 4.1  |
| 6SL3210-1PE21-4 . L0 | 5.5   | 13.2                            | 13.2  | 11.2    | 9.2       | 7.9      | 6.6      | 5.9  | 5.3  |
| 6SL3211PE21-8 . LO   | 7.5   | 18                              | 18    | 15.3    | 12.6      | 10.8     | 9        | 8.1  | 7.2  |
| 6SL3210-1PE22-7 . L0 | 11    | 26                              | 26    | 22.1    | 18.2      | 15.6     | 13       | 11.7 | 10.4 |
| 6SL3211PE23-3 . L0   | 15    | 32                              | 32    | 27.2    | 22.4      | 19.2     | 16       | 14.4 | 12.8 |
| 6SL3210-1PE23-8 . L0 | 18.5  | 38                              | 38    | 32.3    | 26.6      | 22.8     | 19       | 17.1 | 15.2 |
| 6SL3210-1PE24-5 . L0 | 22    | 45                              | 45    | 38.3    | 31.5      | 27       | 22.5     | 20.3 | 18   |
| 6SL3210-1PE26-0 . L0 | 30    | 60                              | 60    | 51      | 42        | 36       | 30       | 27   | 24   |
| 6SL3211PE27-5 . L0   | 37    | 75                              | 75    | 63.8    | 52.5      | 45       | 37.5     | 33.8 | 30   |
| 6SL3210-1PE28-8 . L0 | 45    | 90                              | 90    | 76.5    | 63        | 54       | 45       | 40.5 | 36   |
| 6SL3211PE31-1 . L0   | 55    | 110                             | 110   | 93.5    | 77        |          |          |      |      |
| 6SL3210-1PE31-5 . L0 | 75    | 145                             | 145   | 123.3   | 101.5     |          |          |      |      |
| 6SL3210-1PE31-8 . L0 | 90    | 178                             | 178   | 151.3   | 124.6     |          |          |      |      |
| Article number       |       |                                 | _     |         | lse frequ | ency [k  | Hz]      |      |      |
|                      |       | 2 *)                            | 4     | 6 **)   | 8 **)     | 10       | 12       | 14   | 16   |
|                      |       | LO base load output current [A] |       |         |           |          |          |      |      |
| 6SL3210-1PE32-1 . L0 | 110   | 205                             | 143.5 | 102.5   | 82        |          |          |      |      |
| 6SL3211PE32-5 . L0   | 132   | 250                             | 175   | 125     | 100       |          |          |      |      |
| 6SL3210-1PE33-0 .L0  | 160   | 302                             | 211.4 | 151     | 120.8     |          |          |      |      |
| 6SL3210-1PE33-7 .L0  | 200   | 370                             | 259   | 185     | 148       |          |          |      |      |
| 6SL3210-1PE34-8 .L0  | 250   | 477                             | 333.9 | 238.5   | 190.8     |          |          |      |      |

<sup>\*)</sup> Factory setting

The permissible motor cable length depends on the particular cable type and the pulse frequency that has been selected.

<sup>\*\*)</sup> Available from Functional State (FS) 12

# 11.6.8 General technical data, 690 V converters

| Line voltage  • for systems according to IEC: 500 V 690 V 3 AC ± 10% (in operation -20% < 1 min)  • for systems according to UL 500 V 600 V 3 AC ± 10% (in operation -20% < 1 min) filtered devices only with Slash Rating (600Y/347V AC)  Line supply configurations  Connecting the line supplies or non-grounded IT line supplies rations  No restrictions  Power factor λ > 0.9  Output voltage 0 V 3 AC 0.95 x input voltage (max.)  Input frequency 50 Hz 60 Hz, ± 3 Hz  Output frequency 0 550 Hz, depending on the control mode  Inrush current < LO base load input current  Overvoltage category according to EN 61800-5-1  Pulse frequency 2 kHz (factory setting), can be adjusted to 4 kHz  Adjustable in steps of 2 kHz.  Current reduction as a function of the pulse frequency (Page 554) If you increase the pulse frequency, the converter reduces the maximum output current.  Short-circuit current  Maximum permissible line short-circuit current ≤ 100 kA rms                                                                                                      | Property           | Version                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------|
| <ul> <li>&lt; 1 min)         filtered devices only with Slash Rating (600Y/347V AC)</li> <li>Line supply configurations</li> <li>Connecting the line supplies or non-grounded IT line supplies         Connecting the line supply and motor (Page 90)</li> <li>Line impedance</li> <li>No restrictions</li> <li>Power factor λ &gt; 0.9</li> <li>Output voltage</li> <li>O V 3 AC 0.95 x input voltage (max.)</li> <li>Input frequency</li> <li>Output frequency</li> <li>Output frequency</li> <li>0 550 Hz, depending on the control mode</li> <li>Inrush current</li> <li>&lt; LO base load input current</li> <li>Overvoltage category according to EN 61800-5-1</li> <li>Pulse frequency</li> <li>2 kHz (factory setting), can be adjusted to 4 kHz</li> <li>Adjustable in steps of 2 kHz.</li> <li>Current reduction as a function of the pulse frequency (Page 554)</li> <li>If you increase the pulse frequency, the converter reduces the maximum output current.</li> <li>Short-circuit current</li> <li>Maximum permissible line short-circuit current ≤ 100 kA rms</li> </ul> |                    |                                                             |
| rationsConnecting the line supply and motor (Page 90)Line impedanceNo restrictionsPower factor λ> 0.9Output voltage0 V 3 AC 0.95 x input voltage (max.)Input frequency50 Hz 60 Hz, ± 3 HzOutput frequency0 550 Hz, depending on the control modeInrush current< LO base load input current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | < 1 min)                                                    |
| Power factor λ       > 0.9         Output voltage       0 V 3 AC 0.95 x input voltage (max.)         Input frequency       50 Hz 60 Hz, ± 3 Hz         Output frequency       0 550 Hz, depending on the control mode         Inrush current       < LO base load input current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                                                             |
| Output voltage       0 V 3 AC 0.95 x input voltage (max.)         Input frequency       50 Hz 60 Hz, ± 3 Hz         Output frequency       0 550 Hz, depending on the control mode         Inrush current       < LO base load input current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Line impedance     | No restrictions                                             |
| Input frequency 50 Hz 60 Hz, ± 3 Hz  Output frequency 0 550 Hz, depending on the control mode  Inrush current < LO base load input current  Overvoltage category according to EN 61800-5-1  Pulse frequency 2 kHz (factory setting), can be adjusted to 4 kHz  Adjustable in steps of 2 kHz.  Current reduction as a function of the pulse frequency (Page 554)  If you increase the pulse frequency, the converter reduces the maximum output current.  Short-circuit current Maximum permissible line short-circuit current ≤ 100 kA rms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Power factor λ     | > 0.9                                                       |
| Output frequency 0 550 Hz, depending on the control mode  Inrush current < LO base load input current  Overvoltage category according to EN 61800-5-1  Pulse frequency 2 kHz (factory setting), can be adjusted to 4 kHz  Adjustable in steps of 2 kHz.  Current reduction as a function of the pulse frequency (Page 554)  If you increase the pulse frequency, the converter reduces the maximum output current.  Short-circuit current Maximum permissible line short-circuit current ≤ 100 kA rms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Output voltage     | 0 V 3 AC 0.95 x input voltage (max.)                        |
| Inrush current  Overvoltage category according to EN 61800-5-1  Pulse frequency  2 kHz (factory setting), can be adjusted to 4 kHz  Adjustable in steps of 2 kHz.  Current reduction as a function of the pulse frequency (Page 554)  If you increase the pulse frequency, the converter reduces the maximum output current.  Short-circuit current  Maximum permissible line short-circuit current ≤ 100 kA rms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Input frequency    | 50 Hz 60 Hz, ± 3 Hz                                         |
| Overvoltage category according to EN 61800-5-1  Pulse frequency  2 kHz (factory setting), can be adjusted to 4 kHz  Adjustable in steps of 2 kHz.  Current reduction as a function of the pulse frequency (Page 554)  If you increase the pulse frequency, the converter reduces the maximum output current.  Short-circuit current  Maximum permissible line short-circuit current ≤ 100 kA rms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Output frequency   | 0 550 Hz, depending on the control mode                     |
| ry according to EN 61800-5-1  Pulse frequency  2 kHz (factory setting), can be adjusted to 4 kHz  Adjustable in steps of 2 kHz.  Current reduction as a function of the pulse frequency (Page 554)  If you increase the pulse frequency, the converter reduces the maximum output current.  Short-circuit current  Maximum permissible line short-circuit current ≤ 100 kA rms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Inrush current     | < LO base load input current                                |
| Adjustable in steps of 2 kHz.  Current reduction as a function of the pulse frequency (Page 554)  If you increase the pulse frequency, the converter reduces the maximum output current.  Short-circuit current  Maximum permissible line short-circuit current ≤ 100 kA rms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ry according to EN | III for line supplies                                       |
| Current reduction as a function of the pulse frequency (Page 554)  If you increase the pulse frequency, the converter reduces the maximum output current.  Short-circuit current Maximum permissible line short-circuit current ≤ 100 kA rms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pulse frequency    | 2 kHz (factory setting), can be adjusted to 4 kHz           |
| output current.  Short-circuit current  Maximum permissible line short-circuit current ≤ 100 kA rms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                                                             |
| · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | Maximum permissible line short-circuit current ≤ 100 kA rms |
| (SCCR) and branch protection and short-circuit strength according to UL and IEC ( <a href="https://support.industry.siemens.com/cs/ww/en/view/109782705">https://support.industry.siemens.com/cs/ww/en/view/109782705</a> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                             |
| Braking methods DC braking, compound braking, dynamic braking with integrated braking chopper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Braking methods    |                                                             |
| Degree of protection IP20; must be installed in a control cabinet according to EN 60529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | according to EN    | IP20; must be installed in a control cabinet                |
| Protection class ac- cording to EN 61800-5-1  The converters are devices with protection class I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cording to EN      | The converters are devices with protection class I          |
| Touch protection ac-<br>cording to EN 50274 DGUV regulation 3 when used for the intended purpose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                  | DGUV regulation 3 when used for the intended purpose        |
| Cooling in compliance with EN 60146  Forced air cooling AF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Forced air cooling AF                                       |
| Safety Integrated See function manual "Safety Integrated"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Safety Integrated  | See function manual "Safety Integrated"                     |
| Overview of the manuals (Page 581)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | Overview of the manuals (Page 581)                          |

## 11.6.9 Specific technical data, 690 V converters

Table 11-66 PM240-2, IP20, frame size D, 500 V ... 690 V 3 AC

| Article No without filter<br>Article No with filter | 6SL3210-1PH21-4UL0<br>6SL3210-1PH21-4AL0 | 6SL3210-1PH22-0UL0<br>6SL3210-1PH22 -0AL0 | 6SL3210-1PH22-3UL0<br>6SL3210-1PH22 -3AL0 |
|-----------------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|
| LO base load power                                  | 11 kW                                    | 15 kW                                     | 18.5 kW                                   |
| LO base load input current                          | 14 A                                     | 18 A                                      | 22 A                                      |
| LO base load output current                         | 14 A                                     | 19 A                                      | 23 A                                      |
| HO base load power                                  | 7.5 kW                                   | 11 kW                                     | 15 kW                                     |
| HO base load input current                          | 11 A                                     | 14 A                                      | 20 A                                      |
| HO base load output current                         | 11 A                                     | 14 A                                      | 19 A                                      |
| Fuse according to IEC Fuse according to UL, class J | 3NA3807-6 (20 A)<br>20 A                 | 3NA3810-6 (25 A)<br>25 A                  | 3NA3812-6 (32 A)<br>30 A                  |
| Power loss without filter                           | 0.35 kW                                  | 0.44 kW                                   | 0.52 kW                                   |
| Power loss with filter                              | 0.35 kW                                  | 0.45 kW                                   | 0.52 kW                                   |
| Required cooling air flow                           | 55 l/s                                   | 55 l/s                                    | 55 l/s                                    |
| Weight without filter                               | 17.4 kg                                  | 17.4 kg                                   | 17.4 kg                                   |
| Weight with filter                                  | 18.9 kg                                  | 18.9 kg                                   | 18.9 kg                                   |

Table 11-67 PM240-2, IP20, frame size D, 500 V ... 690 V 3 AC

| Article No without filter<br>Article No with filter            | 6SL3210-1PH22-7UL0<br>6SL3210-1PH22-7AL0 | 6SL3210-1PH23-5UL0<br>6SL3210-1PH23 -5AL0 | 6SL3210-1PH24-2UL0<br>6SL3210-1PH24-2AL0 |
|----------------------------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|
| LO base load power                                             | 22 kW                                    | 30 kW                                     | 37 kW                                    |
| LO base load input current                                     | 25 A                                     | 33 A                                      | 40 A                                     |
| LO base load output current                                    | 27 A                                     | 35 A                                      | 42 A                                     |
| HO base load power                                             | 18.5 kW                                  | 22 kW                                     | 30 kW                                    |
| HO base load input current                                     | 24 A                                     | 28 A                                      | 36 A                                     |
| HO base load output current                                    | 23 A                                     | 27 A                                      | 35 A                                     |
| Siemens fuse according to IEC<br>Fuse according to UL, class J | 3NA3817-6KJ (40 A)<br>35 A               | 3NA3820-6KJ (50 A)<br>45 A                | 33NA3822-6 (63 A)<br>60 A                |
| Power loss without filter                                      | 0.60 kW                                  | 0.77 kW                                   | 0.93 kW                                  |
| Power loss with filter                                         | 0.60 kW                                  | 0.78 kW                                   | 0.94 kW                                  |
| Required cooling air flow                                      | 55 l/s                                   | 55 l/s                                    | 55 l/s                                   |
| Weight without filter                                          | 17.4 kg                                  | 17.4 kg                                   | 17.4 kg                                  |
| Weight with filter                                             | 18.9 kg                                  | 18.9 kg                                   | 18.9 kg                                  |

Table 11-68 PM240-2, IP20, frame size E, 500 V ... 690 V 3 AC

| Article No without filter<br>Article No with filter            | 6SL3210-1PH25-2UL0<br>6SL3210-1PH25-2AL0 | 6SL3210-1PH26-2UL0<br>6SL3210-1PH26-2AL0 |  |
|----------------------------------------------------------------|------------------------------------------|------------------------------------------|--|
| LO base load power                                             | 45 kW                                    | 55 kW                                    |  |
| LO base load input current                                     | 50 A                                     | 59 A                                     |  |
| LO base load output current                                    | 52 A                                     | 62 A                                     |  |
| HO base load power                                             | 37 kW                                    | 45 kW                                    |  |
| HO base load input current                                     | 44 A                                     | 54 A                                     |  |
| HO base load output current                                    | 42 A                                     | 52 A                                     |  |
| Siemens fuse according to IEC<br>Fuse according to UL, class J | 3NA3824-6 (80A)<br>80 A                  | 3NA3824-6 (80A)<br>80 A                  |  |
| Power loss without filter                                      | 1.07 kW                                  | 1.30 kW                                  |  |
| Power loss with filter                                         | 1.08 kW                                  | 1.31 kW                                  |  |
| Required cooling air flow                                      | 83 l/s                                   | 83 l/s                                   |  |
| Weight without filter                                          | 27.1 kg                                  | 27.1 kg                                  |  |
| Weight with filter                                             | 28.5 kg                                  | 28.5 kg                                  |  |

Table 11-69 PM240-2, IP20, frame size F, 500 V ... 690 V 3 AC

| Article No without filter<br>Article No with filter            | 6SL3210-1PH28-0UL0<br>6SL3210-1PH28-0AL0 | 6SL3210-1PH31-0UL0<br>6SL3210-1PH31-0AL0 | 6SL3210-1PH31-2UL0<br>6SL3210-1PH31-2AL0 |
|----------------------------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| LO base load power                                             | 75 kW                                    | 90 kW                                    | 110 kW                                   |
| LO base load input current                                     | 78 A                                     | 97 A                                     | 111 A                                    |
| LO base load output current                                    | 80 A                                     | 100 A                                    | 115 A                                    |
| HO base load power                                             | 55 kW                                    | 75 kW                                    | 90 kW                                    |
| HO base load input current                                     | 66 A                                     | 85 A                                     | 106 A                                    |
| HO base load output current                                    | 62 A                                     | 80 A                                     | 100 A                                    |
| Siemens fuse according to IEC<br>Fuse according to UL, class J | 3NA3830-6 (100 A)<br>100 A               | 3NA3132-6 (125 A)<br>125 A               | 3NA3136-6 (160 A)<br>150 A               |
| Power loss without filter                                      | 1.37 kW                                  | 1.74 kW                                  | 1.95 kW                                  |
| Power loss with filter                                         | 1.38 kW                                  | 1.76 kW                                  | 1.97 kW                                  |
| Required cooling air flow                                      | 153 l/s                                  | 153 l/s                                  | 153 l/s                                  |
| Weight without filter                                          | 61 kg                                    | 61 kg                                    | 61 kg                                    |
| Weight with filter                                             | 65 kg                                    | 65 kg                                    | 65 kg                                    |

Table 11-70 PM240-2, IP20, frame size F, 500 V ... 690 V 3 AC

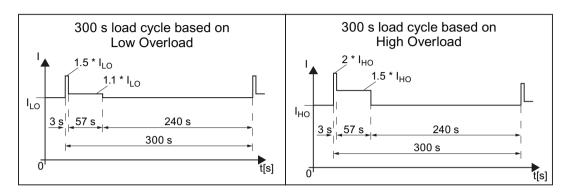
| Article No without filter<br>Article No with filter | 6SL3210-1PH31-4UL0<br>6SL3210-1PH31-4AL0 |  |
|-----------------------------------------------------|------------------------------------------|--|
| LO base load power                                  | 132 kW                                   |  |
| LO base load input current                          | 137 A                                    |  |

| Article No without filter<br>Article No with filter            | 6SL3210-1PH31-4UL0<br>6SL3210-1PH31-4AL0 |   |
|----------------------------------------------------------------|------------------------------------------|---|
| LO base load output current                                    | 142 A                                    |   |
| HO base load power                                             | 110 kW                                   |   |
| HO base load input current                                     | 122 A                                    | ' |
| HO base load output current                                    | 115 A                                    |   |
| Siemens fuse according to IEC<br>Fuse according to UL, class J | 3NA3140-6 (200 A)<br>200 A               |   |
| Power loss without filter                                      | 2.48 kW                                  |   |
| Power loss with filter                                         | 2.51 kW                                  |   |
| Required cooling air flow                                      | 153 l/s                                  |   |
| Weight without filter                                          | 61 kg                                    |   |
| Weight with filter                                             | 65 kg                                    |   |

Table 11-71 PM240-2, frame size G, 500 V ... 690 V 3 AC

| Article No. with filter      | 6SL3210-1PH31-7CL0 | 6SL3210-1PH32-1CL0 | 6SL3210-1PH32-5CL0 |
|------------------------------|--------------------|--------------------|--------------------|
| LO base load power           | 160 kW             | 200 kW             | 250 kW             |
| LO base load input current   | 170 A              | 205 A              | 250 A              |
| LO base load output current  | 171 A              | 208 A              | 250 A              |
| HO base load power           | 132 kW             | 160 kW             | 200 kW             |
| HO base load input current   | 160 A              | 185 A              | 225 A              |
| HO base load output current  | 144 A              | 171 A              | 208 A              |
| Fuse according to the IEC/UL | 3NE1227-0 (250A)   | 3NE1230-0 (315A)   | 3NE1331-0 (350A)   |
| Power loss                   | 2.94 kW            | 3.70 kW            | 4.64 kW            |
| Required cooling air flow    | 210 l/s            | 210 l/s            | 210 l/s            |
| Weight                       | 114 kg             | 114 kg             | 114 kg             |

# 11.6.10 Current derating depending on the pulse frequency, 690 V converters


#### LO base load

| Article number       | LO power [kW] | Pulse frequ     | uency [kHz]      |
|----------------------|---------------|-----------------|------------------|
|                      |               | 2 *)            | 4                |
|                      |               | LO base load ou | tput current [A] |
| 6SL3210-1PH21-4 . L0 | 11            | 14              | 8.4              |
| 6SL3210-1PH22-0 . L0 | 15            | 19              | 11.4             |
| 6SL3210-1PH22-3 . L0 | 18.5          | 23              | 13.8             |
| 6SL3210-1PH22-7 . L0 | 22            | 27              | 16.2             |
| 6SL3210-1PH23-5 . L0 | 30            | 35              | 21               |
| 6SL3211PH24-2 . L0   | 37            | 42              | 25.2             |
| 6SL3210-1PH25-2 . L0 | 45            | 52              | 31.2             |
| 6SL3211PH26-2 . L0   | 55            | 62              | 37.2             |
| 6SL3210-1PH28-0 . L0 | 75            | 80              | 48               |
| 6SL3210-1PH31-0 . L0 | 90            | 100             | 60               |
| 6SL3210-1PH31-2 . L0 | 110           | 115             | 69               |
| 6SL3210-1PH31-4 . L0 | 132           | 142             | 85.2             |
| 6SL3210-1PH31-7CL0   | 160           | 171             | 102.6            |
| 6SL3210-1PH32-1CL0   | 200           | 208             | 124.8            |
| 6SL3210-1PH32-5CL0   | 250           | 250             | 150              |

<sup>\*)</sup> Factory setting

The permissible motor cable length depends on the particular cable type and the pulse frequency that has been selected

#### Typical converter load cycles



#### 11.7.1 Ambient conditions

#### **Ambient conditions during operation**

| Property                                                    | Version                                                                                                 |  |  |  |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|--|
| Ambient conditions for transport in the transport packaging |                                                                                                         |  |  |  |
| Climatic ambient conditions                                 | - $40^{\circ}$ C + $70^{\circ}$ C, according to Class 2K4 to EN 60721-3-2 maximum humidity 95% at 40 °C |  |  |  |
| Mechanical ambient condi-                                   | FSC: Shock and vibration permissible according to 1M2 to EN 60721-3-2                                   |  |  |  |
| tions                                                       | FSD FSF: Shock and vibration permissible according to 2M3 to EN 60721-3-2                               |  |  |  |
| Protection against chemical substances                      | Protected according to Class 2C2 to EN 60721-3-2                                                        |  |  |  |
| Biological ambient conditions                               | Suitable according to Class 2B1 to EN 60721-3-2                                                         |  |  |  |
| Ambient conditions for long                                 | g-term storage in the product packaging                                                                 |  |  |  |
| Climatic ambient conditions                                 | - 25 °C + 55 °C, according to Class 1K3 to EN 60721-3-1                                                 |  |  |  |
| Protection against chemical substances                      | Protected according to Class 1C2 to EN 60721-3-1                                                        |  |  |  |
| Biological ambient conditions                               | Suitable according to class 1B1 to EN 60721-3-1                                                         |  |  |  |
| Ambient conditions in oper                                  | Ambient conditions in operation                                                                         |  |  |  |
| Installation altitude                                       | Up to 1000 m above sea level without limitations                                                        |  |  |  |
|                                                             | Restrictions for special ambient conditions (Page 562)                                                  |  |  |  |

| Property                               | Version                                                                                                                              |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
| Climatic ambient                       | Ambient operating temperature <sup>2)</sup>                                                                                          |  |
| conditions 1)                          | – For operation according to Low Overload: $0^{\circ}$ C +40 $^{\circ}$ C                                                            |  |
|                                        | <ul> <li>For operation according to High Overload: 0° C +50° C</li> </ul>                                                            |  |
|                                        | <ul> <li>Restrictions for special ambient conditions (Page 562)</li> </ul>                                                           |  |
|                                        | Relative humidity: 5 95%, condensation not permitted                                                                                 |  |
|                                        | • Oil mist, salt mist, ice formation, condensation, dripping water, spraying water, splashing water and water jets are not permitted |  |
| Mechanical ambient condi-              | FSC FSF: Vibration levels permissible according to Class 3M1 to EN 60721-3-3                                                         |  |
| tions                                  | • FSC: Shock, permissible according to Class 3M2 to EN 60721-3-3                                                                     |  |
|                                        | • FSD FSF: Shock permissible according to Class 3M1 to EN 60721-3-3                                                                  |  |
| Protection against chemical substances | Protected according to 3C2 to EN 60721-3-3                                                                                           |  |
| Biological ambient conditions          | Suitable according to 3C2 to EN 60721-3-3                                                                                            |  |
| Pollution                              | Suitable for environments with degree of pollution 2 according to EN 61800-5-1, condensation not permitted                           |  |
| Cooling                                | Forced air cooling AF, according to EN 60146                                                                                         |  |
| Cooling air                            | Clean and dry air                                                                                                                    |  |

<sup>1)</sup> Increased ruggedness regarding temperature range and relative humidity; therefore better than 3K3 according to EN 60721-3-3

<sup>&</sup>lt;sup>2)</sup> Observe the permissible ambient temperatures for the Control Unit and possibly the operator panel (IOP-2 or BOP-2).

# 11.7.2 General technical data, PM250

| Property                          | Version                                                                                                                                                                                                |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Line voltage                      | 380 480 V 3 AC ± 10%                                                                                                                                                                                   |
| Line impedance                    | Uk < 1% (RSC > 100), a line reactor is not permitted                                                                                                                                                   |
| Output voltage                    | 3-phase 0 VAC input voltage x 0.87 (max.)                                                                                                                                                              |
| Input frequency                   | 50 Hz 60 Hz, ± 3 Hz                                                                                                                                                                                    |
| Output frequency                  | 0 550 Hz, depending on the control mode                                                                                                                                                                |
| Power factor λ                    | 0.9                                                                                                                                                                                                    |
| Inrush current                    | < LO base load input current                                                                                                                                                                           |
| Pulse frequency (factory setting) | 4 kHz The pulse frequency can be adjusted up to 16 kHz in 2 kHz steps. The higher the pulse frequency, the lower the available output current.  Restrictions for special ambient conditions (Page 562) |
| Electromagnetic compatibility     | The devices comply with EN 61800-3: 2004 suitable for Category C2 and C3 environments.                                                                                                                 |
| Braking methods                   | <ul> <li>DC braking</li> <li>Regenerative feedback (energy recovery) max. with rated power based on high overload (HO)</li> </ul>                                                                      |
| Degree of protection              | IP20 chassis units                                                                                                                                                                                     |

## 11.7.3 Specific technical specifications

#### Note

The values for Low Overload (LO) are identical with those of the rated values.

Table 11-72 PM250, IP20, Frame Size C, 3-ph. AC 380 V ... 480 V

| Article No.                                | 6SL3225-0BE25-5AA1 | 6SL3225-0BE27-5AA1 | 6SL3225-0BE31-1AA1 |
|--------------------------------------------|--------------------|--------------------|--------------------|
| LO base load output                        | 7.5 kW             | 11 kW              | 15 kW              |
| LO base load input current                 | 18 A               | 25 A               | 32 A               |
| LO base load output current                | 18 A               | 25 A               | 32 A               |
| HO base load output                        | 5.5 kW             | 7.5 kW             | 11 kW              |
| HO base load input current                 | 13.2 A             | 19 A               | 26 A               |
| HO base load output current                | 13.2 A             | 19 A               | 26 A               |
| Fuse                                       | 20 A, Class J      | 32 A, Class J      | 35 A, Class J      |
| Power loss                                 | 0.24 kW            | 0.30 kW            | 0.31 kW            |
| Required cooling air flow                  | 38 l/s             | 38 l/s             | 38 l/s             |
| Sound pressure level L <sub>pA</sub> (1 m) | < 60 dB            | < 60 dB            | < 60 dB            |
| Weight                                     | 7.5 kg             | 7.5 kg             | 7.5 kg             |

Table 11-73 PM250, IP20, Frame Size D, 3-ph. AC 380 V ... 480 V

| Article No.                                   | 6SL3225-0BE31-5 . A0                  | 6SL3225-0BE31-8. A0                   | 6SL3225-0BE32-2.A0                    |
|-----------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| LO base load output                           | 18.5 kW                               | 22 kW                                 | 30 kW                                 |
| LO base load input current                    | 36 A                                  | 42 A                                  | 56 A                                  |
| LO base load output current                   | 38 A                                  | 45 A                                  | 60 A                                  |
| HO base load output                           | 15 kW                                 | 18.5 kW                               | 22 kW                                 |
| HO base load input current                    | 30 A                                  | 36 A                                  | 42 A                                  |
| HO base load output current                   | 32 A                                  | 38 A                                  | 45 A                                  |
| Fuse according to IEC<br>Fuse according to UL | 3NA3820<br>50 A, Class J<br>3NE1817-0 | 3NA3822<br>63 A, Class J<br>3NE1818-0 | 3NA3824<br>80 A, Class J<br>3NE1820-0 |
| Power loss                                    | 0.44 kW                               | 0.55 kW                               | 0.72 kW                               |
| Required cooling air flow                     | 22 l/s                                | 22 l/s                                | 39 l/s                                |
| Sound pressure level L <sub>pA</sub> (1 m)    | < 60 dB                               | < 60 dB                               | < 61 dB                               |
| Weight                                        | 15 kg                                 | 15 kg                                 | 16 kg                                 |

Table 11-74 PM250, IP20, Frame Size E, 3-ph. AC 380 V ... 480 V

| Article No.                                   | 6SL3225-0BE33-0 . A0                   | 6SL3225-0BE33-7 . A0                   |  |
|-----------------------------------------------|----------------------------------------|----------------------------------------|--|
| LO base load output                           | 37 kW                                  | 45 kW                                  |  |
| LO base load input current                    | 70 A                                   | 84 A                                   |  |
| LO base load output current                   | 75 A                                   | 90 A                                   |  |
| HO base load output                           | 30 kW                                  | 37 kW                                  |  |
| HO base load input current                    | 56 A                                   | 70 A                                   |  |
| HO base load output current                   | 60 A                                   | 75 A                                   |  |
| Fuse according to IEC<br>Fuse according to UL | 3NA3830<br>100 A, Class J<br>3NE1821-0 | 3NA3832<br>125 A, Class J<br>3NE1822-0 |  |
| Power loss                                    | 1.04 kW                                | 1.2 kW                                 |  |
| Required cooling air flow                     | 22 l/s                                 | 39 l/s                                 |  |
| Sound pressure level L <sub>pA</sub> (1 m)    | < 60 dB                                | < 62 dB                                |  |
| Weight                                        | 21 kg                                  | 21 kg                                  |  |

Table 11-75 PM250, IP20, Frame size F, 3-ph. AC 380 V ... 480 V

| Article No.                                   | 6SL3225-0BE34-5 . A0                   | 6SL3225-0BE35-5 . A0                   | 6SL3225-0BE37-5 . A0                   |
|-----------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| LO base load output                           | 55 kW                                  | 75 kW                                  | 90 kW                                  |
| LO base load input current                    | 102 A                                  | 135 A                                  | 166 A                                  |
| LO base load output current                   | 110 A                                  | 145 A                                  | 178 A                                  |
| HO base load output                           | 45 kW                                  | 55 kW                                  | 75 kW                                  |
| HO base load input current                    | 84 A                                   | 102 A                                  | 135 A                                  |
| HO base load output current                   | 90 A                                   | 110 A                                  | 145 A                                  |
| Fuse according to IEC<br>Fuse according to UL | 3NA3836<br>160 A, Class J<br>3NE1824-0 | 3NA3140<br>200 A, Class J<br>3NE1825-0 | 3NA3144<br>250 A, Class J<br>3NE1827-0 |
| Power loss                                    | 1.5 kW                                 | 2.0 kW                                 | 2.4 kW                                 |
| Required cooling air flow                     | 94 l/s                                 | 94 l/s                                 | 117 l/s                                |
| Sound pressure level L <sub>pA</sub> (1 m)    | < 60 dB                                | < 60 dB                                | < 65 dB                                |
| Weight                                        | 51 kg                                  | 51 kg                                  | 51 kg                                  |

# 11.7.4 Current reduction depending upon pulse frequency

## Relationship between pulse frequency and current reduction

Table 11-76 Current reduction depending on pulse frequency

| Rated<br>Power<br>(LO) | Base load<br>current<br>(LO) | Base load | current (LO) | at pulse fre | quency of |        |        |
|------------------------|------------------------------|-----------|--------------|--------------|-----------|--------|--------|
|                        | 4 kHz                        | 6 kHz     | 8 kHz        | 10 kHz       | 12 kHz    | 14 kHz | 16 kHz |
| kW                     | Α                            | Α         | Α            | Α            | Α         | Α      | Α      |
| 0,55                   | 1,7                          |           |              |              |           |        |        |
| 0,75                   | 2,2                          |           |              |              |           |        |        |
| 1,1                    | 3,1                          |           |              |              |           |        |        |
| 1,5                    | 4,1                          |           |              |              |           |        |        |
| 2,2                    | 5,9                          |           |              |              |           |        |        |
| 3                      | 7,7                          |           |              |              |           |        |        |
| 4                      | 10.2                         |           | ,            |              | ,         |        |        |
| 5,5                    | 13.2                         |           |              |              |           |        |        |
| 7.5                    | 18.0                         | 12.5      | 11.9         | 10.6         | 9.20      | 7.90   | 6.60   |
| 11                     | 25.0                         | 18.1      | 17.1         | 15.2         | 13.3      | 11.4   | 9.50   |
| 15                     | 32.0                         | 24.7      | 23.4         | 20.8         | 18.2      | 15.6   | 12.8   |
| 18.5                   | 38.0                         | 32.3      | 26.6         | 22.8         | 19.0      | 17.1   | 15.2   |
| 22                     | 45.0                         | 38.3      | 31.5         | 27.0         | 22.5      | 20.3   | 18.0   |
| 30                     | 60.0                         | 51.0      | 42.0         | 36.0         | 30.0      | 27.0   | 24.0   |
| 37                     | 75.0                         | 63.8      | 52.5         | 45.0         | 37.5      | 33.8   | 30.0   |
| 45                     | 90.0                         | 76.5      | 63.0         | 54.0         | 45.0      | 40.5   | 36.0   |
| 55                     | 110                          | 93.5      | 77.0         |              |           |        |        |
| 75                     | 145                          | 123       | 102          |              |           |        |        |
| 90                     | 178                          | 151       | 125          |              |           |        |        |

#### Data regarding the power loss in partial load operation 11.8

You can find data regarding power loss in partial load operation in the Internet:



Partial load operation (http://support.automation.siemens.com/WW/view/en/94059311)

## 11.9 Restrictions for special ambient conditions

#### 11.9.1 Permissible line supplies dependent on the installation altitude

#### Permissible line supplies dependent on the installation altitude

- For installation altitudes ≤ 2000 m above sea level, it is permissible to connect the converter to any of the line supplies that are specified for it.
- For installation altitudes 2000 m ... 4000 m above sea level, the following applies:
  - Connection to a TN line system with grounded neutral point is permissible.
  - TN systems with grounded line conductor are not permitted.
  - The TN line system with grounded neutral point can also be supplied using an isolation transformer.
  - The phase-to-phase voltage does not have to be reduced.

#### Note

Using Power Modules connected to TN line supplies with voltages ≥ 600 V for installation altitudes 2000 m ... 4000 m

For voltages  $\geq$  600 V, the TN line supply must have a grounded neutral point established using an isolating transformer.

#### Current derating as a function of the installation altitude

The permissible converter output current is reduced above an installation altitude of 1000 m.

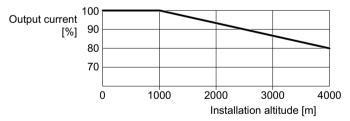



Figure 11-6 Characteristic for PM230 Power Modules, PM250 Power Modules and PM330 Power Modules, HX and JX

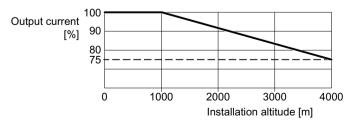



Figure 11-7 Characteristic for the PM330 GX Power Module

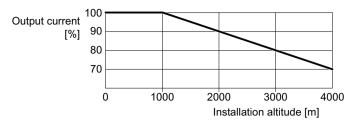



Figure 11-8 Characteristic for PM240-2 Power Modules and PM240P-2 Power Modules

#### Current derating depending on the ambient air temperature

The Control Unit and Operator Panel can restrict the maximum permissible operating ambient temperature of the Power Module.

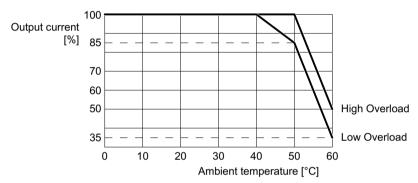



Figure 11-9 Characteristic for the PM230 Power Module

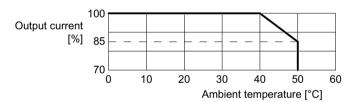



Figure 11-10 Characteristic for the PM330 Power Module

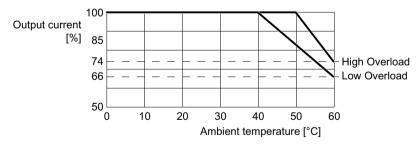



Figure 11-11 Characteristic for the PM250 Power Module

11.10 Protecting persons from electromagnetic fields

## 11.10 Protecting persons from electromagnetic fields

#### Overview

Protection of workers from electromagnetic fields is specified in the European EMF Directive 2013/35/EU. This directive is implemented in national law in the European Economic Area (EEA). Employers are obligated to design workplaces in such a way that workers are protected from impermissibly strong electromagnetic fields.

To this end, assessments and/or measurements must be performed for workplaces.

#### General conditions

The following general conditions apply for the evaluations and measurements:

- 1. The laws for protection from electromagnetic fields in force in individual EU member states can go beyond the minimum requirements of the EMF Directive 2013/35/EU and always take precedence.
- 2. The ICNIRP 2010 limits for the workplace are the basis for the assessment.
- 3. The 26th BImSchV (German Federal Emission Protection Regulation) defines 100  $\mu$ T (RMS) for the assessment of active implants. According to Directive 2013/35/EU, 500  $\mu$ T (RMS) at 50 Hz is applicable here.
- 4. The routing of power cables has a significant impact on the electromagnetic fields that occur. Install and operate the components inside metallic cabinets in compliance with the documentation and use shielded motor cables.
  - EMC-compliant setup of the machine or plant (Page 64)

#### Evaluation of the converter

The converters are normally used in machines. The assessment and testing is based on DIN EN 12198.

Compliance with the limit values was assessed for the following frequencies:

- Line frequency 47 ... 63 Hz
- Pulse frequency, for example 4/8/16 kHz and multiples thereof, assessed up to a maximum of 100 kHz

The indicated minimum distances apply to the head and complete torso of the human body. Shorter distances are possible for extremities.

Table 11-77 Minimum distances to the converter

| Individuals witho      | ut active implants                | Individuals with active implants  |                      |  |  |  |  |
|------------------------|-----------------------------------|-----------------------------------|----------------------|--|--|--|--|
| Control cabinet closed | Control cabinet open              | Control cabinet closed            | Control cabinet open |  |  |  |  |
| 0 cm                   | Forearm length (approx.<br>35 cm) | Must be separately assess tive in |                      |  |  |  |  |

Appendix

## A.1 New and extended functions

#### A.1.1 Firmware version 4.7 SP14

Table A-1 New functions and function changes in firmware 4.7 SP14

|   | Function                                                                                                                                                 |          | SINAMICS |          |          |          |          |          |          |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|
|   |                                                                                                                                                          |          |          |          | G1       | G1:      | 20D      |          |          |
|   |                                                                                                                                                          | G115D    | G120C    | CU230P-2 | CU240B-2 | CU240E-2 | CU250S-2 | CU240D-2 | CU250D-2 |
| 1 | The G115D converter now supports the extended safety function 'Safety Limited Speed (SLS)' when using motors from SIEMENS and third-party manufacturers. | <b>\</b> | -        | -        | -        | <b>✓</b> | -        | 1        | -        |

#### A.1.2 Firmware version 4.7 SP13

Table A-2 New functions and function changes in firmware 4.7 SP13

|   | Function                                                                                                                                                                                                                                                   | SINAMICS |       |       |          |          |          |          |          |          |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|-------|----------|----------|----------|----------|----------|----------|--|
|   |                                                                                                                                                                                                                                                            |          |       |       |          | G1       | 20       |          | G12      | 20D      |  |
|   |                                                                                                                                                                                                                                                            | G115D    | G110M | G120C | CU230P-2 | CU240B-2 | CU240E-2 | CU250S-2 | CU240D-2 | CU250D-2 |  |
| 1 | SIMOTICS 1FP1 and 1FP3 synchronous-reluctance motors have also been approved for operation with SINAMICS G120C.                                                                                                                                            | -        | 1     | 1     | 1        | 1        | 1        | -        | 1        | -        |  |
| 2 | The extended safety functions SS1, SLS, SSM and SDI are approved when using synchronous-reluctance motors from Siemens and third-party manufacturers.                                                                                                      | -        | -     | -     | -        | -        | 1        | -        | ✓        | -        |  |
| 3 | The converter transmits the state of the fail-safe digital input F-DI 0 via PROFIsafe when using the basic functions.                                                                                                                                      | 1        | 1     | 1     | -        | -        | 1        | 1        | 1        | 1        |  |
|   | You can find more information in the "Safety Integrated" Function Manual.  "Safety Integrated" function manual ( <a href="https://support.industry.siemens.com/cs/ww/en/view/109751320">https://support.industry.siemens.com/cs/ww/en/view/109751320</a> ) |          |       |       |          |          |          |          |          |          |  |

#### A.1 New and extended functions

|   | Function                                                                                                                               | SINAMICS |   |   |   |    |    |   |     |          |
|---|----------------------------------------------------------------------------------------------------------------------------------------|----------|---|---|---|----|----|---|-----|----------|
|   |                                                                                                                                        |          |   |   |   | G1 | 20 |   | G12 | 20D      |
| 4 | Modbus RTU:                                                                                                                            | -        | - | 1 | 1 | 1  | 1  | ✓ | -   | -        |
|   | The converter supports the combination "1 stop bit" and "no parity".                                                                   |          |   |   |   |    |    |   |     |          |
| 5 | EtherNet/IP:                                                                                                                           | 1        | 1 | 1 | 1 | -  | 1  | 1 | 1   | <b>\</b> |
|   | When selecting the ODVA AC/DC drive profile, although telegram 1 is predefined, it can be extended to include additional process data. |          |   |   |   |    |    |   |     |          |
|   | The EDS file has been extended accordingly by a telegram with a length of 6 words.                                                     |          |   |   |   |    |    |   |     |          |
|   | More information is provided in the "Fieldbuses" Function Manual.                                                                      |          |   |   |   |    |    |   |     |          |
|   | "Fieldbus" function manual (https://                                                                                                   |          |   |   |   |    |    |   |     |          |
|   | support.industry.siemens.com/cs/ww/en/view/109751350)                                                                                  |          |   |   |   |    |    |   |     |          |
|   | EDS (https://support.industry.siemens.com/cs/ww/de/view/78026217)                                                                      |          |   |   |   |    |    |   |     |          |

#### A.1.3 Firmware version 4.7 SP10

Table A-3 New functions and function changes in firmware 4.7 SP10

|   | Function SINAMICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |       |          |          |          |          |          |          |                |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|----------|----------|----------|----------|----------|----------|----------------|
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |       |          | G1       | 20       |          | G12      | 20D      |                |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G110M | G120C | CU230P-2 | CU240B-2 | CU240E-2 | CU250S-2 | CU240D-2 | CU250D-2 | ET 200pro FC-2 |
| 1 | New parameter r7844 [1] for displaying the firmware version in plain text.                                                                                                                                                                                                                                                                                                                                                                                                                 | 1     | 1     | 1        | 1        | 1        | 1        | 1        | 1        | 1              |
|   | "04070901" is equivalent to firmware version V4.7 SP9 HF1, for example                                                                                                                                                                                                                                                                                                                                                                                                                     |       |       |          |          |          |          |          |          |                |
| 2 | <ul> <li>Modbus RTU:</li> <li>The factory setting of parameter p2040 was increased to provide more robust converter operation. Monitoring time for data failure at the Modbus interface: p2040 = 10 s</li> </ul>                                                                                                                                                                                                                                                                           | •     | •     | •        | •        | •        | •        | -        | -        | -              |
| _ | r2057 indicates how the address switch on the converter is set                                                                                                                                                                                                                                                                                                                                                                                                                             |       |       |          |          |          |          |          |          | $\vdash$       |
| 3 | <ul> <li>BACnet MS/TP:</li> <li>New factory setting for more robust converter operation: <ul> <li>Baud rate p2020 = 38.4 kBd</li> <li>Monitoring time for data failure at the BACnet interface was increased: p2040 = 10 s</li> <li>Factory setting for the maximum number of info frames p2025 [1] = 5</li> <li>Factory setting for the maximum number of manager addresses p2025 [3] = 32</li> </ul> </li> <li>r2057 indicates how the address switch on the converter is set</li> </ul> | -     | -     |          | -        | -        | -        | -        | -        | -              |
| 4 | Further technological unit kg/cm² for unit switchover                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1     | 1     | 1        | 1        | 1        | 1        | 1        | 1        | 1              |
| 5 | Further technological unit kg/cm² for additional technology controllers                                                                                                                                                                                                                                                                                                                                                                                                                    | _     | -     | 1        | _        | _        | -        | _        | _        | -              |

|   | Function                                                                                                                                                                       | SINAMICS |   |      |   |    |   |     |     |   |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---|------|---|----|---|-----|-----|---|
|   |                                                                                                                                                                                |          |   | G120 |   |    |   | G12 | 20D |   |
| 6 | Commissioning with predefined motor data for SIMOTICS GP/SD synchronous-reluctance motors:                                                                                     | 1        | - | 1    | - | 1) | - | 1   | -   | - |
|   | Second generation: 1FP1 . 04 → 1FP1 . 14                                                                                                                                       |          |   |      |   |    |   |     |     |   |
|   | Further frame sizes:                                                                                                                                                           |          |   |      |   |    |   |     |     |   |
|   | - 1.1 kW 3 kW, 1500 1/min, 1800 1/min, 2810 1/min                                                                                                                              |          |   |      |   |    |   |     |     |   |
|   | - 0.75 kW 4 kW, 3000 1/min, 3600 1/min                                                                                                                                         |          |   |      |   |    |   |     |     |   |
|   | In planning:                                                                                                                                                                   |          |   |      |   |    |   |     |     |   |
|   | - 37 kW 45 kW, 1500 1/min, 1800 1/min, 2810 1/min                                                                                                                              |          |   |      |   |    |   |     |     |   |
|   | - 5.5 kW 18.5 kW, 3000 1/min, 3600 1/min                                                                                                                                       |          |   |      |   |    |   |     |     |   |
|   | - 45 kW, 3000 1/min, 3600 1/min                                                                                                                                                |          |   |      |   |    |   |     |     |   |
|   | The predefined motor data is already included in the firmware                                                                                                                  |          |   |      |   |    |   |     |     |   |
| 7 | Extended setting option for evaluating the STOP cam in the "basic positioner" function                                                                                         | -        | - | -    | - | -  | 1 | -   | 1   | - |
|   | Two different functions to evaluate STOP cams can be set:                                                                                                                      |          |   |      |   |    |   |     |     |   |
|   | Edge-triggered evaluation (factory setting)                                                                                                                                    |          |   |      |   |    |   |     |     |   |
|   | Level-triggered evaluation                                                                                                                                                     |          |   |      |   |    |   |     |     |   |
|   | For more information, refer to the "Basic Positioner" Function Manual or the operating instructions for "SINAMICS G120D Converter with CU250D-2 Control Units".                |          |   |      |   |    |   |     |     |   |
|   | "Basic positioner" function manual ( <a href="https://support.industry.siemens.com/cs/ww/en/view/109477922">https://support.industry.siemens.com/cs/ww/en/view/109477922</a> ) |          |   |      |   |    |   |     |     |   |
|   | Operating instructions SINAMICS G120D with CU250D-2 (https://support.industry.siemens.com/cs/ww/en/view/109477365)                                                             |          |   |      |   |    |   |     |     |   |

<sup>1)</sup> Installation with PM240-2 or PM240P-2 Power Modules

## A.1.4 Firmware version 4.7 SP9

Table A-4 New functions and function changes in firmware 4.7 SP9

|    | Function                                                                                                                                                                                                                                                                                       |       | SINAMICS |            |          |          |          |          |          |                |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|------------|----------|----------|----------|----------|----------|----------------|--|--|
|    |                                                                                                                                                                                                                                                                                                |       |          | G120 G120D |          |          |          |          |          |                |  |  |
|    |                                                                                                                                                                                                                                                                                                | G110M | G120C    | CU230P-2   | CU240B-2 | CU240E-2 | CU250S-2 | CU240D-2 | CU250D-2 | ET 200pro FC-2 |  |  |
| 1  | Support of PM240-2 FSG Power Modules                                                                                                                                                                                                                                                           | -     | -        | 1          | 1        | 1        | 1        | -        | -        | -              |  |  |
| 2  | Support of PM240-2 Power Modules in push-through technology, frame sizes FSD FSF, for the following voltages:  • 3 AC 200 V 240 V  • 3 AC 380 V 480 V  • 3 AC 500 V 690 V                                                                                                                      | -     | -        | •          | <b>✓</b> | 1        | <b>✓</b> | -        | -        | -              |  |  |
| 3  | Shortened switch-on time for PM330 Power Modules                                                                                                                                                                                                                                               | -     | -        | ✓          | -        | -        | -        | -        | -        | -              |  |  |
| 4  | Expansion of the support for 1FP1 synchronous-reluctance motor with the following converters:  • SINAMICS G110M  • SINAMICS G120D  • SINAMICS G120 with CU240B-2 or CU240E-2 Control Unit A PM240-2 Power Module is required to operate a 1FP1 synchronous-reluctance motor with SINAMICS G120 | •     | -        | <b>✓</b>   | •        | <b>✓</b> | -        | <b>✓</b> | -        | -              |  |  |
| 5  | Support of 1FP3 synchronous-reluctance motors                                                                                                                                                                                                                                                  | -     | -        | 1          | -        | -        | -        | -        | -        | -              |  |  |
|    | A PM240-2 Power Module is required to operate a 1FP3 synchronous-reluctance motor along with a selective release from SIEMENS                                                                                                                                                                  |       |          |            |          |          |          |          |          |                |  |  |
| 6  | Support of 1LE5 induction motors                                                                                                                                                                                                                                                               | -     | ✓        | 1          | 1        | 1        | 1        | -        | -        | -              |  |  |
| 7  | The converter supports forming of the PM330 Power Module DC link capacitors                                                                                                                                                                                                                    | -     | -        | <b>✓</b>   | -        | -        | -        | -        | -        | -              |  |  |
| 8  | Setting option for two output reactors using parameter p0235 at the SI-NAMICS G120C and SINAMICS G120 with PM240-2 FSD FSF Power Module                                                                                                                                                        | -     | ✓        | 1          | 1        | 1        | 1        | -        | -        | -              |  |  |
| 9  | Efficiency-optimized operation of induction motors Improved method "Efficiency optimization 2"                                                                                                                                                                                                 | ✓     | ✓        | 1          | ✓        | 1        | <b>✓</b> | 1        | ✓        | <b>✓</b>       |  |  |
| 10 | New setting option for the "Technology application" p0500 = 5 during quick commissioning                                                                                                                                                                                                       | 1     | •        | 1          | 1        | <b>/</b> | <b>/</b> | <b>/</b> | 1        | 1              |  |  |
| 11 | Expansion of the available PROFIdrive telegrams in the SINAMICS G120C to include telegram 350                                                                                                                                                                                                  | -     | 1        | 1          | 1        | 1        | 1        | -        | -        | -              |  |  |
| 12 | An SSI encoder can be parameterized as motor encoder                                                                                                                                                                                                                                           | -     | -        | -          | -        | -        | 1        | -        | ✓        | -              |  |  |
| 13 | Expansion of the "Basic positioner" function to include the feedback signal from traversing blocks to the higher-level control system                                                                                                                                                          | -     | -        | -          | -        | -        | 1        | -        | 1        | -              |  |  |
| 14 | <ul> <li>Feedback signal supplemented to indicate that a memory card is not inserted in the converter:</li> <li>Parameter r9401 as BiCo parameter for the optional feedback signal to the higher-level control system.</li> <li>New alarm A01101</li> </ul>                                    | •     | •        | •          | •        | •        | <b>✓</b> | <b>✓</b> | •        | •              |  |  |

## A.1 New and extended functions

|    | Function                                                                                 |   | SINAMICS |      |   |   |   |     |     |          |  |
|----|------------------------------------------------------------------------------------------|---|----------|------|---|---|---|-----|-----|----------|--|
|    |                                                                                          |   |          | G120 |   |   |   | G12 | 20D |          |  |
| 15 | Expansion of the "End stop control" function on the following converters:                | 1 | ✓        | 1    | 1 | 1 | 1 | ✓   | 1   | -        |  |
|    | SINAMICS G120                                                                            |   |          |      |   |   |   |     |     |          |  |
|    | SINAMICS G120C                                                                           |   |          |      |   |   |   |     |     |          |  |
|    | SINAMICS G120D                                                                           |   |          |      |   |   |   |     |     |          |  |
| 16 | Expansion of the technology controller to include the following functions:               | - | -        | 1    | - | 1 | - | -   | -   | -        |  |
|    | • Gain $K_P$ and integral time $T_N$ can be adapted.                                     |   |          |      |   |   |   |     |     |          |  |
|    | The system deviation can be used as adaptation signal                                    |   |          |      |   |   |   |     |     |          |  |
| 17 | Expansion to the torque limiting for SINAMICS G120 converters with CU230P-2 Control Unit | 1 | ✓        | 1    | 1 | 1 | 1 | 1   | 1   | <b>✓</b> |  |
| 18 | The converter displays the state "PROFlenergy pause" as follows:                         | 1 | 1        | 1    | 1 | 1 | 1 | 1   | 1   | 1        |  |
|    | LED RDY "green on": 0.5 s                                                                |   |          |      |   |   |   |     |     |          |  |
|    | • LED RDY off: 3 s                                                                       |   |          |      |   |   |   |     |     |          |  |

## A.1.5 Firmware version 4.7 SP6

Table A-5 New functions and function changes in firmware 4.7 SP6

|   | Function                                                                                                                                         | SINAMICS |          |          |          |          |          |          |          |                |  |  |      |  |      |  |      |  |      |  |    |  |       |  |  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------------|--|--|------|--|------|--|------|--|------|--|----|--|-------|--|--|
|   |                                                                                                                                                  |          |          | G120     |          |          | G120     |          |          | G120           |  |  | G120 |  | G120 |  | G120 |  | G120 |  | 20 |  | G120D |  |  |
|   |                                                                                                                                                  | G110M    | G120C    | CU230P-2 | CU240B-2 | CU240E-2 | CU250S-2 | CU240D-2 | CU250D-2 | ET 200pro FC-2 |  |  |      |  |      |  |      |  |      |  |    |  |       |  |  |
| 1 | Support for the Power Module PM240-2, FSF frame sizes                                                                                            | -        | -        | 1        | 1        | 1        | 1        | -        | -        | -              |  |  |      |  |      |  |      |  |      |  |    |  |       |  |  |
|   | Support of PM240P-2 Power Modules frame sizes FSD FSF                                                                                            | -        | -        | ✓        | <b>✓</b> | ✓        | -        | -        | -        | -              |  |  |      |  |      |  |      |  |      |  |    |  |       |  |  |
|   | Support of safety function Safe Torque Off (STO) via the terminals of the PM240-2 Power Module, frame size FSF and PM240P-2 Power Module FSD FSF | -        | -        | -        | -        | ✓        | ✓        | -        | -        | -              |  |  |      |  |      |  |      |  |      |  |    |  |       |  |  |
| 2 | Support for Power Module PM330 JX frame size                                                                                                     | -        | -        | 1        | -        | -        | -        | -        | -        | -              |  |  |      |  |      |  |      |  |      |  |    |  |       |  |  |
| 3 | Support for 1PC1 induction motors                                                                                                                | ✓        | <b>✓</b> | ✓        | 1        | ✓        | ✓        | 1        | ✓        | 1              |  |  |      |  |      |  |      |  |      |  |    |  |       |  |  |
| 4 | The control of synchronous reluctance takes into account the inductance of the output reactor.                                                   | -        | -        | 1        | -        | -        | -        | -        | -        | -              |  |  |      |  |      |  |      |  |      |  |    |  |       |  |  |
| 5 | Support of motor temperature sensor Pt1000                                                                                                       | 1        | 1        | 1        | 1        | 1        | 1        | 1        | 1        | 1              |  |  |      |  |      |  |      |  |      |  |    |  |       |  |  |
| 6 | New p4621 parameter for disabling PTC short-circuit monitoring                                                                                   | -        | -        | -        | -        | -        | -        | 1        | 1        | 1              |  |  |      |  |      |  |      |  |      |  |    |  |       |  |  |
| 7 | Revision of the thermal motor model for protecting the motor against damage due to overheating in the stator or rotor                            | 1        | 1        | 1        | 1        | 1        | <b>✓</b> | 1        | 1        | 1              |  |  |      |  |      |  |      |  |      |  |    |  |       |  |  |
| 8 | Changing the quick commissioning in the "Standard Drive Control" application class:                                                              | -        | <b>✓</b> | <b>✓</b> | 1        | 1        | ✓        | -        | -        | -              |  |  |      |  |      |  |      |  |      |  |    |  |       |  |  |
|   | The motor data identification is no longer permanently set to p1900 = 12; instead, users select the appropriate motor data identification.       |          |          |          |          |          |          |          |          |                |  |  |      |  |      |  |      |  |      |  |    |  |       |  |  |
|   | Factory setting: p1900 = 2.                                                                                                                      |          |          |          |          |          |          |          |          |                |  |  |      |  |      |  |      |  |      |  |    |  |       |  |  |
| 9 | The free function blocks are also available in the SINAMICS G120C.                                                                               | ✓        | ✓        | ✓        | 1        | 1        | ✓        | ✓        | -        | -              |  |  |      |  |      |  |      |  |      |  |    |  |       |  |  |

## A.1.6 Firmware version 4.7 SP3

Table A-6 New functions and function changes in firmware 4.7 SP3

|    | Function                                                                                                                                                                                                                      | SINAMICS |            |          |          |          |          |          |          |                |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|----------|----------|----------|----------|----------|----------|----------------|--|--|
|    |                                                                                                                                                                                                                               |          | G120 G120D |          |          |          |          |          |          |                |  |  |
|    |                                                                                                                                                                                                                               | G110M    | G120C      | CU230P-2 | CU240B-2 | CU240E-2 | CU250S-2 | CU240D-2 | CU250D-2 | ET 200pro FC-2 |  |  |
| 1  | PM240-2 Power Modules, frame sizes FSD and FSE are supported                                                                                                                                                                  | -        | -          | 1        | 1        | 1        | 1        | -        | -        | -              |  |  |
|    | The Safety Integrated Basic Function Safe Torque Off (STO) is supported via the terminals of the PM240-2 Power Module, frame sizes FSD and FSE                                                                                | -        | -          | -        | -        | <b>✓</b> | <b>✓</b> | -        | -        | -              |  |  |
| 2  | Revised PM230 Power Module with new article numbers supported:                                                                                                                                                                | -        | -          | ✓        | ✓        | ✓        | -        | -        | -        | -              |  |  |
|    | IP55 degree of protection: 6SL3223-0DE <b>G</b> .                                                                                                                                                                             |          |            |          |          |          |          |          |          |                |  |  |
|    | • IP20 degree of protection and Push Through: 6SL3211NE <b>G</b> .                                                                                                                                                            |          |            |          |          |          |          |          |          |                |  |  |
|    | The Safety Integrated Basic Function Safe Torque Off (STO) is supported with the revised PM230 Power Module                                                                                                                   | -        | -          | -        | -        | 1        | -        | -        | -        | -              |  |  |
| 3  | PM330 Power Module, frame size HX is supported                                                                                                                                                                                | -        | -          | 1        | -        | -        | -        | -        | -        | -              |  |  |
| 4  | Support of 1FP1 synchronous-reluctance motors                                                                                                                                                                                 | -        | -          | 1        | -        | -        | -        | -        | -        | -              |  |  |
| 5  | Encoderless 1FG1 geared synchronous motors are supported                                                                                                                                                                      | -        | -          | -        | -        | -        | -        | 1        | -        | -              |  |  |
| 6  | Selection list for 1PH8 induction motors in the STARTER and Startdrive commissioning wizard                                                                                                                                   | -        | <b>✓</b>   | <b>✓</b> | 1        | 1        | <b>✓</b> | -        | -        | -              |  |  |
| 7  | Updated selection list for 1LE1 induction motors in the STARTER and Start-<br>drive commissioning wizard                                                                                                                      | <b>✓</b> | 1          | 1        | 1        | 1        | 1        | 1        | 1        | 1              |  |  |
| 8  | Motor support expanded with 1LE1, 1LG6, 1LA7 and 1LA9 induction motors                                                                                                                                                        | ✓        | -          | -        | -        | -        | -        | -        | -        | -              |  |  |
| 9  | Speed and position control obtain their respective actual value from an SSI encoder with incremental tracks. The output signals of the encoder are available as encoder 2 for position control and timer 1 for speed control. | -        | -          | -        | -        | -        | ✓        | -        | ✓        | -              |  |  |
| 10 | Power Module with temperature-controlled fan                                                                                                                                                                                  | 1        | -          | -        | -        | -        | -        | -        | -        | -              |  |  |
| 11 | SINAMICS "Standard Drive Control" and "Dynamic Drive Control" application classes to simplify commissioning and increase the degree of ruggedness of the closed-loop motor control.                                           | -        | 1          | 1        | 1        | ✓        | 1        | -        | -        | -              |  |  |
|    | The SINAMICS application classes are available with the following converters:                                                                                                                                                 |          |            |          |          |          |          |          |          |                |  |  |
|    | SINAMICS G120C                                                                                                                                                                                                                |          |            |          |          |          |          |          |          |                |  |  |
|    | SINAMICS G120 with PM240, PM240-2 and PM330 Power Modules                                                                                                                                                                     |          |            |          |          |          |          |          |          |                |  |  |
| 12 | Moment of inertia estimator with moment of inertia precontrol to optimize the speed controller in operation                                                                                                                   | 1        | <b>'</b>   | -        | <b>/</b> | 1        | <b>′</b> | <b>/</b> | 1        | <b>✓</b>       |  |  |
| 13 | Friction torque characteristic with automatic plotting to optimize the speed controller                                                                                                                                       | <b>✓</b> | 1          | -        | 1        | 1        | 1        | 1        | <b>✓</b> | <b>✓</b>       |  |  |
| 14 | Automatic optimization of the technology controller                                                                                                                                                                           | -        | -          | 1        | 1        | 1        | -        | -        | -        | -              |  |  |
| 15 | The sign of the system deviation for the additional, free technology controller can be switched over.                                                                                                                         | -        | -          | <b>1</b> | -        | -        | -        | -        |          | -              |  |  |
|    | A new parameter defines the sign of the system deviation matching the particular application, e.g. for cooling or heating applications.                                                                                       |          |            |          |          |          |          |          |          |                |  |  |

## A.1 New and extended functions

|    | Function                                                                                                                                                        | SINAMICS |          |            |   |   |   |   |   |   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|------------|---|---|---|---|---|---|
|    |                                                                                                                                                                 |          |          | G120 G120D |   |   |   |   |   |   |
| 16 | The technology controller output can be enabled and disabled during operation                                                                                   | -        | 1        | 1          | 1 | 1 | 1 | - | - | - |
| 17 | Ramp-function generator remains active with enabled technology controller                                                                                       | -        | -        | 1          | - | - | - | - | - | - |
| 18 | Line contactor control using a digital output of the converter to save energy when the motor is switched off                                                    | ✓        | <b>✓</b> | 1          | 1 | 1 | 1 | 1 | 1 | - |
| 19 | Fast flying restart for PM330 Power Modules:                                                                                                                    | -        | -        | 1          | - | - | - | - | - | - |
|    | The "Flying restart" function does not have to wait for the motor demagnetization time, and identifies the motor speed without requiring a search operation.    |          |          |            |   |   |   |   |   |   |
| 20 | Load torque monitoring extended to include the following functions:                                                                                             | ✓        | -        | ✓          | ✓ | ✓ | - | - | - | - |
|    | Protection against blocking, leakage and dry running operation in pump applications                                                                             |          |          |            |   |   |   |   |   |   |
|    | Protection against blocking and broken belts in fan applications                                                                                                |          |          |            |   |   |   |   |   |   |
| 21 | Automatic switchover of the real time clock from daylight saving time (summer time) to standard time (winter time).                                             | -        | -        | 1          | - | - | - | - | - | - |
| 22 | New or revised default settings of the interfaces: p0015 macros 110, 112 and 120                                                                                | -        | -        | 1          | - | - | - | - | - | - |
| 23 | Expansion of the temperature sensors to include DIN-Ni1000 for analog inputs AI 2 and AI 3                                                                      | -        | -        | 1          | - | - | - | - | - | - |
| 24 | Communication via AS-Interface.                                                                                                                                 | 1        | -        | -          | - | - | - | - | - | - |
|    | Default setting of the communication via AS-i: p0015 macros 30, 31, 32 and 34                                                                                   |          |          |            |   |   |   |   |   |   |
| 25 | Communication expansion via Modbus:                                                                                                                             | 1        | 1        | 1          | 1 | 1 | 1 | - | - | - |
|    | Adjustable parity bit, access to parameters and analog inputs                                                                                                   |          |          |            |   |   |   |   |   |   |
| 26 | Extending communication via BACnet:                                                                                                                             | -        | -        | 1          | - | - | - | - | - | - |
|    | Access to parameters and analog inputs                                                                                                                          |          |          |            |   |   |   |   |   |   |
| 27 | The bus error LED for communication via USS and Modbus can be switched off                                                                                      | 1        | 1        | 1          | 1 | 1 | 1 | - | - | - |
| 28 | Default of the minimum speed to 20 % of the rated motor speed                                                                                                   | -        | -        | 1          | - | - | - | - | - | - |
| 29 | For commissioning with an operator panel, the converter automatically backs up the measured data retentively in the ROM after identification of the motor data. | ✓        | 1        | 1          | ✓ | 1 | 1 | 1 | ✓ | 1 |
| 30 | The result of the energy savings calculation for flow machines is available as a connector                                                                      | 1        | 1        | 1          | 1 | 1 | 1 | 1 | 1 | 1 |
| 31 | New "ppm" unit (parts per million) for unit switching                                                                                                           | 1        | 1        | 1          | 1 | 1 | 1 | 1 | 1 | 1 |
| 32 | Displaying speeds during commissioning via operator panel in units of Hz instead of rpm. Conversion from Hz to rpm via p8552                                    | -        | -        | 1          | - | - | - | - | - | - |
| 33 | Voltage-dependent current limit for 600V devices of Power Module PM330 and PM240-2                                                                              | -        | -        | 1          | 1 | 1 | 1 | - | - | - |

## A.1.7 Firmware version 4.7

Table A-7 New functions and function changes in Firmware 4.7

|          | Function                                                                                                                                                                      |       |          |          | SINAMICS |          |          |          |          |  |  |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|----------|----------|----------|----------|----------|----------|--|--|--|
|          |                                                                                                                                                                               |       |          |          | G12      | 20D      |          |          |          |  |  |  |
|          |                                                                                                                                                                               | G110M | G120C    | CU230P-2 | CU240B-2 | CU240E-2 | CU250S-2 | CU240D-2 | CU250D-2 |  |  |  |
| 1 9      | Supporting the identification & maintenance datasets (I&M1 4)                                                                                                                 | 1     | 1        | 1        | 1        | 1        | 1        | 1        | 1        |  |  |  |
| 2 I      | Fall in pulse rate with increased drive power required by the motor                                                                                                           | 1     | 1        | 1        | 1        | 1        | 1        | 1        | 1        |  |  |  |
|          | <ul> <li>The converter temporarily lowers the pulse frequency if required when the<br/>motor is started up, and simultaneously increases the current limit.</li> </ul>        |       |          |          |          |          |          |          |          |  |  |  |
| 3 9      | S7 communication                                                                                                                                                              | 1     | 1        | 1        | 1        | 1        | 1        | 1        | 1        |  |  |  |
|          | • Direct data exchange between the converter and human-machine interface (HMI).                                                                                               |       |          |          |          |          |          |          |          |  |  |  |
|          | <ul> <li>Increase in communication performance with the engineering tools and support of the S7 routing</li> </ul>                                                            |       |          |          |          |          |          |          |          |  |  |  |
|          | The basic functions of Safety Integrated are unrestrictedly available in all control types with 1FK7 encoderless permanent-field synchronous motors                           | -     | -        | -        | -        | -        | -        | 1        | -        |  |  |  |
| 5 I      | Encoderless 1FK7 synchronous motors are supported                                                                                                                             | -     | -        | -        | -        | -        | -        | 1        | -        |  |  |  |
|          | <ul> <li>Direct motor selection based on the article number with associated code<br/>number</li> </ul>                                                                        |       |          |          |          |          |          |          |          |  |  |  |
| •        | It is not necessary to input individual motor data                                                                                                                            |       |          |          |          |          |          |          |          |  |  |  |
| 6 I      | Pulse input as source of setpoint value                                                                                                                                       | -     | -        | -        | -        | -        | ✓        | -        | -        |  |  |  |
|          | <ul> <li>The converter calculates its speed setpoint from a sequence of pulses at the<br/>digital input.</li> </ul>                                                           |       |          |          |          |          |          |          |          |  |  |  |
| <b>I</b> | Dynamic IP address assignment (DHCP) and temporary device names for PROFI-<br>NET                                                                                             | 1     | <b>✓</b> | ✓        | -        | 1        | <b>✓</b> | <b>✓</b> | 1        |  |  |  |
| 8 I      | PROFlenergy device profile 2 and 3                                                                                                                                            | ✓     | 1        | ✓        | -        | ✓        | ✓        | ✓        | 1        |  |  |  |
| 9 1      | Uniform behavior for component replacement                                                                                                                                    | 1     | 1        | -        | -        | 1        | 1        | 1        | 1        |  |  |  |
|          | <ul> <li>After a component is replaced, a converter with activated Safety Integrated<br/>will report what type of component has been replaced using a unique code.</li> </ul> |       |          |          |          |          |          |          |          |  |  |  |
| 10 I     | Improved direct-component control in PM230                                                                                                                                    | -     | -        | 1        | -        | -        | -        | -        | -        |  |  |  |
| •        | Optimized efficiency for pump and fan applications                                                                                                                            |       |          |          |          |          |          |          |          |  |  |  |
| 11       | Rounding down of BACnet and macros                                                                                                                                            | -     | -        | 1        | -        | -        | -        | -        | - ]      |  |  |  |

#### A.1 New and extended functions

## A.1.8 Firmware version 4.6 SP6

Table A-8 New functions and function changes in firmware 4.6 SP6

|   | Function                          |       | SINAMICS |          |          |          |          |          |  |
|---|-----------------------------------|-------|----------|----------|----------|----------|----------|----------|--|
|   |                                   |       |          | G1       | G1:      | 20D      |          |          |  |
|   |                                   | G120C | CU230P-2 | CU240B-2 | CU240E-2 | CU250S-2 | CU240D-2 | CU250D-2 |  |
| 1 | Support for the new Power Modules | -     | 1        | -        | -        | -        | -        | -        |  |
|   | • PM330 IP20 GX                   |       |          |          |          |          |          |          |  |

# A.1.9 Firmware version 4.6

Table A-9 New functions and function changes in Firmware 4.6

|    | Function                                                                                                          | SINAMICS |          |          |          |          |          |          |  |
|----|-------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|--|
|    |                                                                                                                   |          | G120     |          |          | G12      | G120D    |          |  |
|    |                                                                                                                   | G120C    | CU230P-2 | CU240B-2 | CU240E-2 | CU250S-2 | CU240D-2 | CU250D-2 |  |
| 1  | Support for the new Power Modules                                                                                 | -        | 1        | 1        | 1        | 1        | -        | -        |  |
|    | • PM240-2 IP20 FSB FSC                                                                                            |          |          |          |          |          |          |          |  |
|    | PM240-2 in through-hole technology FSB FSC                                                                        |          |          |          |          |          |          |          |  |
| 2  | Support for the new Power Modules                                                                                 | -        | 1        | 1        | 1        | -        | -        | -        |  |
|    | PM230 in through-hole technology FSD FSF                                                                          |          |          |          |          |          |          |          |  |
| 3  | Motor data preassignment for the 1LA/1LE motors via code number                                                   | 1        | 1        | 1        | 1        | 1        | 1        | 1        |  |
|    | During quick commissioning with the operator panel, set the motor data using a code number                        |          |          |          |          |          |          |          |  |
| 4  | Extension to communication via CANopen                                                                            | 1        | 1        | -        | -        | 1        | -        | -        |  |
|    | CAN velocity, ProfilTorque, SDO channel for each axis, system test with CodeSys, suppression of ErrorPassiv alarm |          |          |          |          |          |          |          |  |
| 5  | Extension to communication via BACnet                                                                             | -        | 1        | -        | -        | -        | -        | -        |  |
|    | Multistate value objects for alarms, commandable AO objects, objects for configuring the PID controller           |          |          |          |          |          |          |          |  |
| 6  | Communication via EtherNet/IP                                                                                     | 1        | 1        | -        | 1        | 1        | 1        | 1        |  |
| 7  | Skip frequency band for analog input                                                                              | ✓        | ✓        | ✓        | 1        | 1        | 1        | -        |  |
|    | A symmetrical skip frequency band can be set for each analog input around the 0 V range.                          |          |          |          |          |          |          |          |  |
| 8  | Changing the control of the motor holding brake                                                                   | ✓        | -        | ✓        | ✓        | <b>✓</b> | ✓        | -        |  |
| 9  | Safety function SBC (Safe Brake Control)                                                                          | -        | -        | -        | -        | ✓        | -        | -        |  |
|    | Secure control of a motor holding brake when using the "Safe Brake Module" option                                 |          |          |          |          |          |          |          |  |
| 10 | Safety function SS1 (Safe Stop 1) without speed monitoring                                                        | -        | -        | -        | -        | 1        | -        | -        |  |
| 11 | Straightforward selection of standard motors                                                                      | 1        | 1        | ✓        | 1        | 1        | 1        | 1        |  |
|    | Selection of 1LA and 1LE motors with an operator panel using a list containing code numbers                       |          |          |          |          |          |          |          |  |
| 12 | Firmware update via memory card                                                                                   | ✓        | ✓        | 1        | 1        | 1        | 1        | <b>✓</b> |  |
| 13 | Safety info channel                                                                                               | -        | -        | -        | 1        | 1        | 1        | <b>/</b> |  |
|    | BICO source r9734.014 for the status bits of the extended safety functions                                        |          |          |          |          |          |          |          |  |
| 14 | Diagnostic alarms for PROFIBUS                                                                                    | ✓        | 1        | ✓        | ✓        | 1        | ✓        | ✓        |  |

# A.1 New and extended functions

# A.1.10 Firmware version 4.5

Table A-10 New functions and function changes in Firmware 4.5

|    | Function                                            |          |          | SINAMICS |          |          |          |  |  |
|----|-----------------------------------------------------|----------|----------|----------|----------|----------|----------|--|--|
|    |                                                     |          |          | G120     |          |          | G120D    |  |  |
|    |                                                     | G120C    | CU230P-2 | CU240B-2 | CU240E-2 | CU240D-2 | CU250D-2 |  |  |
| 1  | Support for the new Power Modules:                  | -        | 1        | 1        | 1        | -        | -        |  |  |
|    | PM230 IP20 FSA FSF                                  |          |          |          |          |          |          |  |  |
|    | PM230 in a push-through FSA FSC                     |          |          |          |          |          |          |  |  |
| 2  | Support for the new Power Modules:                  | -        | 1        | 1        | 1        | -        | -        |  |  |
|    | • PM240-2 IP20 FSA                                  |          |          |          |          |          |          |  |  |
|    | PM240-2 in push-through FSA                         |          |          |          |          |          |          |  |  |
| 3  | New Control Units with PROFINET support             | 1        | 1        | -        | 1        | 1        | 1        |  |  |
| 4  | Support of the PROFlenergy profile                  | 1        | 1        | -        | 1        | 1        | 1        |  |  |
| 5  | Shared device support via PROFINET                  | <b>✓</b> | ✓        | -        | 1        | 1        | <b>✓</b> |  |  |
| 6  | Write protection                                    | <b>✓</b> | <b>✓</b> | <b>✓</b> | 1        | 1        | ✓        |  |  |
| 7  | Know-how protection                                 | ✓        | <b>✓</b> | <b>✓</b> | <b>✓</b> | 1        | ✓        |  |  |
| 8  | Adding a second command data set (CDS0 → CDS0 CDS1) | 1        | -        | -        | -        | -        | -        |  |  |
|    | (All other converters have four command data sets)  |          |          |          |          |          |          |  |  |
| 9  | Position control and basic positioner               | -        | -        | -        | -        | -        | ✓        |  |  |
| 10 | Support of an HTL encoder                           | -        | -        | -        | -        | 1        | 1        |  |  |
| 11 | Support of an SSI encoder                           | -        | -        | -        | -        | -        | 1        |  |  |
| 12 | Failsafe digital output                             | -        | -        | -        | -        | 1        | <b>✓</b> |  |  |

# A.2 Interconnecting signals in the converter

#### A.2.1 Fundamentals

The following functions are implemented in the converter:

- Open-loop and closed-loop control functions
- Communication functions
- · Diagnosis and operating functions

Every function comprises one or several blocks that are interconnected with one another.

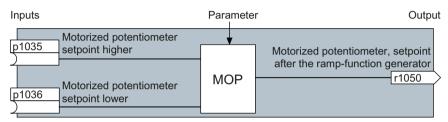



Figure A-1 Example of a block: Motorized potentiometer (MOP)

Most of the blocks can be adapted to specific applications using parameters.

You cannot change the signal interconnection within the block. However, the interconnection between blocks can be changed by interconnecting the inputs of a block with the appropriate outputs of another block.

The signal interconnection of the blocks is realized, contrary to electric circuitry, not using cables, but in the software.

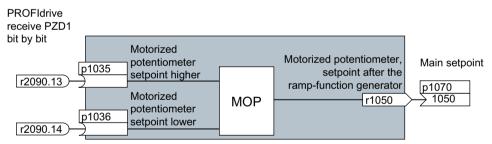



Figure A-2 Example: Signal interconnection of two blocks for digital input 0

#### Binectors and connectors

Connectors and binectors are used to exchange signals between the individual blocks:

- Connectors are used to interconnect "analog" signals (e.g. MOP output speed)
- Binectors are used to interconnect digital signals (e.g. "Enable MOP up" command)

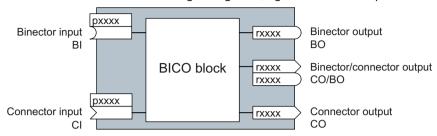



Figure A-3 Symbols for binector and connector inputs and outputs

Binector/connector outputs (CO/BO) are parameters that combine more than one binector output in a single word (e.g. r0052 CO/BO: status word 1). Each bit in the word represents a digital (binary) signal. This summary reduces the number of parameters and simplifies parameter assignment.

Binector or connector outputs (CO, BO or CO/BO) can be used more than once.

# Interconnecting signals

#### When must you interconnect signals in the converter?

If you change the signal interconnection in the converter, you can adapt the converter to a wide range of requirements. This does not necessarily have to involve highly complex functions.

Example 1: Assign a different function to a digital input.

Example 2: Switch the speed setpoint from the fixed speed to the analog input.

#### Principle when connecting BICO blocks using BICO technology

When interconnecting the signal, the following principle applies: Where does the signal come from?

An interconnection between two BICO blocks consists of a connector or a binector and a BICO parameter. The input of a block must be assigned the output of a different block: In the BICO parameters, enter the parameter numbers of the connector/binector that should supply its output signal to the BICO parameter.

# How much care is required when you change the signal interconnection?

Note which changes you make. A subsequent analysis of the set signal interconnections is possible only by evaluating the parameter list.

#### Where can you find additional information?

- All the binectors and connectors are located in the Parameter list.
- The function diagrams provide a complete overview of the factory setting for the signal interconnections and the setting options.

# A.2.2 Application example

# Shift the control logic into the converter

It is only permissible that a conveyor system starts when two signals are present simultaneously. These could be the following signals, for example:

- The oil pump is running (the required pressure level is not reached, however, until after 5 seconds)
- The protective door is closed

To implement this task, you must insert free function blocks between digital input 0 and the command to switch on the motor (ON/OFF1).

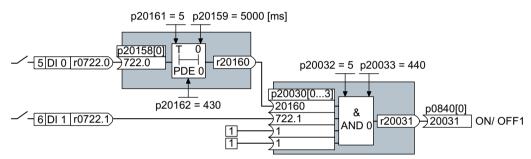



Figure A-4 Signal interconnection for control logic

The signal of digital input 0 (DI 0) is fed through a time block (PDE 0) and is interconnected with the input of a logic block (AND 0). The signal of digital input 1 (DI 1) is interconnected to the second input of the logic block. The logic block output issues the ON/OFF1 command to switch-on the motor.

#### Setting the control logic

| Parameter         | Description                                                                                   |
|-------------------|-----------------------------------------------------------------------------------------------|
| p20161 = 5        | The time block is enabled by assigning to runtime group 5 (time slice of 128 ms)              |
| p20162 = 430      | Run sequence of the time block within runtime group 5 (processing before the AND logic block) |
| p20032 = 5        | The AND logic block is enabled by assigning to runtime group 5 (time slice of 128 ms)         |
| p20033 = 440      | Run sequence of the AND logic block within runtime group 5 (processing after the time block)  |
| p20159 = 5000.00  | Setting the delay time [ms] of the time module: 5 seconds                                     |
| p20158 = 722.0    | Connect the status of DI 0 to the input of the time block                                     |
|                   | r0722.0 = Parameter that displays the status of digital input 0.                              |
| p20030[0] = 20160 | Interconnecting the time block to the 1st AND input                                           |
| p20030[1] = 722.1 | Interconnecting the status of DI 1 to the 2nd AND input                                       |
|                   | r0722.1 = Parameter that displays the status of digital input 1.                              |
| p0840 = 20031     | Interconnect the AND output to ON/OFF1                                                        |

# A.2 Interconnecting signals in the converter

# Explanation of the application example using the ON/OFF1 command

Parameter p0840[0] is the input of the "ON/OFF1" block of the converter. Parameter r20031 is the output of the AND block. To interconnect ON/OFF1 with the output of the AND block, set p0840 = 20031.

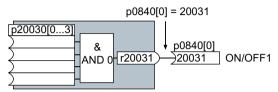



Figure A-5 Interconnecting blocks by setting p0840[0] = 20031

## A.3.1 Overview of the manuals

#### **Converter Manuals**

• CU230P-2 List Manual (<a href="https://support.industry.siemens.com/cs/ww/en/view/109782303">https://support.industry.siemens.com/cs/ww/en/view/109782303</a>)

Parameter list, alarms and faults. Graphic function diagrams



• CU230P-2 operating instructions (<a href="https://support.industry.siemens.com/cs/ww/en/view/109782866">https://support.industry.siemens.com/cs/ww/en/view/109782866</a>)

Installing, commissioning and maintaining the converter. Advanced commissioning (this manual)



# Supplementary manuals for converter

• "Fieldbus" function manual (<a href="https://support.industry.siemens.com/cs/ww/en/view/">https://support.industry.siemens.com/cs/ww/en/view/</a> 109751350)

Configuring fieldbuses.



• "Safety Integrated" function manual (<a href="https://support.industry.siemens.com/cs/ww/en/view/109751320">https://support.industry.siemens.com/cs/ww/en/view/109751320</a>)

Configuring PROFIsafe. Installing, commissioning and operating failsafe functions of the converter



• Power Module Installation Manual (<a href="https://support.industry.siemens.com/cs/ww/en/ps/13224/man">https://support.industry.siemens.com/cs/ww/en/ps/13224/man</a>)

Installing Power Modules, reactors and filters. Technical data, maintenance

• PM330 Hardware Installation Manual (<a href="https://support.industry.siemens.com/cs/ww/en/view/109748647">https://support.industry.siemens.com/cs/ww/en/view/109748647</a>)

Installing Power Modules, reactors and filters. Technical data, maintenance

• G120P Cabinet operating instructions (<a href="https://support.industry.siemens.com/cs/ww/en/view/109749009">https://support.industry.siemens.com/cs/ww/en/view/109749009</a>)
Installing, commissioning, operating and maintaining converter cabinet units

## Converter accessory manuals

BOP-2 operating instructions (<a href="https://support.industry.siemens.com/cs/ww/en/view/109483379">https://support.industry.siemens.com/cs/ww/en/view/109483379</a>)

Using the Operator Panel.

Operating instructions IOP-2 (<a href="https://support.industry.siemens.com/cs/ww/en/view/">https://support.industry.siemens.com/cs/ww/en/view/</a>
 109808456)

Using the operator panel, door mounting kit for mounting an IOP-2.

• Accessories manual (<a href="https://support.industry.siemens.com/cs/ww/en/ps/13225/man">https://support.industry.siemens.com/cs/ww/en/ps/13225/man</a>) Installation descriptions for converter components, e.g. line reactors and line filters. The printed installation descriptions are supplied together with the components.

## Additional information

EMC installation guideline (<a href="http://support.automation.siemens.com/WW/view/en/">http://support.automation.siemens.com/WW/view/en/</a> 60612658)

EMC-compliant control cabinet design, equipotential bonding and cable routing



# Finding the most recent edition of a manual

If there a multiple editions of a manual, select the latest edition:



## Configuring a manual

Further information about the configurability of manuals is available in the Internet:

MyDocumentationManager (<a href="https://www.industry.siemens.com/topics/global/en/planning-efficiency/documentation/Pages/default.aspx">https://www.industry.siemens.com/topics/global/en/planning-efficiency/documentation/Pages/default.aspx</a>).

Select "Display and configure" and add the manual to your "mySupport-documentation":



Not all manuals can be configured.

The configured manual can be exported in RTF, PDF or XML format.

# A.3.2 Configuring support

## Catalog

Ordering data and technical information for the converters SINAMICS G.



Catalogs for download or online catalog (Industry Mall):



#### **SIZER**

The configuration tool for SINAMICS, MICROMASTER and DYNAVERT T drives, motor starters, as well as SINUMERIK, SIMOTION controllers and SIMATIC technology



Article number: 6SL3070-0AA00-0AG0

Download SIZER (<a href="http://support.automation.siemens.com/WW/view/en/">http://support.automation.siemens.com/WW/view/en/</a> 10804987/130000)

# EMC (electromagnetic compatibility) technical overview

Standards and guidelines, EMC-compliant control cabinet design



EMC overview (https://support.industry.siemens.com/cs/ww/en/view/103704610)

## **EMC Guidelines configuration manual**

EMC-compliant control cabinet design, potential equalization and cable routing



EMC installation guideline (<a href="http://support.automation.siemens.com/WW/view/en/">http://support.automation.siemens.com/WW/view/en/</a> 60612658)

#### See also

All about SINAMICS G120C (www.siemens.com/sinamics-g120c)

Safety Integrated for novices (<a href="https://support.industry.siemens.com/cs/ww/en/view/80561520">https://support.industry.siemens.com/cs/ww/en/view/80561520</a>)

# A.3.3 Product Support

## Overview

You can find additional information about the product on the Internet:

Product support (<a href="https://support.industry.siemens.com/cs/ww/en/">https://support.industry.siemens.com/cs/ww/en/</a>)

This URL provides the following:

- Up-to-date product information (product announcements)
- FAQs
- Downloads
- The Newsletter contains the latest information on the products you use.
- The Knowledge Manager (Intelligent Search) helps you find the documents you need.
- Users and specialists from around the world share their experience and knowledge in the Forum.
- You can find your local representative for Automation & Drives via our contact database under "Contact & Partner".
- Information about local service, repair, spare parts and much more can be found under "Services".

If you have any technical questions, use the online form in the "Support Request" menu:



# Index

|                                                                    | Braking                                                         |
|--------------------------------------------------------------------|-----------------------------------------------------------------|
|                                                                    | Regenerative, 391                                               |
| 3                                                                  | Braking functions, 378                                          |
| 3RK3 (modular safety system), 149                                  | Braking method, 378                                             |
|                                                                    | Braking module, 387                                             |
|                                                                    | Braking resistor, 387                                           |
| 8                                                                  | Bus termination, 118, 119                                       |
| 87 Hz characteristic, 114                                          | Bypass, 426                                                     |
| 87 Hz characteristic, 114                                          |                                                                 |
| o, ne characteristic, nn                                           | С                                                               |
|                                                                    | Cable registance 264                                            |
| A                                                                  | Cascada control 357                                             |
| Acyclic communication, 200                                         | Catalog 584                                                     |
| Acyclic communication, 298 Additional technology controller 0, 320 | Catalog, 584<br>CDS (Command Data Set), 313                     |
| Alarm, 361, 441, 447                                               | Centrifuge, 380, 385, 387, 391                                  |
| Alarm buffer, 361, 447                                             | Characteristic                                                  |
| Alarm code, 447                                                    | Additional, 367                                                 |
| Alarm history, 448                                                 | Linear, 367, 370                                                |
| Alarm time, 361, 447                                               | parabolic, 367, 370                                             |
| Alarm value, 447                                                   | square-law, 367, 370                                            |
| Ambient temperature, 398, 399                                      | Clockwise rotation, 266                                         |
| Analog input, 122                                                  | Command data set, 313                                           |
| Analog output, 122                                                 | Commissioning                                                   |
| Application example, 160, 162, 250, 259, 298, 329,                 | Guidelines, 165                                                 |
| 332, 333, 579                                                      | Communication                                                   |
| Application example, 257                                           | Acyclic, 298                                                    |
| Reading and writing parameters cyclically via                      | Compound braking, 385, 386                                      |
| PROFIBUS, 298                                                      | Compressor, 39, 178, 183, 191, 199, 206                         |
| Arrangement of the mains and motor terminals, 98                   | Configuring support, 584                                        |
| Article number, 32                                                 | Connectors, 578                                                 |
| Automatic mode, 314                                                | Control terminals, 122                                          |
| Automatic restart, 414                                             | Control Units, 32                                               |
|                                                                    | Control word                                                    |
| D                                                                  | Control word 1, 299, 307                                        |
| В                                                                  | Control word 3, 282<br>Control word 1, 280                      |
| Base load, 492                                                     | Control word 3 (STW3), 282                                      |
| Base load input current, 492                                       | Control word 3 (31W3), 282  Control word"; "Control word 1, 302 |
| Base load output current, 492                                      | Controlling the motor, 266                                      |
| Base load power, 492                                               | Converter                                                       |
| BF (Bus Fault), 442, 443, 444                                      | does not respond, 486                                           |
| BICO block, 577                                                    | Converter components, 32                                        |
| Bimetallic switch, 396                                             | Conveyor belt, 380                                              |
| Binectors, 578                                                     | Conveyor systems, 204                                           |
| Block, 577                                                         | Counter-clockwise rotation, 266                                 |
| BOP-2                                                              | Current input, 255                                              |
| Menu, 212<br>Symbols, 212                                          | Current reduction, 506, 560                                     |
| Jymbuls, 212                                                       | Cyclic communication, 295                                       |

|                                               | Fault, 361, 441                                      |
|-----------------------------------------------|------------------------------------------------------|
|                                               | Acknowledge, 451                                     |
| D                                             | Motor, 487                                           |
| Data backup 210 229                           | Fault buffer, 361, 450                               |
| Data backup, 219, 228 Data transfer, 227      | Fault case, 452                                      |
|                                               | Fault code, 450                                      |
| Data set 47 (DS), 298                         | Fault history, 451                                   |
| Date, 361                                     | Fault time, 361, 450                                 |
| Daylight saving time, 362                     | Received, 450                                        |
| DC braking, 282, 380, 381, 382, 383           | Removed, 450                                         |
| DC link overvoltage, 401                      | Fault value, 450                                     |
| DC link voltage, 401                          | FCC, 365                                             |
| Deadband, 258                                 | FCC (Flux Current Control), 367                      |
| Delta connection, 114                         | Field weakening, 114                                 |
| Delta connection (Δ), 168, 169                | Fieldbus interfaces, 118, 119, 157                   |
| Derating                                      | Firmware, 32                                         |
| Installation altitude, 562                    | Firmware downgrade, 483                              |
| Digital input, 122, 266                       | Firmware version, 565, 566, 567, 568, 569, 570, 571, |
| Digital output, 122                           | 572, 573, 574, 575                                   |
| Function, 253, 255, 259                       | Flow control, 340                                    |
| DIP switch                                    | Flux current control, 365                            |
| Analog input, 255                             | Flying restart, 412                                  |
| Direct data exchange, 297                     | Formatting, 220                                      |
| Direction of rotation, 331                    | Forming the DC-link capacitors, 170                  |
| Direction reversal, 266                       | Free function blocks, 315                            |
| Drive control, 241                            | Function Manual, 581                                 |
| Drive Data Set, 438                           | Functions                                            |
| Drive Data Set, DDS, 438                      | BOP-2, 212                                           |
| DTC (Digital Time Clock), 363                 | Overview, 241                                        |
| Dynamic braking, 387                          | Overview, 241                                        |
|                                               |                                                      |
|                                               | G                                                    |
| E                                             |                                                      |
| EMC, 64                                       | Generator operation, 378                             |
| EMERGENCY STOP, 263                           | Grinding machine, 380, 385                           |
| EMERGENCY SWITCHING OFF, 263                  |                                                      |
| EN 60204-1, 263                               |                                                      |
| EN 61800-5-2, 262                             | Н                                                    |
| Energy recovery, 42                           | High Overload, 492                                   |
| Energy recovery option, 391                   | Hoist drive, 391                                     |
| Energy-saving display, 436                    | Hoisting gear, 387                                   |
| ESM, 420                                      | Horizontal conveyors, 385, 387                       |
| Essential service mode, 420                   | Hotline, 585                                         |
| Extending the telegram, 296                   | 110011110, 3003                                      |
| Exterioring the telegram, 250                 |                                                      |
|                                               | 1                                                    |
| F                                             | L                                                    |
|                                               | I_max controller, 392                                |
| Factory assignment, 122                       | i2t monitoring, 395                                  |
| Factory settings                              | Inclined conveyors, 387                              |
| Restoring the, 209, 210                       | IND (page index), 287, 291, 292                      |
| Fan, 38, 39, 40, 178, 183, 191, 199, 204, 206 | Industry Mall, 584                                   |
| Fans, 393                                     | Installation altitude, 562                           |
|                                               |                                                      |

| Installing, 71 Interfaces, 118 Interlock, 579                                                                                                                                                                                                                                                                                    | Motor code, 169<br>Motor control, 242<br>Motor data, 168<br>Identify, 180, 186, 188, 192, 376<br>Measure, 180, 186, 188, 192<br>Motor fault, 487                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JOG function, 311                                                                                                                                                                                                                                                                                                                | Motor holding brake, 262<br>Motor standard, 317<br>Motor temperature sensor, 122                                                                                                                                                                                                                                                                              |
| K                                                                                                                                                                                                                                                                                                                                | Motorized potentiometer, 325<br>Multi-zone control, 354                                                                                                                                                                                                                                                                                                       |
| Kinetic buffering, 417<br>Know-how protection, 220, 234<br>KTY84 sensor, 396                                                                                                                                                                                                                                                     | O                                                                                                                                                                                                                                                                                                                                                             |
| L  LED  BF, 442, 443, 444  LNK, 442  RDY, 442  LED (light emitting diode), 441  Level control, 340  License, 220  Line and motor connection, frame sizes  FSD FSF, 103, 113  Line contactor, 262  Line dip, 417  Line filter, 45  Linear characteristic, 367, 370  List Manual, 581  LNK (PROFINET Link), 442  Low Overload, 492 | OFF1 command, 266 OFF3 ramp-down time, 338 ON command, 266 Operating instruction, 25 Operating Instructions, 581 Operation, 246 Operator panel BOP-2, 212 Menu, 212 Optimizing the closed-loop speed controller, 376 Output reactor, 364 Overload, 392 Overview Chapter, 26, 27 Overview of the functions, 241 Overvoltage, 401 Overvoltage protection, 154   |
|                                                                                                                                                                                                                                                                                                                                  | Parabolic characteristic, 367, 370                                                                                                                                                                                                                                                                                                                            |
| Manual mode, 314 Maximum cable length PROFIBUS, 161 PROFINET, 159 Maximum current controller, 392 Maximum speed, 173, 331 Memory cards, 220 Menu BOP-2, 212 Operator panel, 212 Minimum speed, 173, 331, 334 Modular Safety System, 149 MOP (motorized potentiometer), 325 MotID (motor data identification), 180, 186, 188, 192 | Parameter channel, 285 IND, 287, 291, 292 Parameter index, 287, 291, 292 Parameter list, 581 Parameter number, 216, 287, 291, 292 Parameter value, 217 Parameters Overview, 244 Partial load operation, 561 PID controller, 340 PKW (parameter, ID value), 278 PLC functionality, 579 Power failure, 414 Power Module, 32 Pressure control, 340 Procedure, 25 |

| PROFIBUS, 161 PROFIdrive, 157 PROFlenergy, 157 Protection functions, 242 Pt1000 sensor, 396 PTC sensor, 396 Pulse cancellation, 280, 299, 302, 308 Pulse enable, 280, 299, 302, 308 Pulse frequency, 394, 395, 506, 560 Pump, 38, 39, 40, 178, 183, 191, 199, 204, 206 PZD (process data), 278            | Sine-wave filter, 55, 364 SIZER, 584 Skip frequency band, 331 Slip compensation, 365 Smart Access, 166 Speed change with BOP-2, 212 Limiting, 331 Speed control, 374 Square-law characteristic, 367, 370 Standards EN 61800-3, 33 Star connection (Y), 114                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q                                                                                                                                                                                                                                                                                                         | Startdrive                                                                                                                                                                                                                                                                                                                                                                                        |
| Questions, 585                                                                                                                                                                                                                                                                                            | Download, 166 STARTER Download, 166                                                                                                                                                                                                                                                                                                                                                               |
| R                                                                                                                                                                                                                                                                                                         | Starting behavior                                                                                                                                                                                                                                                                                                                                                                                 |
| Ramp-down time, 338 Ramp-function generator, 331 Ramp-up time, 338 RDY (Ready), 442 Ready, 246 Ready for switching on, 246 Real-time clock, 361 Real-Time Clock, 361 Regenerative feedback, 391 Reset Parameter, 209, 210 Reversing, 331 Rounding, 338 Rounding OFF3, 338 RTC (Real-Time Clock), 361, 363 | Optimization, 372 Starting behavior"; "Optimization, 368 Starting current, 369 State overview, 245 Status word Status word 1, 280, 281, 300, 303, 309 Status word 3, 283 STO (Safe Torque Off), 262 select, 262 Stop Category 0, 263 Storage medium, 219 STW1 (control word 1), 280, 299, 302, 307 Subindex, 287, 291, 292 Support, 585 Switch off Motor, 246 OFF1 command, 246 OFF2 command, 246 |
| S                                                                                                                                                                                                                                                                                                         | OFF3 command, 246                                                                                                                                                                                                                                                                                                                                                                                 |
| S7 communication, 157 Saw, 380, 385 Scaling Analog input, 256 Analog output, 260 SD (memory card), 220 Formatting, 220                                                                                                                                                                                    | Switch on Motor, 246 ON command, 246 Switching on inhibited, 246, 281, 299, 302, 308 Symbols, 25 System runtime, 445                                                                                                                                                                                                                                                                              |
| Sequence control, 245                                                                                                                                                                                                                                                                                     | Т                                                                                                                                                                                                                                                                                                                                                                                                 |
| Series commissioning, 211 Setpoint processing, 242, 331 Setpoint source, 242 Selecting, 323, 324, 325 Settling time, 178, 183, 101, 100, 206                                                                                                                                                              | Technical data Control Unit, 489, 490, 491 General, 518 Task pology controller, 282, 210, 240                                                                                                                                                                                                                                                                                                     |
| Settling time, 178, 183, 191, 199, 206<br>Short-circuit monitoring, 396, 397<br>Signal interconnection, 577                                                                                                                                                                                               | Technology controller, 282, 319, 340 Temperature calculation, 398 Temperature monitoring, 395, 398                                                                                                                                                                                                                                                                                                |

Temperature sensor, 122
Temperature switch, 396
Terminal block, 248
Terminal strip, 154
Factory setting, 122
Three-wire control, 266
Time, 361
Time control, 363
Time switch, 363
Torque accuracy, 178, 183, 191, 199, 206
Two-wire control, 266
Type plate
Control Unit, 32
Power Module, 32

ZSW1 (status word 1), 280, 303, 309 ZWS3 (status word 3), 283 ZWST1 (status word 1), 300

## U

U/f characteristic, 365
Unit system, 317
Unwinders, 391
Upgrading the firmware, 481
Upload
Data transfer, 228
Download, 227
Use for the intended purpose, 29
User interfaces, 118
UTC (Universal Time Coordinated), 361

# ٧

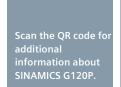
Vdc\_min controller, 417
Vector control, 376
Sensorless, 374
Version
Control Unit, 32
Power Module, 32
Vertical conveyors, 387
Voltage boost, 365, 368, 369, 372
Voltage input, 255

#### W

Winders, 391 Wire-break monitoring, 257, 396, 397 Write protection, 231

## Ζ

Ziegler Nichols, 349 ZSW 1 (status word 1)", 281


# **Further information**

SINAMICS converters: www.siemens.com/sinamics

PROFINET

www.siemens.com/profinet

Siemens AG Digital Factory Motion Control Postfach 3180 91050 ERLANGEN Germany



